Properties

Label 197.4.e.a.6.11
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.11
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.42780 + 0.782374i) q^{2} +(1.54660 + 0.353002i) q^{3} +(3.92998 - 1.89258i) q^{4} +(5.76545 - 11.9721i) q^{5} -5.57762 q^{6} +(-3.44993 + 15.1151i) q^{7} +(10.0006 - 7.97521i) q^{8} +(-22.0588 - 10.6230i) q^{9} +O(q^{10})\) \(q+(-3.42780 + 0.782374i) q^{2} +(1.54660 + 0.353002i) q^{3} +(3.92998 - 1.89258i) q^{4} +(5.76545 - 11.9721i) q^{5} -5.57762 q^{6} +(-3.44993 + 15.1151i) q^{7} +(10.0006 - 7.97521i) q^{8} +(-22.0588 - 10.6230i) q^{9} +(-10.3962 + 45.5487i) q^{10} +(58.9898 - 13.4640i) q^{11} +(6.74619 - 1.53977i) q^{12} +(-41.9671 - 33.4676i) q^{13} -54.5109i q^{14} +(13.1430 - 16.4808i) q^{15} +(-49.7975 + 62.4441i) q^{16} +(-44.1898 + 91.7610i) q^{17} +(83.9243 + 19.1552i) q^{18} -22.8168 q^{19} -57.9616i q^{20} +(-10.6713 + 22.1593i) q^{21} +(-191.672 + 92.3041i) q^{22} +(-13.1510 - 57.6181i) q^{23} +(18.2822 - 8.80424i) q^{24} +(-32.1543 - 40.3202i) q^{25} +(170.039 + 81.8866i) q^{26} +(-63.8537 - 50.9217i) q^{27} +(15.0484 + 65.9314i) q^{28} +(-46.2955 - 202.834i) q^{29} +(-32.1575 + 66.7758i) q^{30} +(136.112 - 31.0667i) q^{31} +(77.4422 - 160.810i) q^{32} +95.9865 q^{33} +(79.6825 - 349.112i) q^{34} +(161.069 + 128.449i) q^{35} -106.795 q^{36} +(-270.648 - 339.382i) q^{37} +(78.2114 - 17.8512i) q^{38} +(-53.0922 - 66.5755i) q^{39} +(-37.8219 - 165.709i) q^{40} +(-270.871 - 130.445i) q^{41} +(19.2424 - 84.3066i) q^{42} +(-39.7464 - 174.140i) q^{43} +(206.347 - 164.556i) q^{44} +(-254.358 + 202.844i) q^{45} +(90.1578 + 187.215i) q^{46} +(-257.981 - 323.498i) q^{47} +(-99.0597 + 78.9975i) q^{48} +(92.4669 + 44.5297i) q^{49} +(141.764 + 113.053i) q^{50} +(-100.736 + 126.319i) q^{51} +(-228.270 - 52.1011i) q^{52} +(192.289 - 92.6013i) q^{53} +(258.718 + 124.592i) q^{54} +(178.910 - 783.857i) q^{55} +(86.0450 + 178.674i) q^{56} +(-35.2885 - 8.05436i) q^{57} +(317.384 + 659.054i) q^{58} +(74.4004 + 325.969i) q^{59} +(20.4605 - 89.6435i) q^{60} +(-74.2116 - 325.142i) q^{61} +(-442.260 + 212.981i) q^{62} +(236.669 - 296.773i) q^{63} +(2.53744 - 11.1172i) q^{64} +(-642.637 + 309.478i) q^{65} +(-329.023 + 75.0973i) q^{66} +(85.2377 - 67.9748i) q^{67} +444.251i q^{68} -93.7546i q^{69} +(-652.609 - 314.280i) q^{70} +(93.3568 - 193.857i) q^{71} +(-305.321 + 69.6876i) q^{72} +(-432.243 + 344.703i) q^{73} +(1193.25 + 951.587i) q^{74} +(-35.4967 - 73.7097i) q^{75} +(-89.6694 + 43.1825i) q^{76} +938.089i q^{77} +(234.077 + 186.670i) q^{78} +(-82.4562 - 171.222i) q^{79} +(460.481 + 956.199i) q^{80} +(331.378 + 415.535i) q^{81} +(1030.55 + 235.216i) q^{82} -225.386 q^{83} +107.282i q^{84} +(843.797 + 1058.09i) q^{85} +(272.486 + 565.822i) q^{86} -330.045i q^{87} +(482.554 - 605.104i) q^{88} +(-719.599 - 164.244i) q^{89} +(713.190 - 894.311i) q^{90} +(650.652 - 518.878i) q^{91} +(-160.730 - 201.549i) q^{92} +221.478 q^{93} +(1137.40 + 907.050i) q^{94} +(-131.549 + 273.165i) q^{95} +(176.538 - 221.372i) q^{96} +(86.9221 + 41.8595i) q^{97} +(-351.797 - 80.2954i) q^{98} +(-1444.27 - 329.646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.42780 + 0.782374i −1.21191 + 0.276611i −0.780275 0.625437i \(-0.784921\pi\)
−0.431637 + 0.902048i \(0.642064\pi\)
\(3\) 1.54660 + 0.353002i 0.297644 + 0.0679352i 0.368735 0.929535i \(-0.379791\pi\)
−0.0710913 + 0.997470i \(0.522648\pi\)
\(4\) 3.92998 1.89258i 0.491247 0.236572i
\(5\) 5.76545 11.9721i 0.515678 1.07082i −0.466787 0.884370i \(-0.654589\pi\)
0.982465 0.186447i \(-0.0596971\pi\)
\(6\) −5.57762 −0.379509
\(7\) −3.44993 + 15.1151i −0.186279 + 0.816141i 0.792277 + 0.610161i \(0.208895\pi\)
−0.978556 + 0.205980i \(0.933962\pi\)
\(8\) 10.0006 7.97521i 0.441968 0.352458i
\(9\) −22.0588 10.6230i −0.816992 0.393443i
\(10\) −10.3962 + 45.5487i −0.328757 + 1.44038i
\(11\) 58.9898 13.4640i 1.61692 0.369051i 0.684097 0.729391i \(-0.260197\pi\)
0.932821 + 0.360340i \(0.117339\pi\)
\(12\) 6.74619 1.53977i 0.162288 0.0370412i
\(13\) −41.9671 33.4676i −0.895352 0.714020i 0.0634829 0.997983i \(-0.479779\pi\)
