Properties

Label 2299.2.a.w
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,2,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} - 7 x^{14} + 98 x^{13} - 50 x^{12} - 620 x^{11} + 642 x^{10} + 1958 x^{9} - 2445 x^{8} + \cdots - 143 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} - \beta_{11} q^{5} + (\beta_{4} - \beta_{3} + 1) q^{6} + \beta_{14} q^{7} + (\beta_{12} + \beta_{10} - \beta_{4} + \cdots + 1) q^{8}+ \cdots + ( - \beta_{15} - 5 \beta_{14} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} - 2 q^{3} + 18 q^{4} + 8 q^{6} + 4 q^{7} + 24 q^{8} + 14 q^{9} - 12 q^{10} - 4 q^{12} + 8 q^{13} - 14 q^{14} - 10 q^{15} + 14 q^{16} + 16 q^{17} + 18 q^{18} + 16 q^{19} - 8 q^{20} + 26 q^{21}+ \cdots + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 6 x^{15} - 7 x^{14} + 98 x^{13} - 50 x^{12} - 620 x^{11} + 642 x^{10} + 1958 x^{9} - 2445 x^{8} + \cdots - 143 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 50 \nu^{15} + 253 \nu^{14} + 699 \nu^{13} - 4825 \nu^{12} - 2853 \nu^{11} + 36709 \nu^{10} + \cdots - 14863 ) / 981 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 252 \nu^{15} + 1310 \nu^{14} + 2821 \nu^{13} - 22574 \nu^{12} - 5149 \nu^{11} + 153944 \nu^{10} + \cdots - 51880 ) / 981 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 598 \nu^{15} + 2882 \nu^{14} + 7536 \nu^{13} - 50186 \nu^{12} - 25803 \nu^{11} + 345740 \nu^{10} + \cdots - 116861 ) / 981 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 571 \nu^{15} + 2983 \nu^{14} + 6280 \nu^{13} - 50905 \nu^{12} - 10657 \nu^{11} + 343198 \nu^{10} + \cdots - 119493 ) / 981 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 539 \nu^{15} + 2917 \nu^{14} + 5619 \nu^{13} - 49888 \nu^{12} - 4785 \nu^{11} + 337759 \nu^{10} + \cdots - 114829 ) / 981 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 676 \nu^{15} - 3656 \nu^{14} - 7083 \nu^{13} + 62618 \nu^{12} + 6435 \nu^{11} - 424418 \nu^{10} + \cdots + 143108 ) / 981 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 803 \nu^{15} - 4279 \nu^{14} - 8538 \nu^{13} + 73075 \nu^{12} + 9738 \nu^{11} - 493075 \nu^{10} + \cdots + 161809 ) / 981 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 912 \nu^{15} - 4715 \nu^{14} - 9955 \nu^{13} + 79724 \nu^{12} + 16060 \nu^{11} - 530462 \nu^{10} + \cdots + 163444 ) / 981 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 884 \nu^{15} - 4739 \nu^{14} - 9254 \nu^{13} + 80837 \nu^{12} + 8306 \nu^{11} - 545282 \nu^{10} + \cdots + 193044 ) / 981 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1164 \nu^{15} + 6025 \nu^{14} + 12776 \nu^{13} - 102298 \nu^{12} - 21209 \nu^{11} + 684406 \nu^{10} + \cdots - 213362 ) / 981 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 1232 \nu^{15} + 6356 \nu^{14} + 13622 \nu^{13} - 108206 \nu^{12} - 23441 \nu^{11} + 726116 \nu^{10} + \cdots - 233301 ) / 981 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 1404 \nu^{15} + 7283 \nu^{14} + 15499 \nu^{13} - 124259 \nu^{12} - 26554 \nu^{11} + 836978 \nu^{10} + \cdots - 269161 ) / 981 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 1610 \nu^{15} + 8648 \nu^{14} + 17036 \nu^{13} - 148280 \nu^{12} - 17594 \nu^{11} + 1006409 \nu^{10} + \cdots - 345129 ) / 981 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{12} + \beta_{10} - \beta_{4} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{15} + \beta_{11} + \beta_{8} - \beta_{3} + 7\beta_{2} + 8\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{15} - \beta_{14} + 8 \beta_{12} + \beta_{11} + 7 \beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} + \cdots + 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 10 \beta_{15} - \beta_{14} + 2 \beta_{12} + 10 \beta_{11} + 2 \beta_{10} - \beta_{9} + 11 \beta_{8} + \cdots + 87 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 13 \beta_{15} - 12 \beta_{14} + \beta_{13} + 55 \beta_{12} + 14 \beta_{11} + 45 \beta_{10} + 11 \beta_{9} + \cdots + 93 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 80 \beta_{15} - 14 \beta_{14} + \beta_{13} + 29 \beta_{12} + 82 \beta_{11} + 29 \beta_{10} - 10 \beta_{9} + \cdots + 540 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 124 \beta_{15} - 107 \beta_{14} + 14 \beta_{13} + 369 \beta_{12} + 139 \beta_{11} + 293 \beta_{10} + \cdots + 728 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 601 \beta_{15} - 143 \beta_{14} + 18 \beta_{13} + 297 \beta_{12} + 633 \beta_{11} + 293 \beta_{10} + \cdots + 3492 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 1058 \beta_{15} - 855 \beta_{14} + 140 \beta_{13} + 2480 \beta_{12} + 1213 \beta_{11} + 1954 \beta_{10} + \cdots + 5527 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 