Properties

Label 2299.2.a.g
Level $2299$
Weight $2$
Character orbit 2299.a
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,6,-1,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta + 1) q^{2} + 2 \beta q^{3} + 3 q^{4} - \beta q^{5} + ( - 2 \beta - 4) q^{6} + (\beta - 2) q^{7} + ( - 2 \beta + 1) q^{8} + (4 \beta + 1) q^{9} + (\beta + 2) q^{10} + 6 \beta q^{12} + ( - 4 \beta + 4) q^{13} + \cdots + (7 \beta + 4) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 6 q^{4} - q^{5} - 10 q^{6} - 3 q^{7} + 6 q^{9} + 5 q^{10} + 6 q^{12} + 4 q^{13} - 5 q^{14} - 6 q^{15} - 2 q^{16} + 5 q^{17} - 20 q^{18} + 2 q^{19} - 3 q^{20} + 2 q^{21} + q^{23} - 10 q^{24}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 3.23607 3.00000 −1.61803 −7.23607 −0.381966 −2.23607 7.47214 3.61803
1.2 2.23607 −1.23607 3.00000 0.618034 −2.76393 −2.61803 2.23607 −1.47214 1.38197
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.2.a.g 2
11.b odd 2 1 2299.2.a.h 2
11.c even 5 2 209.2.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.f.a 4 11.c even 5 2
2299.2.a.g 2 1.a even 1 1 trivial
2299.2.a.h 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{3}^{2} - 2T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$17$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 10T - 20 \) Copy content Toggle raw display
$43$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$47$ \( T^{2} - 15T + 55 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
$61$ \( T^{2} - 15T + 55 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$71$ \( T^{2} - 10T - 20 \) Copy content Toggle raw display
$73$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T - 44 \) Copy content Toggle raw display
$83$ \( T^{2} + 5T - 55 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T - 124 \) Copy content Toggle raw display
show more
show less