−0.958835 + 0.283963i \(0.908351\pi\)
\(14\) 54.5109i 1.04062i
\(15\) 13.1430 16.4808i 0.226234 0.283689i
\(16\) −49.7975 + 62.4441i −0.778086 + 0.975689i
\(17\) −44.1898 + 91.7610i −0.630447 + 1.30914i 0.303877 + 0.952711i \(0.401719\pi\)
−0.934324 + 0.356425i \(0.883995\pi\)
\(18\) 83.9243 + 19.1552i 1.09895 + 0.250829i
\(19\) −22.8168 −0.275501 −0.137751 0.990467i \(-0.543987\pi\)
−0.137751 + 0.990467i \(0.543987\pi\)
\(20\) 57.9616i 0.648031i
\(21\) −10.6713 + 22.1593i −0.110889 + 0.230264i
\(22\) −191.672 + 92.3041i −1.85748 + 0.894514i
\(23\) −13.1510 57.6181i −0.119225 0.522357i −0.998905 0.0467912i \(-0.985100\pi\)
0.879680 0.475566i \(-0.157757\pi\)
\(24\) 18.2822 8.80424i 0.155493 0.0748816i
\(25\) −32.1543 40.3202i −0.257234 0.322561i
\(26\) 170.039 + 81.8866i 1.28259 + 0.617664i
\(27\) −63.8537 50.9217i −0.455135 0.362958i
\(28\) 15.0484 + 65.9314i 0.101567 + 0.444995i
\(29\) −46.2955 202.834i −0.296443 1.29880i −0.875382 0.483432i \(-0.839390\pi\)
0.578939 0.815371i \(-0.303467\pi\)
\(30\) −32.1575 + 66.7758i −0.195705 + 0.406385i
\(31\) 136.112 31.0667i 0.788595 0.179992i 0.190788 0.981631i \(-0.438896\pi\)
0.597808 + 0.801640i \(0.296039\pi\)
\(32\) 77.4422 160.810i 0.427812 0.888360i
\(33\) 95.9865 0.506337
\(34\) 79.6825 349.112i 0.401924 1.76095i
\(35\) 161.069 + 128.449i 0.777877 + 0.620336i
\(36\) −106.795 −0.494423
\(37\) −270.648 339.382i −1.20255 1.50795i −0.808117 0.589022i \(-0.799513\pi\)
−0.394431 0.918926i \(-0.629058\pi\)
\(38\) 78.2114 17.8512i 0.333883 0.0762067i
\(39\) −53.0922 66.5755i −0.217989 0.273349i
\(40\) −37.8219 165.709i −0.149504 0.655021i
\(41\) −270.871 130.445i −1.03178 0.496879i −0.160175 0.987089i \(-0.551206\pi\)
−0.871605 + 0.490210i \(0.836920\pi\)
\(42\) 19.2424 84.3066i 0.0706945 0.309733i
\(43\) −39.7464 174.140i −0.140960 0.617585i −0.995213 0.0977282i \(-0.968842\pi\)
0.854253 0.519857i \(-0.174015\pi\)
\(44\) 206.347 164.556i 0.706999 0.563813i
\(45\) −254.358 + 202.844i −0.842610 + 0.671959i
\(46\) 90.1578 + 187.215i 0.288979 + 0.600072i
\(47\) −257.981 323.498i −0.800647 1.00398i −0.999712 0.0239928i \(-0.992362\pi\)
0.199066 0.979986i \(-0.436209\pi\)
\(48\) −99.0597 + 78.9975i −0.297876 + 0.237548i
\(49\) 92.4669 + 44.5297i 0.269583 + 0.129824i
\(50\) 141.764 + 113.053i 0.400969 + 0.319762i
\(51\) −100.736 + 126.319i −0.276585 + 0.346826i
\(52\) −228.270 52.1011i −0.608756 0.138945i
\(53\) 192.289 92.6013i 0.498356 0.239996i −0.167782 0.985824i \(-0.553660\pi\)
0.666138 + 0.745829i \(0.267946\pi\)
\(54\) 258.718 + 124.592i 0.651982 + 0.313978i
\(55\) 178.910 783.857i 0.438623 1.92173i
\(56\) 86.0450 + 178.674i 0.205326 + 0.426363i
\(57\) −35.2885 8.05436i −0.0820012 0.0187162i
\(58\) 317.384 + 659.054i 0.718526 + 1.49203i
\(59\) 74.4004 + 325.969i 0.164171 + 0.719282i 0.988255 + 0.152814i \(0.0488334\pi\)
−0.824084 + 0.566468i \(0.808309\pi\)
\(60\) 20.4605 89.6435i 0.0440241 0.192882i
\(61\) −74.2116 325.142i −0.155768 0.682462i −0.991145 0.132785i \(-0.957608\pi\)
0.835377 0.549677i \(-0.185249\pi\)
\(62\) −442.260 + 212.981i −0.905920 + 0.436268i
\(63\) 236.669 296.773i 0.473293 0.593491i
\(64\) 2.53744 11.1172i 0.00495594 0.0217134i
\(65\) −642.637 + 309.478i −1.22630 + 0.590554i
\(66\) −329.023 + 75.0973i −0.613635 + 0.140058i
\(67\) 85.2377 67.9748i 0.155425 0.123947i −0.542690 0.839933i \(-0.682594\pi\)
0.698114 + 0.715986i \(0.254023\pi\)
\(68\) 444.251i 0.792256i
\(69\) 93.7546i 0.163576i
\(70\) −652.609 314.280i −1.11431 0.536623i
\(71\) 93.3568 193.857i 0.156048 0.324037i −0.808257 0.588829i \(-0.799589\pi\)
0.964306 + 0.264792i \(0.0853033\pi\)
\(72\) −305.321 + 69.6876i −0.499756 + 0.114066i
\(73\) −432.243 + 344.703i −0.693017 + 0.552663i −0.905419 0.424520i \(-0.860443\pi\)
0.212401 + 0.977183i \(0.431872\pi\)
\(74\) 1193.25 + 951.587i 1.87450 + 1.49486i
\(75\) −35.4967 73.7097i −0.0546508 0.113484i
\(76\) −89.6694 + 43.1825i −0.135339 + 0.0651760i
\(77\) 938.089i 1.38838i
\(78\) 234.077 + 186.670i 0.339794 + 0.270977i
\(79\) −82.4562 171.222i −0.117431 0.243848i 0.833966 0.551817i \(-0.186065\pi\)
