Properties

Label 2299.2.a.m
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,-3,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} - q^{4} + \beta_1 q^{5} - \beta_1 q^{6} + ( - \beta_{2} - 1) q^{7} - 3 q^{8} + (\beta_{2} + 2) q^{9} + \beta_1 q^{10} + \beta_1 q^{12} + (\beta_{2} + 3) q^{13} + ( - \beta_{2} - 1) q^{14}+ \cdots + (\beta_1 + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} - 3 q^{4} + q^{5} - q^{6} - 3 q^{7} - 9 q^{8} + 6 q^{9} + q^{10} + q^{12} + 9 q^{13} - 3 q^{14} - 15 q^{15} - 3 q^{16} - 2 q^{17} + 6 q^{18} + 3 q^{19} - q^{20} + 4 q^{23} + 3 q^{24}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 7x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.75153
0.841083
−2.59261
1.00000 −2.75153 −1.00000 2.75153 −2.75153 −3.57093 −3.00000 4.57093 2.75153
1.2 1.00000 −0.841083 −1.00000 0.841083 −0.841083 3.29258 −3.00000 −2.29258 0.841083
1.3 1.00000 2.59261 −1.00000 −2.59261 2.59261 −2.72165 −3.00000 3.72165 −2.59261
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.m yes 3
11.b odd 2 1 2299.2.a.l 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.2.a.l 3 11.b odd 2 1
2299.2.a.m yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{3} + T_{3}^{2} - 7T_{3} - 6 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 11T_{7} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 7T - 6 \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 7T + 6 \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 9 T^{2} + \cdots + 34 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 4 T^{2} + \cdots + 288 \) Copy content Toggle raw display
$29$ \( T^{3} - 11 T^{2} + \cdots - 26 \) Copy content Toggle raw display
$31$ \( T^{3} - 13 T^{2} + \cdots + 198 \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} + \cdots - 88 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots + 638 \) Copy content Toggle raw display
$43$ \( T^{3} - 11 T^{2} + \cdots + 144 \) Copy content Toggle raw display
$47$ \( T^{3} - 14 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( T^{3} + 10 T^{2} + \cdots - 288 \) Copy content Toggle raw display
$59$ \( T^{3} - 2 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$67$ \( T^{3} + 13 T^{2} + \cdots - 198 \) Copy content Toggle raw display
$71$ \( T^{3} - 23 T^{2} + \cdots - 398 \) Copy content Toggle raw display
$73$ \( T^{3} - 16 T^{2} + \cdots + 704 \) Copy content Toggle raw display
$79$ \( T^{3} - 16 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$83$ \( T^{3} + 9 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$89$ \( (T - 2)^{3} \) Copy content Toggle raw display
$97$ \( T^{3} - 10 T^{2} + \cdots + 288 \) Copy content Toggle raw display
show more
show less