Properties

Label 2299.2.a.o
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-4,-1,6,-1,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 5x^{5} + 13x^{4} + 10x^{3} - 10x^{2} - 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - \beta_{5} q^{3} + (\beta_{6} - \beta_{5} + 1) q^{4} - \beta_{3} q^{5} + ( - \beta_{6} + 2 \beta_{5} - \beta_{2} - 1) q^{6} + ( - \beta_{6} + \beta_{5} - \beta_{2}) q^{7} + ( - \beta_{6} + \beta_{5} + \cdots - \beta_1) q^{8}+ \cdots + ( - 3 \beta_{6} + \beta_{4} - 2 \beta_{3} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 4 q^{2} - q^{3} + 6 q^{4} - q^{5} - 8 q^{6} - 2 q^{7} - 6 q^{8} + 8 q^{9} + 9 q^{10} + 17 q^{12} - 4 q^{13} + 3 q^{14} - 15 q^{15} - 4 q^{17} - 21 q^{18} + 7 q^{19} - q^{20} - 5 q^{21} - 5 q^{23}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 5x^{5} + 13x^{4} + 10x^{3} - 10x^{2} - 8x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{6} + 4\nu^{5} + 2\nu^{4} - 17\nu^{3} + \nu^{2} + 15\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{6} + 3\nu^{5} + 5\nu^{4} - 14\nu^{3} - 8\nu^{2} + 13\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{6} + 3\nu^{5} + 5\nu^{4} - 13\nu^{3} - 10\nu^{2} + 11\nu + 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{6} - 7\nu^{5} - 6\nu^{4} + 28\nu^{3} + 3\nu^{2} - 18\nu - 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 2\nu^{6} - 7\nu^{5} - 6\nu^{4} + 28\nu^{3} + 4\nu^{2} - 20\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{5} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} - 2\beta_{5} + \beta_{4} - \beta_{3} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 10\beta_{6} - 9\beta_{5} + 3\beta_{4} - 2\beta_{3} + \beta_{2} + 16\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 27\beta_{6} - 24\beta_{5} + 12\beta_{4} - 10\beta_{3} + 4\beta_{2} + 46\beta _1 + 29 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 95\beta_{6} - 81\beta_{5} + 37\beta_{4} - 27\beta_{3} + 17\beta_{2} + 131\beta _1 + 94 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.70920
−0.853643
−0.574447
−0.161881
1.14227
2.13565
3.02125
−2.70920 2.51386 5.33975 −3.29335 −6.81053 −3.29667 −9.04803 3.31947 8.92234
1.2 −1.85364 2.10496 1.43599 2.31001 −3.90185 −0.796889 1.04547 1.43087 −4.28194
1.3 −1.57445 −2.87867 0.478885 2.13300 4.53232 2.65365 2.39492 5.28677 −3.35829
1.4 −1.16188 0.129605 −0.650032 −2.74837 −0.150586 0.979019 3.07902 −2.98320 3.19328
1.5 0.142265 −2.70021 −1.97976 −0.670490 −0.384147 −2.08436 −0.566183 4.29113 −0.0953876
1.6 1.13565 1.06427 −0.710302 −2.32001 1.20864 3.27291 −3.07795 −1.86733 −2.63472
1.7 2.02125 −1.23381 2.08547 3.58921 −2.49385 −2.72766 0.172756 −1.47771 7.25472
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.o 7
11.b odd 2 1 2299.2.a.s yes 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.2.a.o 7 1.a even 1 1 trivial
2299.2.a.s yes 7 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{7} + 4T_{2}^{6} - 2T_{2}^{5} - 22T_{2}^{4} - 13T_{2}^{3} + 24T_{2}^{2} + 18T_{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{7} + T_{3}^{6} - 14T_{3}^{5} - 8T_{3}^{4} + 58T_{3}^{3} + 8T_{3}^{2} - 56T_{3} + 7 \) Copy content Toggle raw display
\( T_{7}^{7} + 2T_{7}^{6} - 19T_{7}^{5} - 37T_{7}^{4} + 97T_{7}^{3} + 179T_{7}^{2} - 89T_{7} - 127 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 4 T^{6} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} - 14 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( T^{7} + T^{6} + \cdots - 249 \) Copy content Toggle raw display
$7$ \( T^{7} + 2 T^{6} + \cdots - 127 \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} + 4 T^{6} + \cdots - 1759 \) Copy content Toggle raw display
$17$ \( T^{7} + 4 T^{6} + \cdots + 1587 \) Copy content Toggle raw display
$19$ \( (T - 1)^{7} \) Copy content Toggle raw display
$23$ \( T^{7} + 5 T^{6} + \cdots - 7233 \) Copy content Toggle raw display
$29$ \( T^{7} + 30 T^{6} + \cdots + 156873 \) Copy content Toggle raw display
$31$ \( T^{7} - 3 T^{6} + \cdots + 10123 \) Copy content Toggle raw display
$37$ \( T^{7} - 6 T^{6} + \cdots - 4441 \) Copy content Toggle raw display
$41$ \( T^{7} + 15 T^{6} + \cdots + 62787 \) Copy content Toggle raw display
$43$ \( T^{7} - 14 T^{6} + \cdots + 96803 \) Copy content Toggle raw display
$47$ \( T^{7} + 10 T^{6} + \cdots + 92211 \) Copy content Toggle raw display
$53$ \( T^{7} - 5 T^{6} + \cdots + 8193 \) Copy content Toggle raw display
$59$ \( T^{7} + T^{6} + \cdots - 58737 \) Copy content Toggle raw display
$61$ \( T^{7} + 25 T^{6} + \cdots + 2116799 \) Copy content Toggle raw display
$67$ \( T^{7} - 5 T^{6} + \cdots - 79051 \) Copy content Toggle raw display
$71$ \( T^{7} + 35 T^{6} + \cdots + 1078347 \) Copy content Toggle raw display
$73$ \( T^{7} + 12 T^{6} + \cdots - 9277 \) Copy content Toggle raw display
$79$ \( T^{7} + 14 T^{6} + \cdots - 27083 \) Copy content Toggle raw display
$83$ \( T^{7} + 10 T^{6} + \cdots + 17541 \) Copy content Toggle raw display
$89$ \( T^{7} - 24 T^{6} + \cdots - 128541 \) Copy content Toggle raw display
$97$ \( T^{7} - 3 T^{6} + \cdots + 34757 \) Copy content Toggle raw display
show more
show less