−0.951397 + 0.307969i \(0.900351\pi\)
\(80\) 460.481 + 956.199i 0.643542 + 1.33633i
\(81\) 331.378 + 415.535i 0.454566 + 0.570007i
\(82\) 1030.55 + 235.216i 1.38787 + 0.316772i
\(83\) −225.386 −0.298064 −0.149032 0.988832i \(-0.547616\pi\)
−0.149032 + 0.988832i \(0.547616\pi\)
\(84\) 107.282i 0.139350i
\(85\) 843.797 + 1058.09i 1.07674 + 1.35019i
\(86\) 272.486 + 565.822i 0.341662 + 0.709467i
\(87\) 330.045i 0.406719i
\(88\) 482.554 605.104i 0.584551 0.733004i
\(89\) −719.599 164.244i −0.857049 0.195616i −0.228652 0.973508i \(-0.573432\pi\)
−0.628397 + 0.777892i \(0.716289\pi\)
\(90\) 713.190 894.311i 0.835298 1.04743i
\(91\) 650.652 518.878i 0.749526 0.597727i
\(92\) −160.730 201.549i −0.182144 0.228401i
\(93\) 221.478 0.246948
\(94\) 1137.40 + 907.050i 1.24802 + 0.995266i
\(95\) −131.549 + 273.165i −0.142070 + 0.295011i
\(96\) 176.538 221.372i 0.187686 0.235351i
\(97\) 86.9221 + 41.8595i 0.0909856 + 0.0438164i 0.478823 0.877911i \(-0.341064\pi\)
−0.387837 + 0.921728i \(0.626778\pi\)
\(98\) −351.797 80.2954i −0.362621 0.0827659i
\(99\) −1444.27 329.646i −1.46621 0.334653i
\(100\) −202.675 97.6029i −0.202675 0.0976029i
\(101\) −1129.11 + 1415.86i −1.11238 + 1.39488i −0.202869 + 0.979206i \(0.565027\pi\)
−0.909512 + 0.415677i \(0.863545\pi\)
\(102\) 246.474 511.809i 0.239260 0.496829i
\(103\) 674.396 + 537.813i 0.645148 + 0.514488i 0.890522 0.454940i \(-0.150339\pi\)
−0.245374 + 0.969428i \(0.578911\pi\)
\(104\) −686.607 −0.647379
\(105\) 203.768 + 255.516i 0.189387 + 0.237484i
\(106\) −586.679 + 467.861i −0.537578 + 0.428704i
\(107\) −285.525 + 358.037i −0.257970 + 0.323484i −0.893903 0.448260i \(-0.852044\pi\)
0.635933 + 0.771744i \(0.280615\pi\)
\(108\) −347.317 79.2728i −0.309450 0.0706299i
\(109\) 363.460 455.765i 0.319387 0.400498i −0.596058 0.802941i \(-0.703267\pi\)
0.915445 + 0.402443i \(0.131839\pi\)
\(110\) 2826.88i 2.45030i
\(111\) −298.782 620.428i −0.255488 0.530526i
\(112\) −772.053 968.124i −0.651359 0.816778i
\(113\) 269.589i 0.224432i 0.993684 + 0.112216i \(0.0357948\pi\)
−0.993684 + 0.112216i \(0.964205\pi\)
\(114\) 127.263 0.104555
\(115\) −765.631 174.750i −0.620830 0.141700i
\(116\) −565.819 709.514i −0.452887 0.567903i
\(117\) 570.218 + 1184.07i 0.450570 + 0.935618i
\(118\) −510.060 1059.15i −0.397922 0.826294i
\(119\) −1234.53 984.504i −0.951001 0.758398i
\(120\) 269.636i 0.205119i
\(121\) 2099.33 1010.98i 1.57726 0.759566i
\(122\) 508.765 + 1056.46i 0.377553 + 0.783997i
\(123\) −372.883 297.364i −0.273347 0.217987i
\(124\) 476.121 379.694i 0.344814 0.274980i
\(125\) 951.257 217.118i 0.680664 0.155357i
\(126\) −579.067 + 1202.44i −0.409423 + 0.850176i
\(127\) −1381.52 665.305i −0.965276 0.464853i −0.116260 0.993219i \(-0.537091\pi\)
−0.849017 + 0.528366i \(0.822805\pi\)
\(128\) 1467.98i 1.01369i
\(129\) 283.356i 0.193396i
\(130\) 1960.71 1563.61i 1.32281 1.05491i
\(131\) 593.665 135.500i 0.395945 0.0903718i −0.0199125 0.999802i \(-0.506339\pi\)
0.415857 + 0.909430i \(0.363482\pi\)
\(132\) 377.225 181.662i 0.248736 0.119785i
\(133\) 78.7163 344.879i 0.0513201 0.224848i
\(134\) −238.997 + 299.692i −0.154076 + 0.193205i
\(135\) −977.785 + 470.876i −0.623365 + 0.300197i
\(136\) 289.889 + 1270.09i 0.182778 + 0.800802i
\(137\) 541.163 2370.99i 0.337480 1.47859i −0.466810 0.884358i \(-0.654597\pi\)
0.804290 0.594237i \(-0.202546\pi\)
\(138\) 73.3511 + 321.372i 0.0452468 + 0.198239i
\(139\) 940.567 + 1953.11i 0.573941 + 1.19180i 0.962727 + 0.270474i \(0.0871803\pi\)
−0.388786 + 0.921328i \(0.627105\pi\)
\(140\) 876.098 + 199.964i 0.528884 + 0.120714i
\(141\) −284.798 591.390i −0.170102 0.353220i
\(142\) −168.340 + 737.545i −0.0994843 + 0.435869i
\(143\) −2926.24 1409.20i −1.71122 0.824080i
\(144\) 1761.81 848.445i 1.01957 0.490998i
\(145\) −2695.26 615.175i −1.54365 0.352328i
\(146\) 1211.96 1519.75i 0.687003 0.861475i
\(147\) 127.290 + 101.511i 0.0714199 + 0.0569555i
\(148\) −1705.95 821.541i −0.947487 0.456286i
\(149\) 1703.47 1358.47i 0.936599 0.746913i −0.0309696 0.999520i \(-0.509860\pi\)
0.967569 + 0.252607i \(0.0812881\pi\)
