Properties

Label 2299.2.a.p
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,2,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 18x^{2} - 16x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{6} + \beta_{4} + \beta_1 + 1) q^{4} + ( - \beta_{6} + \beta_{2}) q^{5} + ( - \beta_{6} + \beta_{5} - \beta_{4} + \cdots - 1) q^{6} + (\beta_{6} - \beta_{5} + \cdots + \beta_{2}) q^{7}+ \cdots + ( - \beta_{6} + 4 \beta_{3} + \cdots + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - q^{3} + 6 q^{4} - q^{5} - 2 q^{7} - 6 q^{8} + 4 q^{9} + 3 q^{10} - 9 q^{12} - 12 q^{13} + 3 q^{14} + 5 q^{15} - 12 q^{17} + 3 q^{18} + 7 q^{19} - 17 q^{20} - 9 q^{21} - 9 q^{23} - 27 q^{24}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 18x^{2} - 16x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 5\nu^{2} + 8\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{5} + \nu^{4} + 8\nu^{3} - 5\nu^{2} - 13\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 8\nu^{4} - 3\nu^{3} + 13\nu^{2} + 13\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 9\nu^{4} - 2\nu^{3} + 19\nu^{2} + 8\nu - 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{6} + 8\nu^{4} + 3\nu^{3} - 12\nu^{2} - 14\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{6} - \beta_{5} + 7\beta_{4} + \beta_{3} + \beta_{2} + 6\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{6} - \beta_{5} + 2\beta_{4} + 8\beta_{3} + 9\beta_{2} + 28\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 35\beta_{6} - 8\beta_{5} + 44\beta_{4} + 11\beta_{3} + 11\beta_{2} + 37\beta _1 + 82 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.50285
1.87135
1.79190
−0.0680200
−0.692399
−1.09476
−2.31092
−2.50285 1.59648 4.26424 0.630803 −3.99574 −0.249675 −5.66706 −0.451261 −1.57880
1.2 −1.87135 −1.09616 1.50197 −4.30775 2.05131 3.98475 0.931995 −1.79843 8.06132
1.3 −1.79190 −2.48473 1.21090 0.260416 4.45238 −3.76880 1.41399 3.17387 −0.466638
1.4 0.0680200 −0.141369 −1.99537 3.58517 −0.00961589 −3.20234 −0.271765 −2.98001 0.243863
1.5 0.692399 3.33751 −1.52058 −0.880738 2.31089 −3.64547 −2.43765 8.13895 −0.609822
1.6 1.09476 −0.248246 −0.801502 1.63186 −0.271770 4.48973 −3.06697 −2.93837 1.78650
1.7 2.31092 −1.96348 3.34035 −1.91976 −4.53745 0.391807 3.09745 0.855254 −4.43642
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.p 7
11.b odd 2 1 2299.2.a.r yes 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.2.a.p 7 1.a even 1 1 trivial
2299.2.a.r yes 7 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{7} + 2T_{2}^{6} - 8T_{2}^{5} - 14T_{2}^{4} + 17T_{2}^{3} + 18T_{2}^{2} - 16T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{7} + T_{3}^{6} - 12T_{3}^{5} - 18T_{3}^{4} + 20T_{3}^{3} + 38T_{3}^{2} + 12T_{3} + 1 \) Copy content Toggle raw display
\( T_{7}^{7} + 2T_{7}^{6} - 35T_{7}^{5} - 79T_{7}^{4} + 313T_{7}^{3} + 753T_{7}^{2} - 141T_{7} - 77 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} - 12 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{7} + T^{6} - 19 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$7$ \( T^{7} + 2 T^{6} + \cdots - 77 \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} + 12 T^{6} + \cdots + 7777 \) Copy content Toggle raw display
$17$ \( T^{7} + 12 T^{6} + \cdots - 7 \) Copy content Toggle raw display
$19$ \( (T - 1)^{7} \) Copy content Toggle raw display
$23$ \( T^{7} + 9 T^{6} + \cdots - 3789 \) Copy content Toggle raw display
$29$ \( T^{7} + 18 T^{6} + \cdots - 1363 \) Copy content Toggle raw display
$31$ \( T^{7} + 5 T^{6} + \cdots - 368903 \) Copy content Toggle raw display
$37$ \( T^{7} - 4 T^{6} + \cdots + 10109 \) Copy content Toggle raw display
$41$ \( T^{7} + 25 T^{6} + \cdots - 61253 \) Copy content Toggle raw display
$43$ \( T^{7} - 10 T^{6} + \cdots - 1963 \) Copy content Toggle raw display
$47$ \( T^{7} + 14 T^{6} + \cdots + 98963 \) Copy content Toggle raw display
$53$ \( T^{7} + 15 T^{6} + \cdots + 16651 \) Copy content Toggle raw display
$59$ \( T^{7} + 9 T^{6} + \cdots + 50353 \) Copy content Toggle raw display
$61$ \( T^{7} + 3 T^{6} + \cdots + 1310837 \) Copy content Toggle raw display
$67$ \( T^{7} + 15 T^{6} + \cdots + 484987 \) Copy content Toggle raw display
$71$ \( T^{7} - 13 T^{6} + \cdots - 3979 \) Copy content Toggle raw display
$73$ \( T^{7} - 28 T^{6} + \cdots + 304013 \) Copy content Toggle raw display
$79$ \( T^{7} + 18 T^{6} + \cdots - 108143 \) Copy content Toggle raw display
$83$ \( T^{7} - 10 T^{6} + \cdots + 158647 \) Copy content Toggle raw display
$89$ \( T^{7} - 2 T^{6} + \cdots + 2211325 \) Copy content Toggle raw display
$97$ \( T^{7} - 29 T^{6} + \cdots + 2132767 \) Copy content Toggle raw display
show more
show less