[N,k,chi] = [209,2,Mod(1,209)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(209, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("209.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(11\)
\(1\)
\(19\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{7} + T_{2}^{6} - 14T_{2}^{5} - 10T_{2}^{4} + 59T_{2}^{3} + 27T_{2}^{2} - 66T_{2} - 30 \)
T2^7 + T2^6 - 14*T2^5 - 10*T2^4 + 59*T2^3 + 27*T2^2 - 66*T2 - 30
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(209))\).
$p$
$F_p(T)$
$2$
\( T^{7} + T^{6} - 14 T^{5} - 10 T^{4} + \cdots - 30 \)
T^7 + T^6 - 14*T^5 - 10*T^4 + 59*T^3 + 27*T^2 - 66*T - 30
$3$
\( T^{7} - 2 T^{6} - 14 T^{5} + 28 T^{4} + \cdots + 64 \)
T^7 - 2*T^6 - 14*T^5 + 28*T^4 + 46*T^3 - 100*T^2 - 17*T + 64
$5$
\( T^{7} - 2 T^{6} - 20 T^{5} + 34 T^{4} + \cdots - 6 \)
T^7 - 2*T^6 - 20*T^5 + 34*T^4 + 88*T^3 - 156*T^2 + 57*T - 6
$7$
\( T^{7} - 10 T^{6} + 17 T^{5} + \cdots + 512 \)
T^7 - 10*T^6 + 17*T^5 + 86*T^4 - 185*T^3 - 316*T^2 + 394*T + 512
$11$
\( (T + 1)^{7} \)
(T + 1)^7
$13$
\( T^{7} + 4 T^{6} - 51 T^{5} + \cdots - 5716 \)
T^7 + 4*T^6 - 51*T^5 - 194*T^4 + 639*T^3 + 2082*T^2 - 2550*T - 5716
$17$
\( T^{7} - 2 T^{6} - 70 T^{5} + \cdots - 17088 \)
T^7 - 2*T^6 - 70*T^5 + 44*T^4 + 1552*T^3 + 864*T^2 - 11424*T - 17088
$19$
\( (T - 1)^{7} \)
(T - 1)^7
$23$
\( T^{7} - 10 T^{6} - 51 T^{5} + \cdots + 1920 \)
T^7 - 10*T^6 - 51*T^5 + 648*T^4 - 316*T^3 - 5136*T^2 + 3312*T + 1920
$29$
\( T^{7} + 18 T^{6} + 117 T^{5} + \cdots - 276 \)
T^7 + 18*T^6 + 117*T^5 + 340*T^4 + 383*T^3 - 114*T^2 - 534*T - 276
$31$
\( T^{7} - 24 T^{6} + 214 T^{5} - 904 T^{4} + \cdots + 4 \)
T^7 - 24*T^6 + 214*T^5 - 904*T^4 + 1918*T^3 - 1934*T^2 + 715*T + 4
$37$
\( T^{7} - 121 T^{5} - 194 T^{4} + \cdots - 8992 \)
T^7 - 121*T^5 - 194*T^4 + 3512*T^3 + 9296*T^2 - 1680*T - 8992
$41$
\( T^{7} + 12 T^{6} - 5 T^{5} + \cdots - 1824 \)
T^7 + 12*T^6 - 5*T^5 - 526*T^4 - 1823*T^3 - 174*T^2 + 3840*T - 1824
$43$
\( T^{7} - 2 T^{6} - 89 T^{5} + \cdots + 4976 \)
T^7 - 2*T^6 - 89*T^5 + 150*T^4 + 1677*T^3 - 1208*T^2 - 6988*T + 4976
$47$
\( T^{7} - 8 T^{6} - 152 T^{5} + \cdots + 79872 \)
T^7 - 8*T^6 - 152*T^5 + 1344*T^4 + 1024*T^3 - 22848*T^2 + 12096*T + 79872
$53$
\( T^{7} - 2 T^{6} - 160 T^{5} + \cdots + 768 \)
T^7 - 2*T^6 - 160*T^5 + 32*T^4 + 6032*T^3 + 13920*T^2 + 8832*T + 768
$59$
\( T^{7} + 10 T^{6} - 345 T^{5} + \cdots - 6552192 \)
T^7 + 10*T^6 - 345*T^5 - 2976*T^4 + 36164*T^3 + 249792*T^2 - 1125936*T - 6552192
$61$
\( T^{7} - 14 T^{6} - 34 T^{5} + \cdots - 36544 \)
T^7 - 14*T^6 - 34*T^5 + 1044*T^4 - 1728*T^3 - 17920*T^2 + 60512*T - 36544
$67$
\( T^{7} - 8 T^{6} - 170 T^{5} + \cdots + 13544 \)
T^7 - 8*T^6 - 170*T^5 + 1308*T^4 + 6342*T^3 - 33086*T^2 - 115621*T + 13544
$71$
\( T^{7} - 10 T^{6} - 134 T^{5} + \cdots + 39756 \)
T^7 - 10*T^6 - 134*T^5 + 944*T^4 + 2278*T^3 - 11928*T^2 - 9057*T + 39756
$73$
\( T^{7} + 6 T^{6} - 220 T^{5} + \cdots + 67328 \)
T^7 + 6*T^6 - 220*T^5 - 1592*T^4 + 3536*T^3 + 44576*T^2 + 100224*T + 67328
$79$
\( T^{7} - 52 T^{6} + 970 T^{5} + \cdots - 203264 \)
T^7 - 52*T^6 + 970*T^5 - 7152*T^4 + 7992*T^3 + 90880*T^2 - 26464*T - 203264
$83$
\( T^{7} + 10 T^{6} - 219 T^{5} + \cdots + 576936 \)
T^7 + 10*T^6 - 219*T^5 - 3362*T^4 - 8273*T^3 + 71352*T^2 + 410346*T + 576936
$89$
\( T^{7} - 401 T^{5} - 698 T^{4} + \cdots - 8199552 \)
T^7 - 401*T^5 - 698*T^4 + 50392*T^3 + 161184*T^2 - 1951104*T - 8199552
$97$
\( T^{7} + 24 T^{6} - 189 T^{5} + \cdots - 17393056 \)
T^7 + 24*T^6 - 189*T^5 - 6678*T^4 + 8156*T^3 + 605448*T^2 - 49072*T - 17393056
show more
show less