4417 \beta_{15} - 1292 \beta_{14} + 218 \beta_{13} + 2655 \beta_{12} + 4766 \beta_{11} + 2574 \beta_{10} + \cdots + 23225 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 8561 \beta_{15} - 6496 \beta_{14} + 1236 \beta_{13} + 16814 \beta_{12} + 9949 \beta_{11} + 13313 \beta_{10} + \cdots + 41361 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 32218 \beta_{15} - 10942 \beta_{14} + 2231 \beta_{13} + 22144 \beta_{12} + 35490 \beta_{11} + \cdots + 157701 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 67260 \beta_{15} - 48176 \beta_{14} + 10312 \beta_{13} + 115172 \beta_{12} + 78888 \beta_{11} + \cdots + 307238 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.39803
−1.98020
−1.62343
−1.35230
−1.14863
−0.822168
−0.408195
0.514549
0.701596
0.713407
1.67822
2.13091
2.26843
2.45204
2.55255
2.72125
−2.39803 −2.07445 3.75053 1.72048 4.97458 4.03440 −4.19782 1.30333 −4.12575
1.2 −1.98020 −0.356066 1.92119 −0.216560 0.705081 −0.588879 0.156056 −2.87322 0.428832
1.3 −1.62343 1.83615 0.635531 0.228119 −2.98086 5.09130 2.21512 0.371437 −0.370336
1.4 −1.35230 2.07433 −0.171290 −1.78146 −2.80512 −0.741185 2.93623 1.30286 2.40906
1.5 −1.14863 −1.93162 −0.680658 0.935257 2.21870 −2.40530 3.07907 0.731137 −1.07426
1.6 −0.822168 −3.18869 −1.32404 3.52839 2.62164 −1.36337 2.73292 7.16777 −2.90093
1.7 −0.408195 −1.70305 −1.83338 −1.20169 0.695175 1.38189 1.56477 −0.0996374 0.490526
1.8 0.514549 0.898143 −1.73524 −4.15188 0.462139 −0.640143 −1.92196 −2.19334 −2.13635
1.9 0.701596 1.14830 −1.50776 3.76385 0.805645 1.01624 −2.46103 −1.68140 2.64070
1.10 0.713407 0.0834579 −1.49105 0.324859 0.0595394 −4.45265 −2.49054 −2.99303 0.231756
1.11 1.67822 2.97280 0.816413 −0.831548 4.98901 4.40715 −1.98632 5.83757 −1.39552
1.12 2.13091 1.11226 2.54077 3.03030 2.37013 2.53524 1.15233 −1.76287 6.45728
1.13 2.26843 −1.51173 3.14579 −3.73652 −3.42925 2.29899 2.59914 −0.714686 −8.47605
1.14 2.45204 −3.22909 4.01251 −2.63485 −7.91787 −4.98078 4.93476 7.42704 −6.46076
1.15 2.55255 −0.858433 4.51550 2.98015 −2.19119 1.30961 6.42092 −2.26309 7.60698
1.16 2.72125 2.72766 5.40519 −1.95689 7.42265 −2.90252 9.26636 4.44015 −5.32518
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.w yes 16
11.b odd 2 1 2299.2.a.v 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.2.a.v 16 11.b odd 2 1
2299.2.a.w yes 16 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{16} - 6 T_{2}^{15} - 7 T_{2}^{14} + 98 T_{2}^{13} - 50 T_{2}^{12} - 620 T_{2}^{11} + 642 T_{2}^{10} + \cdots - 143 \) Copy content Toggle raw display
\( T_{3}^{16} + 2 T_{3}^{15} - 29 T_{3}^{14} - 52 T_{3}^{13} + 330 T_{3}^{12} + 520 T_{3}^{11} - 1892 T_{3}^{10} + \cdots + 96 \) Copy content Toggle raw display
\( T_{7}^{16} - 4 T_{7}^{15} - 62 T_{7}^{14} + 248 T_{7}^{13} + 1359 T_{7}^{12} - 5476 T_{7}^{11} + \cdots + 57232 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} - 6 T^{15} + \cdots - 143 \) Copy content Toggle raw display
$3$ \( T^{16} + 2 T^{15} + \cdots + 96 \) Copy content Toggle raw display
$5$ \( T^{16} - 48 T^{14} + \cdots + 441 \) Copy content Toggle raw display
$7$ \( T^{16} - 4 T^{15} + \cdots + 57232 \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} - 8 T^{15} + \cdots + 361117 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots - 209397747 \) Copy content Toggle raw display
$19$ \( (T - 1)^{16} \) Copy content Toggle raw display
$23$ \( T^{16} - 10 T^{15} + \cdots + 4167636 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 184284523609 \) Copy content Toggle raw display
$31$ \( T^{16} + 2 T^{15} + \cdots + 3017988 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots - 2748908871 \) Copy content Toggle raw display
$41$ \( T^{16} - 40 T^{15} + \cdots + 6637261 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 8592299892 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 22180838724 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots - 6988479303 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots - 18263902448 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots - 942785235392 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 30119784372 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots - 517194176 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots - 85040723810736 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots - 152249159215868 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots - 712822823856 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 59310074133 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots - 5421805914447 \) Copy content Toggle raw display
show more
show less