\(150\) 179.344 + 224.891i 0.0976227 + 0.122415i
\(151\) −862.829 1791.68i −0.465007 0.965597i −0.993194 0.116469i \(-0.962842\pi\)
0.528188 0.849128i \(-0.322872\pi\)
\(152\) −228.181 + 181.968i −0.121763 + 0.0971026i
\(153\) 1949.55 1554.71i 1.03014 0.821510i
\(154\) −733.936 3215.59i −0.384041 1.68259i
\(155\) 412.815 1808.66i 0.213923 0.937258i
\(156\) −334.651 161.159i −0.171753 0.0827120i
\(157\) 21.1710 + 92.7561i 0.0107620 + 0.0471513i 0.980024 0.198880i \(-0.0637305\pi\)
−0.969262 + 0.246031i \(0.920873\pi\)
\(158\) 416.603 + 522.404i 0.209767 + 0.263039i
\(159\) 330.082 75.3391i 0.164637 0.0375772i
\(160\) −1478.75 1854.29i −0.730657 0.916215i
\(161\) 916.276 0.448526
\(162\) −1461.00 1165.11i −0.708564 0.565061i
\(163\) 492.183 2156.40i 0.236508 1.03621i −0.707611 0.706603i \(-0.750227\pi\)
0.944119 0.329606i \(-0.106916\pi\)
\(164\) −1311.39 −0.624407
\(165\) 553.406 1149.16i 0.261107 0.542193i
\(166\) 772.577 176.336i 0.361227 0.0824476i
\(167\) −1690.17 + 3509.67i −0.783168 + 1.62626i −0.00356204 + 0.999994i \(0.501134\pi\)
−0.779606 + 0.626271i \(0.784580\pi\)
\(168\) 70.0050 + 306.712i 0.0321488 + 0.140853i
\(169\) 152.276 + 667.163i 0.0693107 + 0.303670i
\(170\) −3720.19 2966.75i −1.67839 1.33847i
\(171\) 503.311 + 242.382i 0.225083 + 0.108394i
\(172\) −485.777 609.145i −0.215350 0.270040i
\(173\) 2087.99 1005.53i 0.917615 0.441900i 0.0853957 0.996347i \(-0.472785\pi\)
0.832219 + 0.554447i \(0.187070\pi\)
\(174\) 258.219 + 1131.33i 0.112503 + 0.492908i
\(175\) 720.375 346.914i 0.311173 0.149853i
\(176\) −2096.80 + 4354.04i −0.898022 + 1.86476i
\(177\) 530.408i 0.225243i
\(178\) 2595.15 1.09278
\(179\) 3129.73 + 714.340i 1.30685 + 0.298281i 0.818571 0.574405i \(-0.194767\pi\)
0.488282 + 0.872686i \(0.337624\pi\)
\(180\) −615.724 + 1278.56i −0.254963 + 0.529436i
\(181\) −522.316 + 654.963i −0.214494 + 0.268967i −0.877425 0.479713i \(-0.840741\pi\)
0.662931 + 0.748680i \(0.269312\pi\)
\(182\) −1824.35 + 2287.66i −0.743021 + 0.931719i
\(183\) 529.062i 0.213713i
\(184\) −591.034 471.334i −0.236802 0.188843i
\(185\) −5623.52 + 1283.53i −2.23486 + 0.510093i
\(186\) −759.182 + 173.278i −0.299279 + 0.0683085i
\(187\) −1371.27 + 6007.94i −0.536243 + 2.34943i
\(188\) −1626.10 783.090i −0.630829 0.303791i
\(189\) 989.979 789.482i 0.381007 0.303843i
\(190\) 237.208 1039.27i 0.0905729 0.396826i
\(191\) 3638.78 1.37850 0.689249 0.724524i \(-0.257941\pi\)
0.689249 + 0.724524i \(0.257941\pi\)
\(192\) 7.84881 16.2982i 0.00295020 0.00612616i
\(193\) −3592.07 + 1729.85i −1.33970 + 0.645167i −0.960015 0.279947i \(-0.909683\pi\)
−0.379688 + 0.925115i \(0.623969\pi\)
\(194\) −330.702 75.4805i −0.122387 0.0279339i
\(195\) −1103.15 + 251.787i −0.405119 + 0.0924657i
\(196\) 447.669 0.163145
\(197\) 1671.23 + 2202.81i 0.604416 + 0.796669i
\(198\) 5208.59 1.86949
\(199\) 3974.77 907.216i 1.41590 0.323170i 0.554960 0.831877i \(-0.312733\pi\)
0.860940 + 0.508707i \(0.169876\pi\)
\(200\) −643.123 146.789i −0.227378 0.0518976i
\(201\) 155.824 75.0409i 0.0546815 0.0263332i
\(202\) 2762.63 5736.67i 0.962269 1.99817i
\(203\) 3225.58 1.11523
\(204\) −156.821 + 687.080i −0.0538221 + 0.235810i
\(205\) −3123.39 + 2490.82i −1.06413 + 0.848617i
\(206\) −2732.47 1315.89i −0.924175 0.445059i
\(207\) −321.981 + 1410.69i −0.108112 + 0.473670i
\(208\) 4179.71 953.992i 1.39332 0.318017i
\(209\) −1345.96 + 307.206i −0.445463 + 0.101674i
\(210\) −898.385 716.438i −0.295212 0.235423i
\(211\) 4390.47i 1.43247i −0.697857 0.716237i \(-0.745863\pi\)
0.697857 0.716237i \(-0.254137\pi\)
\(212\) 580.435 727.842i 0.188040 0.235794i
\(213\) 212.818 266.865i 0.0684603 0.0858465i
\(214\) 698.606 1450.67i 0.223157 0.463391i
\(215\) −2313.98 528.151i −0.734010 0.167533i
\(216\) −1044.69 −0.329083
\(217\) 2164.53i 0.677133i
\(218\) −889.292 + 1846.63i −0.276286 + 0.573715i
\(219\) −790.189 + 380.535i −0.243817 + 0.117416i
\(220\) −780.397 3419.14i −0.239156 1.04781i
\(221\) 4925.54 2372.02i 1.49922 0.721987i
\(222\) 1509.57 + 1892.95i 0.456378 + 0.572280i
\(223\) −3806.39 1833.06i −1.14303 0.550452i −0.236094 0.971730i \(-0.575867\pi\)
