Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(6,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([13]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.6");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.e (of order \(14\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(0\) |
Dimension: | \(288\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 | −5.28937 | + | 1.20727i | −2.14603 | − | 0.489818i | 19.3122 | − | 9.30029i | −4.36572 | + | 9.06550i | 11.9425 | 5.60970 | − | 24.5777i | −56.9878 | + | 45.4462i | −19.9606 | − | 9.61253i | 12.1474 | − | 53.2214i | ||
6.2 | −5.05771 | + | 1.15439i | −0.802239 | − | 0.183106i | 17.0401 | − | 8.20607i | 5.54130 | − | 11.5066i | 4.26887 | −5.20062 | + | 22.7854i | −44.2630 | + | 35.2986i | −23.7161 | − | 11.4211i | −14.7432 | + | 64.5940i | ||
6.3 | −4.98986 | + | 1.13890i | 5.41261 | + | 1.23539i | 16.3939 | − | 7.89487i | −8.43757 | + | 17.5208i | −28.4152 | −6.51769 | + | 28.5559i | −40.7992 | + | 32.5362i | 3.44396 | + | 1.65853i | 22.1478 | − | 97.0359i | ||
6.4 | −4.93087 | + | 1.12544i | 8.18390 | + | 1.86792i | 15.8391 | − | 7.62772i | 3.18930 | − | 6.62265i | −42.4560 | 1.15067 | − | 5.04140i | −37.8821 | + | 30.2100i | 39.1609 | + | 18.8589i | −8.27264 | + | 36.2448i | ||
6.5 | −4.65379 | + | 1.06220i | −8.36922 | − | 1.91022i | 13.3217 | − | 6.41540i | 3.98034 | − | 8.26527i | 40.9776 | 1.20188 | − | 5.26576i | −25.3257 | + | 20.1966i | 42.0688 | + | 20.2593i | −9.74433 | + | 42.6927i | ||
6.6 | −4.35477 | + | 0.993947i | −4.58291 | − | 1.04602i | 10.7683 | − | 5.18574i | −2.83248 | + | 5.88170i | 20.9972 | −1.18458 | + | 5.18997i | −13.8011 | + | 11.0060i | −4.41721 | − | 2.12722i | 6.48867 | − | 28.4287i | ||
6.7 | −4.23718 | + | 0.967109i | 5.25614 | + | 1.19968i | 9.81066 | − | 4.72457i | 0.445098 | − | 0.924256i | −23.4315 | 3.51884 | − | 15.4170i | −9.81675 | + | 7.82859i | 1.86164 | + | 0.896520i | −0.992106 | + | 4.34670i | ||
6.8 | −3.71046 | + | 0.846888i | −1.81491 | − | 0.414242i | 5.84252 | − | 2.81361i | −5.04290 | + | 10.4717i | 7.08497 | −0.120547 | + | 0.528152i | 4.50883 | − | 3.59567i | −21.2038 | − | 10.2112i | 9.84312 | − | 43.1255i | ||
6.9 | −3.46189 | + | 0.790154i | −6.86422 | − | 1.56671i | 4.15258 | − | 1.99978i | −5.36100 | + | 11.1322i | 25.0011 | −6.97041 | + | 30.5394i | 9.41411 | − | 7.50750i | 20.3367 | + | 9.79366i | 9.76302 | − | 42.7746i | ||
6.10 | −3.45017 | + | 0.787478i | −1.28875 | − | 0.294149i | 4.07577 | − | 1.96279i | 8.46205 | − | 17.5716i | 4.67804 | 7.50032 | − | 32.8610i | 9.61810 | − | 7.67018i | −22.7518 | − | 10.9567i | −15.3582 | + | 67.2887i | ||
6.11 | −3.42780 | + | 0.782374i | 1.54660 | + | 0.353002i | 3.92998 | − | 1.89258i | 5.76545 | − | 11.9721i | −5.57762 | −3.44993 | + | 15.1151i | 10.0006 | − | 7.97521i | −22.0588 | − | 10.6230i | −10.3962 | + | 45.5487i | ||
6.12 | −3.40114 | + | 0.776287i | 4.02676 | + | 0.919081i | 3.75735 | − | 1.80945i | −4.50770 | + | 9.36034i | −14.4090 | 2.93112 | − | 12.8421i | 10.4454 | − | 8.32991i | −8.95610 | − | 4.31303i | 8.06500 | − | 35.3351i | ||
6.13 | −2.92366 | + | 0.667307i | 5.97020 | + | 1.36266i | 0.894767 | − | 0.430897i | 4.38015 | − | 9.09547i | −18.3642 | −4.77484 | + | 20.9199i | 16.4283 | − | 13.1011i | 9.46029 | + | 4.55583i | −6.73661 | + | 29.5150i | ||
6.14 | −2.77864 | + | 0.634207i | −8.80685 | − | 2.01011i | 0.110876 | − | 0.0533948i | −8.61001 | + | 17.8789i | 25.7459 | 7.61772 | − | 33.3754i | 17.5522 | − | 13.9974i | 49.1939 | + | 23.6905i | 12.5852 | − | 55.1395i | ||
6.15 | −2.31003 | + | 0.527249i | 9.83877 | + | 2.24564i | −2.14950 | + | 1.03515i | −6.73449 | + | 13.9843i | −23.9119 | 0.275979 | − | 1.20914i | 19.2396 | − | 15.3431i | 67.4324 | + | 32.4737i | 8.18365 | − | 35.8549i | ||
6.16 | −2.17232 | + | 0.495818i | −4.25639 | − | 0.971492i | −2.73461 | + | 1.31692i | 1.77717 | − | 3.69033i | 9.72791 | −2.18202 | + | 9.56005i | 19.2240 | − | 15.3306i | −7.15314 | − | 3.44477i | −2.03085 | + | 8.89772i | ||
6.17 | −2.00454 | + | 0.457523i | −8.04978 | − | 1.83731i | −3.39891 | + | 1.63683i | 4.47490 | − | 9.29222i | 16.9767 | −0.638388 | + | 2.79696i | 18.9245 | − | 15.0918i | 37.0970 | + | 17.8650i | −4.71870 | + | 20.6740i | ||
6.18 | −1.77835 | + | 0.405896i | 3.55906 | + | 0.812332i | −4.20998 | + | 2.02742i | −2.71301 | + | 5.63362i | −6.65897 | −6.79789 | + | 29.7835i | 18.0729 | − | 14.4126i | −12.3191 | − | 5.93258i | 2.53801 | − | 11.1197i | ||
6.19 | −1.69384 | + | 0.386608i | 8.91279 | + | 2.03429i | −4.48812 | + | 2.16137i | 8.48300 | − | 17.6151i | −15.8833 | 0.935927 | − | 4.10056i | 17.6334 | − | 14.0622i | 50.9733 | + | 24.5474i | −7.55869 | + | 33.1168i | ||
6.20 | −1.38176 | + | 0.315378i | −3.51241 | − | 0.801685i | −5.39795 | + | 2.59951i | −1.22448 | + | 2.54267i | 5.10615 | 5.06822 | − | 22.2053i | 15.5035 | − | 12.3637i | −12.6318 | − | 6.08317i | 0.890043 | − | 3.89953i | ||
See next 80 embeddings (of 288 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.e | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.e.a | ✓ | 288 |
197.e | even | 14 | 1 | inner | 197.4.e.a | ✓ | 288 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.e.a | ✓ | 288 | 1.a | even | 1 | 1 | trivial |
197.4.e.a | ✓ | 288 | 197.e | even | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).