Properties

Label 197.4.e.a
Level $197$
Weight $4$
Character orbit 197.e
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6.1 −5.28937 + 1.20727i −2.14603 0.489818i 19.3122 9.30029i −4.36572 + 9.06550i 11.9425 5.60970 24.5777i −56.9878 + 45.4462i −19.9606 9.61253i 12.1474 53.2214i
6.2 −5.05771 + 1.15439i −0.802239 0.183106i 17.0401 8.20607i 5.54130 11.5066i 4.26887 −5.20062 + 22.7854i −44.2630 + 35.2986i −23.7161 11.4211i −14.7432 + 64.5940i
6.3 −4.98986 + 1.13890i 5.41261 + 1.23539i 16.3939 7.89487i −8.43757 + 17.5208i −28.4152 −6.51769 + 28.5559i −40.7992 + 32.5362i 3.44396 + 1.65853i 22.1478 97.0359i
6.4 −4.93087 + 1.12544i 8.18390 + 1.86792i 15.8391 7.62772i 3.18930 6.62265i −42.4560 1.15067 5.04140i −37.8821 + 30.2100i 39.1609 + 18.8589i −8.27264 + 36.2448i
6.5 −4.65379 + 1.06220i −8.36922 1.91022i 13.3217 6.41540i 3.98034 8.26527i 40.9776 1.20188 5.26576i −25.3257 + 20.1966i 42.0688 + 20.2593i −9.74433 + 42.6927i
6.6 −4.35477 + 0.993947i −4.58291 1.04602i 10.7683 5.18574i −2.83248 + 5.88170i 20.9972 −1.18458 + 5.18997i −13.8011 + 11.0060i −4.41721 2.12722i 6.48867 28.4287i
6.7 −4.23718 + 0.967109i 5.25614 + 1.19968i 9.81066 4.72457i 0.445098 0.924256i −23.4315 3.51884 15.4170i −9.81675 + 7.82859i 1.86164 + 0.896520i −0.992106 + 4.34670i
6.8 −3.71046 + 0.846888i −1.81491 0.414242i 5.84252 2.81361i −5.04290 + 10.4717i 7.08497 −0.120547 + 0.528152i 4.50883 3.59567i −21.2038 10.2112i 9.84312 43.1255i
6.9 −3.46189 + 0.790154i −6.86422 1.56671i 4.15258 1.99978i −5.36100 + 11.1322i 25.0011 −6.97041 + 30.5394i 9.41411 7.50750i 20.3367 + 9.79366i 9.76302 42.7746i
6.10 −3.45017 + 0.787478i −1.28875 0.294149i 4.07577 1.96279i 8.46205 17.5716i 4.67804 7.50032 32.8610i 9.61810 7.67018i −22.7518 10.9567i −15.3582 + 67.2887i
6.11 −3.42780 + 0.782374i 1.54660 + 0.353002i 3.92998 1.89258i 5.76545 11.9721i −5.57762 −3.44993 + 15.1151i 10.0006 7.97521i −22.0588 10.6230i −10.3962 + 45.5487i
6.12 −3.40114 + 0.776287i 4.02676 + 0.919081i 3.75735 1.80945i −4.50770 + 9.36034i −14.4090 2.93112 12.8421i 10.4454 8.32991i −8.95610 4.31303i 8.06500 35.3351i
6.13 −2.92366 + 0.667307i 5.97020 + 1.36266i 0.894767 0.430897i 4.38015 9.09547i −18.3642 −4.77484 + 20.9199i 16.4283 13.1011i 9.46029 + 4.55583i −6.73661 + 29.5150i
6.14 −2.77864 + 0.634207i −8.80685 2.01011i 0.110876 0.0533948i −8.61001 + 17.8789i 25.7459 7.61772 33.3754i 17.5522 13.9974i 49.1939 + 23.6905i 12.5852 55.1395i
6.15 −2.31003 + 0.527249i 9.83877 + 2.24564i −2.14950 + 1.03515i −6.73449 + 13.9843i −23.9119 0.275979 1.20914i 19.2396 15.3431i 67.4324 + 32.4737i 8.18365 35.8549i
6.16 −2.17232 + 0.495818i −4.25639 0.971492i −2.73461 + 1.31692i 1.77717 3.69033i 9.72791 −2.18202 + 9.56005i 19.2240 15.3306i −7.15314 3.44477i −2.03085 + 8.89772i
6.17 −2.00454 + 0.457523i −8.04978 1.83731i −3.39891 + 1.63683i 4.47490 9.29222i 16.9767 −0.638388 + 2.79696i 18.9245 15.0918i 37.0970 + 17.8650i −4.71870 + 20.6740i
6.18 −1.77835 + 0.405896i 3.55906 + 0.812332i −4.20998 + 2.02742i −2.71301 + 5.63362i −6.65897 −6.79789 + 29.7835i 18.0729 14.4126i −12.3191 5.93258i 2.53801 11.1197i
6.19 −1.69384 + 0.386608i 8.91279 + 2.03429i −4.48812 + 2.16137i 8.48300 17.6151i −15.8833 0.935927 4.10056i 17.6334 14.0622i 50.9733 + 24.5474i −7.55869 + 33.1168i
6.20 −1.38176 + 0.315378i −3.51241 0.801685i −5.39795 + 2.59951i −1.22448 + 2.54267i 5.10615 5.06822 22.2053i 15.5035 12.3637i −12.6318 6.08317i 0.890043 3.89953i
See next 80 embeddings (of 288 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 6.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
197.e even 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.4.e.a 288
197.e even 14 1 inner 197.4.e.a 288
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.4.e.a 288 1.a even 1 1 trivial
197.4.e.a 288 197.e even 14 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).