−0.906932 + 0.421278i \(0.861582\pi\)
\(224\) 2163.50 + 1725.33i 0.645335 + 0.514637i
\(225\) 280.965 + 1230.99i 0.0832488 + 0.364737i
\(226\) −210.919 924.098i −0.0620803 0.271992i
\(227\) −2633.74 + 5469.03i −0.770078 + 1.59908i 0.0302653 + 0.999542i \(0.490365\pi\)
−0.800343 + 0.599542i \(0.795349\pi\)
\(228\) −153.926 + 35.1327i −0.0447106 + 0.0102049i
\(229\) −225.133 + 467.494i −0.0649661 + 0.134903i −0.930923 0.365214i \(-0.880996\pi\)
0.865957 + 0.500118i \(0.166710\pi\)
\(230\) 2761.15 0.791587
\(231\) −331.147 + 1450.85i −0.0943198 + 0.413242i
\(232\) −2080.62 1659.24i −0.588791 0.469545i
\(233\) 2487.49 0.699404 0.349702 0.936861i \(-0.386283\pi\)
0.349702 + 0.936861i \(0.386283\pi\)
\(234\) −2880.98 3612.64i −0.804853 1.00925i
\(235\) −5360.32 + 1223.46i −1.48795 + 0.339616i
\(236\) 909.314 + 1140.24i 0.250811 + 0.314507i
\(237\) −67.0852 293.919i −0.0183867 0.0805575i
\(238\) 5001.97 + 2408.82i 1.36231 + 0.656054i
\(239\) −1204.87 + 5278.87i −0.326093 + 1.42871i 0.500416 + 0.865785i \(0.333181\pi\)
−0.826509 + 0.562924i \(0.809677\pi\)
\(240\) 374.641 + 1641.41i 0.100762 + 0.441469i
\(241\) 1478.88 1179.36i 0.395281 0.315226i −0.405599 0.914051i \(-0.632937\pi\)
0.800880 + 0.598825i \(0.204366\pi\)
\(242\) −6405.11 + 5107.91i −1.70139 + 1.35681i
\(243\) 1322.60 + 2746.41i 0.349156 + 0.725030i
\(244\) −907.007 1137.35i −0.237972 0.298407i
\(245\) 1066.23 850.288i 0.278036 0.221726i
\(246\) 1510.82 + 727.572i 0.391570 + 0.188570i
\(247\) 957.554 + 763.624i 0.246671 + 0.196713i
\(248\) 1113.44 1396.21i 0.285094 0.357497i
\(249\) −348.582 79.5615i −0.0887167 0.0202490i
\(250\) −3090.85 + 1488.48i −0.781931 + 0.376558i
\(251\) 2571.12 + 1238.19i 0.646566 + 0.311370i 0.728273 0.685287i \(-0.240323\pi\)
−0.0817078 + 0.996656i \(0.526037\pi\)
\(252\) 368.437 1614.23i 0.0921005 0.403519i
\(253\) −1551.55 3221.82i −0.385553 0.800608i
\(254\) 5256.10 + 1199.67i 1.29841 + 0.296354i
\(255\) 931.511 + 1934.30i 0.228759 + 0.475022i
\(256\) −1128.21 4943.01i −0.275442 1.20679i
\(257\) −83.4756 + 365.731i −0.0202610 + 0.0887690i −0.984048 0.177906i \(-0.943068\pi\)
0.963787 + 0.266675i \(0.0859249\pi\)
\(258\) 221.690 + 971.290i 0.0534955 + 0.234379i
\(259\) 6063.52 2920.04i 1.45471 0.700550i
\(260\) −1939.84 + 2432.48i −0.462707 + 0.580216i
\(261\) −1133.47 + 4966.06i −0.268813 + 1.17775i
\(262\) −1928.96 + 928.936i −0.454852 + 0.219045i
\(263\) 1932.36 441.050i 0.453060 0.103408i 0.0100991 0.999949i \(-0.496785\pi\)
0.442961 + 0.896541i \(0.353928\pi\)
\(264\) 959.922 765.512i 0.223785 0.178462i
\(265\) 2835.98i 0.657408i
\(266\) 1243.76i 0.286692i
\(267\) −1054.95 508.039i −0.241806 0.116448i
\(268\) 206.335 428.459i 0.0470295 0.0976577i
\(269\) −3952.54 + 902.142i −0.895877 + 0.204478i −0.645581 0.763692i \(-0.723385\pi\)
−0.250295 + 0.968170i \(0.580528\pi\)
\(270\) 2983.25 2379.06i 0.672426 0.536242i
\(271\) −971.583 774.811i −0.217784 0.173677i 0.508521 0.861050i \(-0.330192\pi\)
−0.726305 + 0.687373i \(0.758764\pi\)
\(272\) −3529.39 7328.86i −0.786768 1.63374i
\(273\) 1189.46 572.815i 0.263698 0.126990i
\(274\) 8550.69i 1.88528i
\(275\) −2439.65 1945.55i −0.534968 0.426623i
\(276\) −177.438 368.453i −0.0386975 0.0803561i
\(277\) 3337.77 + 6930.96i 0.723998 + 1.50340i 0.858682 + 0.512508i \(0.171284\pi\)
−0.134685 + 0.990889i \(0.543002\pi\)
\(278\) −4752.14 5958.99i −1.02523 1.28560i
\(279\) −3332.49 760.619i −0.715093 0.163215i
\(280\) 2635.19 0.562439
\(281\) 6354.54i 1.34904i −0.738257 0.674519i \(-0.764351\pi\)
0.738257 0.674519i \(-0.235649\pi\)
\(282\) 1438.92 + 1804.35i 0.303853 + 0.381019i
\(283\) −1776.02 3687.95i −0.373051 0.774649i 0.626939 0.779068i \(-0.284308\pi\)
−0.999990 + 0.00441926i \(0.998593\pi\)
\(284\) 938.541i 0.196099i
\(285\) −299.881 + 376.039i −0.0623279 + 0.0781567i
\(286\) 11133.1 + 2541.06i 2.30180 + 0.525370i
\(287\) 2906.18 3644.23i 0.597722 0.749520i
\(288\) −3416.56 + 2724.62i −0.699038 + 0.557464i
\(289\) −3404.14 4268.66i −0.692885 0.868850i
\(290\) 9720.11 1.96822
\(291\) 119.657 + 95.4236i 0.0241046 + 0.0192228i
\(292\) −1046.33 + 2172.73i −0.209698 + 0.435443i
\(293\) 5049.30 6331.62i 1.00677 1.26245i 0.0420626 0.999115i \(-0.486607\pi\)
0.964705 0.263332i \(-0.0848214\pi\)
\(294\) −515.745 248.370i −0.102309 0.0492695i
\(295\) 4331.49 + 988.634i 0.854878 + 0.195120i
\(296\) −5413.28 1235.55i −1.06298 0.242617i
\(297\) −4452.33 2144.13i −0.869867 0.418906i
\(298\) −4776.31 + 5989.31i −0.928471 + 1.16427i
\(299\) −1376.44 + 2858.20i −0.266225 + 0.552822i
\(300\) −279.003 222.497i −0.0536941 0.0428196i
\(301\) 2769.28 0.530294
\(302\) 4359.37 + 5466.48i 0.830642 + 1.04159i
\(303\) −2246.08 + 1791.19i −0.425855 + 0.339608i
\(304\) 1136.22 1424.77i 0.214364 0.268804i
\(305\) −4320.49 986.125i −0.811117 0.185132i
\(306\) −5466.30 + 6854.52i −1.02120 + 1.28055i
\(307\) 4607.93i 0.856639i 0.903627 + 0.428320i \(0.140894\pi\)
−0.903627 + 0.428320i \(0.859106\pi\)
\(308\) 1775.41 + 3686.67i 0.328452 + 0.682037i
\(309\) 853.173 + 1069.84i 0.157072 + 0.196962i
\(310\) 6522.71i 1.19505i
\(311\) 4574.77 0.834121 0.417060 0.908879i \(-0.363060\pi\)
0.417060 + 0.908879i \(0.363060\pi\)
\(312\) −1061.91 242.373i −0.192688 0.0439798i
\(313\) −1881.23 2358.99i −0.339724 0.426000i 0.582396 0.812906i \(-0.302115\pi\)
−0.922119 + 0.386905i \(0.873544\pi\)
\(314\) −145.140 301.386i −0.0260851 0.0541663i
\(315\) −2188.49 4544.45i −0.391453 0.812860i
\(316\) −648.102 516.844i −0.115375 0.0920087i
\(317\) 1997.02i 0.353829i −0.984226 0.176914i \(-0.943388\pi\)
0.984226 0.176914i \(-0.0566115\pi\)
\(318\) −1072.51 + 516.495i −0.189131 + 0.0910805i
\(319\) −5461.92 11341.8i −0.958648 1.99065i
\(320\) −118.467 94.4744i −0.0206954 0.0165040i
\(321\) −567.982 + 452.950i −0.0987590 + 0.0787577i
\(322\) −3140.81 + 716.871i −0.543574 + 0.124067i
\(323\) 1008.27 2093.69i 0.173689 0.360669i
\(324\) 2088.74 + 1005.89i 0.358152 + 0.172477i
\(325\) 2768.25i 0.472476i
\(326\) 7776.78i 1.32121i
\(327\) 723.013 576.584i 0.122271 0.0975082i
\(328\) −3749.20 + 855.729i −0.631142 + 0.144054i
\(329\) 5779.73 2783.37i 0.968532 0.466420i
\(330\) −997.895 + 4372.06i −0.166462 + 0.729316i
\(331\) 1333.29 1671.89i 0.221402 0.277630i −0.658708 0.752398i \(-0.728897\pi\)
0.880111 + 0.474769i \(0.157468\pi\)
\(332\) −885.760 + 426.560i −0.146423 + 0.0705136i
\(333\) 2364.93 + 10361.4i 0.389181 + 1.70512i
\(334\) 3047.69 13352.8i 0.499287 2.18752i
\(335\) −322.366 1412.38i −0.0525754 0.230348i
\(336\) −852.309 1769.84i −0.138385 0.287359i
\(337\) 7100.80 + 1620.71i 1.14779 + 0.261975i 0.753777 0.657130i \(-0.228230\pi\)
0.394012 + 0.919105i \(0.371087\pi\)
\(338\) −1043.94 2167.77i −0.167997 0.348849i
\(339\) −95.1654 + 416.947i −0.0152468 + 0.0668007i
\(340\) 5318.62 + 2561.31i 0.848360 + 0.408549i
\(341\) 7610.94 3665.24i 1.20867 0.582064i
\(342\) −1914.88 437.059i −0.302763 0.0691037i
\(343\) −4307.69 + 5401.67i −0.678114 + 0.850328i
\(344\) −1786.29 1424.52i −0.279972 0.223270i
\(345\) −1122.44 540.538i −0.175160 0.0843524i
\(346\) −6370.54 + 5080.34i −0.989833 + 0.789366i
\(347\) 3390.46 + 4251.50i 0.524523 + 0.657731i 0.971562 0.236783i \(-0.0760932\pi\)
−0.447040 + 0.894514i \(0.647522\pi\)
\(348\) −624.636 1297.07i −0.0962184 0.199800i
\(349\) 8152.79 6501.63i 1.25046 0.997205i 0.250881 0.968018i \(-0.419280\pi\)
0.999574 0.0291867i \(-0.00929172\pi\)
\(350\) −2197.89 + 1752.76i −0.335663 + 0.267682i
\(351\) 975.528 + 4274.07i 0.148347 + 0.649951i
\(352\) 2403.14 10528.9i 0.363886 1.59429i
\(353\) 6349.57 + 3057.79i 0.957376 + 0.461048i 0.846266 0.532760i \(-0.178845\pi\)
0.111109 + 0.993808i \(0.464560\pi\)
\(354\) −414.977 1818.14i −0.0623045 0.272974i
\(355\) −1782.63 2235.35i −0.266514 0.334198i
\(356\) −3138.85 + 716.423i −0.467300 + 0.106658i
\(357\) −1561.79 1958.43i −0.231537 0.290339i
\(358\) −11287.0 −1.66630
\(359\) 1821.78 + 1452.82i 0.267828 + 0.213585i 0.748190 0.663485i \(-0.230923\pi\)
−0.480362 + 0.877070i \(0.659495\pi\)
\(360\) −926.010 + 4057.11i −0.135569 + 0.593969i
\(361\) −6338.39 −0.924099
\(362\) 1277.97 2653.73i 0.185549 0.385296i
\(363\) 3603.70 822.521i 0.521061 0.118929i
\(364\) 1575.03 3270.59i 0.226797 0.470949i
\(365\) 1634.73 + 7162.23i 0.234427 + 1.02709i
\(366\) 413.924 + 1813.52i 0.0591152 + 0.259001i
\(367\) −2206.56 1759.67i −0.313846 0.250284i 0.453879 0.891063i \(-0.350040\pi\)
−0.767725 + 0.640779i \(0.778611\pi\)
\(368\) 4252.80 + 2048.04i 0.602425 + 0.290113i
\(369\) 4589.38 + 5754.91i 0.647463 + 0.811893i
\(370\) 18272.1 8799.39i 2.56736 1.23637i
\(371\) 736.299 + 3225.94i 0.103037 + 0.451435i
\(372\) 870.402 419.164i 0.121313 0.0584210i
\(373\) −5745.00 + 11929.6i −0.797493 + 1.65601i −0.0435680 + 0.999050i \(0.513873\pi\)
−0.753925 + 0.656961i \(0.771842\pi\)
\(374\) 21666.9i 2.99564i
\(375\) 1547.86 0.213149
\(376\) −5159.92 1177.72i −0.707720 0.161532i
\(377\) −4845.48 + 10061.7i −0.661949 + 1.37455i
\(378\) −2775.78 + 3480.72i −0.377701 + 0.473622i
\(379\) −4821.75 + 6046.28i −0.653501 + 0.819464i −0.992618 0.121280i \(-0.961300\pi\)
0.339118 + 0.940744i \(0.389871\pi\)
\(380\) 1322.50i 0.178533i
\(381\) −1901.81 1516.64i −0.255728 0.203937i
\(382\) −12473.0 + 2846.89i −1.67062 + 0.381308i
\(383\) −14365.6 + 3278.86i −1.91658 + 0.437446i −0.917353 + 0.398074i \(0.869679\pi\)
−0.999225 + 0.0393727i \(0.987464\pi\)
\(384\) −518.200 + 2270.38i −0.0688653 + 0.301718i
\(385\) 11230.9 + 5408.51i 1.48670 + 0.715956i
\(386\) 10959.5 8739.92i 1.44514 1.15246i
\(387\) −973.128 + 4263.55i −0.127821 + 0.560022i
\(388\) 420.824 0.0550622
\(389\) 3285.59 6822.59i 0.428241 0.889252i −0.569494 0.821995i \(-0.692861\pi\)
0.997736 0.0672571i \(-0.0214248\pi\)
\(390\) 3584.39 1726.15i 0.465391 0.224121i
\(391\) 5868.24 + 1339.39i 0.759001 + 0.173237i
\(392\) 1279.86 292.119i 0.164904 0.0376384i
\(393\) 965.995 0.123990
\(394\) −7452.06 6243.28i −0.952866 0.798304i
\(395\) −2525.28 −0.321673
\(396\) −6299.84 + 1437.90i −0.799441 + 0.182467i
\(397\) 2134.30 + 487.140i 0.269817 + 0.0615840i 0.355289 0.934757i \(-0.384383\pi\)
−0.0854716 + 0.996341i \(0.527240\pi\)
\(398\) −12915.0 + 6219.52i −1.62655 + 0.783307i
\(399\) 243.486 505.603i 0.0305502 0.0634381i
\(400\) 4118.96 0.514870
\(401\) 850.005 3724.12i 0.105853 0.463774i −0.894022 0.448022i \(-0.852129\pi\)
0.999876 0.0157522i \(-0.00501429\pi\)
\(402\) −475.424 + 379.138i −0.0589851 + 0.0470390i
\(403\) −6751.96 3251.57i −0.834588 0.401916i
\(404\) −1757.75 + 7701.22i −0.216464 + 0.948391i
\(405\) 6885.38 1571.54i 0.844783 0.192816i
\(406\) −11056.6 + 2523.61i −1.35156 + 0.308484i
\(407\) −20534.9 16376.1i −2.50093 1.99443i
\(408\) 2066.65i 0.250771i
\(409\) 8206.47 10290.6i 0.992137 1.24410i 0.0224505 0.999748i \(-0.492853\pi\)
0.969686 0.244353i \(-0.0785754\pi\)
\(410\) 8757.62 10981.7i 1.05490 1.32280i
\(411\) 1673.93 3475.95i 0.200897 0.417167i
\(412\) 3668.21 + 837.246i 0.438641 + 0.100117i
\(413\) −5183.75 −0.617617
\(414\) 5087.47i 0.603951i
\(415\) −1299.45 + 2698.34i −0.153705 + 0.319171i
\(416\) −8631.96 + 4156.94i −1.01735 + 0.489929i
\(417\) 765.232 + 3352.70i 0.0898647 + 0.393723i
\(418\) 4373.33 2106.08i 0.511738 0.246440i
\(419\) 3365.88 + 4220.68i 0.392444 + 0.492110i 0.938326 0.345753i \(-0.112376\pi\)
−0.545881 + 0.837863i \(0.683805\pi\)
\(420\) 1284.39 + 618.528i 0.149218 + 0.0718597i
\(421\) −4707.89 3754.41i −0.545008 0.434629i 0.311888 0.950119i \(-0.399039\pi\)
−0.856896 + 0.515490i \(0.827610\pi\)
\(422\) 3434.98 + 15049.7i 0.396238 + 1.73603i
\(423\) 2254.25 + 9876.49i 0.259114 + 1.13525i
\(424\) 1184.49 2459.61i 0.135669 0.281720i
\(425\) 5120.71 1168.77i 0.584449 0.133397i
\(426\) −520.709 + 1081.26i −0.0592217 + 0.122975i
\(427\) 5170.59 0.586001
\(428\) −444.495 + 1947.46i −0.0501997 + 0.219939i
\(429\) −4028.28 3212.44i −0.453350 0.361534i
\(430\) 8345.08 0.935897
\(431\) −6904.14 8657.52i −0.771603 0.967560i 0.228379 0.973572i \(-0.426658\pi\)
−0.999982 + 0.00601274i \(0.998086\pi\)
\(432\) 6359.51 1451.52i 0.708269 0.161658i
\(433\) 5904.36 + 7403.83i 0.655301 + 0.821721i 0.992823 0.119597i \(-0.0381601\pi\)
−0.337522 + 0.941318i \(0.609589\pi\)
\(434\) −1693.47 7419.59i −0.187303 0.820626i
\(435\) −3951.33 1902.86i −0.435521 0.209736i
\(436\) 565.820 2479.02i 0.0621511 0.272302i
\(437\) 300.063 + 1314.66i 0.0328465 + 0.143910i
\(438\) 2410.89 1922.62i 0.263007 0.209741i
\(439\) 9500.08 7576.06i 1.03283 0.823658i 0.0482967 0.998833i \(-0.484621\pi\)
0.984537 + 0.175175i \(0.0560493\pi\)
\(440\) −4462.22 9265.89i −0.483472 1.00394i
\(441\) −1566.67 1964.54i −0.169169 0.212131i
\(442\) −15028.0 + 11984.4i −1.61721 + 1.28969i
\(443\) −6743.89 3247.69i −0.723277 0.348312i 0.0357589 0.999360i \(-0.488615\pi\)
−0.759036 + 0.651049i \(0.774329\pi\)
\(444\) −2348.42 1872.80i −0.251015 0.200178i
\(445\) −6115.16 + 7668.17i −0.651430 + 0.816867i
\(446\) 14481.7 + 3305.35i 1.53751 + 0.350926i
\(447\) 3114.12 1499.68i 0.329514 0.158686i
\(448\) 159.285 + 76.7075i 0.0167980 + 0.00808948i
\(449\) −419.789 + 1839.22i −0.0441227 + 0.193314i −0.992186 0.124768i \(-0.960181\pi\)
0.948063 + 0.318082i \(0.103039\pi\)
\(450\) −1926.18 3999.76i −0.201780 0.419001i
\(451\) −17735.0 4047.89i −1.85168 0.422633i
\(452\) 510.218 + 1059.48i 0.0530944 + 0.110252i
\(453\) −701.985 3075.60i −0.0728083 0.318994i
\(454\) 4749.13 20807.3i 0.490943 2.15096i
\(455\) −2460.74 10781.2i −0.253542 1.11084i
\(456\) −417.141 + 200.884i −0.0428386 + 0.0206300i
\(457\) 7693.87 9647.81i 0.787536 0.987539i −0.212410 0.977181i \(-0.568131\pi\)
0.999946 0.0103586i \(-0.00329729\pi\)
\(458\) 405.958 1778.62i 0.0414174 0.181461i
\(459\) 7494.31 3609.07i 0.762101 0.367008i
\(460\) −3339.64 + 762.251i −0.338503 + 0.0772612i
\(461\) −4696.08 + 3745.00i −0.474443 + 0.378356i −0.831319 0.555796i \(-0.812413\pi\)
0.356875 + 0.934152i \(0.383842\pi\)
\(462\) 5232.31i 0.526903i
\(463\) 6281.33i 0.630493i −0.949010 0.315246i \(-0.897913\pi\)
0.949010 0.315246i \(-0.102087\pi\)
\(464\) 14971.2 + 7209.73i 1.49789 + 0.721344i
\(465\) 1276.92 2651.55i 0.127346 0.264436i
\(466\) −8526.64 + 1946.15i −0.847616 + 0.193463i
\(467\) −5090.98 + 4059.92i −0.504459 + 0.402293i −0.842382 0.538881i \(-0.818847\pi\)
0.337923 + 0.941174i \(0.390276\pi\)
\(468\) 4481.89 + 3574.19i 0.442683 + 0.353028i
\(469\) 733.385 + 1522.89i 0.0722059 + 0.149937i
\(470\) 17416.9 8387.55i 1.70933 0.823168i
\(471\) 150.930i 0.0147654i
\(472\) 3343.72 + 2666.53i 0.326075 + 0.260036i
\(473\) −4689.26 9737.36i −0.455841 0.946563i
\(474\) 459.910 + 955.012i 0.0445661 + 0.0925426i
\(475\) 733.656 + 919.976i 0.0708683 + 0.0888661i
\(476\) −6714.92 1532.64i −0.646592 0.147580i
\(477\) −5225.35 −0.501578
\(478\) 19037.6i 1.82167i
\(479\) −2680.69 3361.48i −0.255707 0.320647i 0.637363 0.770564i \(-0.280025\pi\)
−0.893071 + 0.449917i \(0.851454\pi\)
\(480\) −1632.46 3389.85i −0.155232 0.322343i
\(481\) 23300.8i 2.20879i
\(482\) −4146.59 + 5199.66i −0.391851 + 0.491365i
\(483\) 1417.11 + 323.447i 0.133501 + 0.0304707i
\(484\) 6336.94 7946.28i 0.595130 0.746269i
\(485\) 1002.29 799.301i 0.0938386 0.0748338i
\(486\) −6682.34 8379.39i −0.623698 0.782092i
\(487\) 1278.02 0.118917 0.0594585 0.998231i \(-0.481063\pi\)
0.0594585 + 0.998231i \(0.481063\pi\)
\(488\) −3335.24 2659.76i −0.309383 0.246725i
\(489\) 1522.42 3161.34i 0.140790 0.292354i
\(490\) −2989.57 + 3748.81i −0.275623 + 0.345620i
\(491\) −2323.44 1118.91i −0.213555 0.102842i 0.324049 0.946040i \(-0.394956\pi\)
−0.537603 + 0.843198i \(0.680670\pi\)
\(492\) −2028.20 462.924i −0.185851 0.0424192i
\(493\) 20658.0 + 4715.06i 1.88720 + 0.430741i
\(494\) −3879.75 1868.39i −0.353356 0.170167i
\(495\) −12273.4 + 15390.4i −1.11444 + 1.39747i
\(496\) −4838.11 + 10046.4i −0.437979 + 0.909473i
\(497\) 2608.11 + 2079.90i 0.235392 + 0.187719i
\(498\) 1257.12 0.113118
\(499\) 5679.44 + 7121.80i 0.509513 + 0.638909i 0.968345 0.249614i \(-0.0803037\pi\)
−0.458833 + 0.888523i \(0.651732\pi\)
\(500\) 3327.51 2653.60i 0.297621 0.237345i
\(501\) −3852.93 + 4831.42i −0.343585 + 0.430842i
\(502\) −9782.04 2232.69i −0.869709 0.198505i
\(503\) 8454.16 10601.2i 0.749408 0.939728i −0.250187 0.968198i \(-0.580492\pi\)
0.999595 + 0.0284698i \(0.00906345\pi\)
\(504\) 4855.39i 0.429120i
\(505\) 10441.0 + 21680.9i 0.920032 + 1.91047i
\(506\) 7839.06 + 9829.87i 0.688713 + 0.863618i
\(507\) 1085.59i 0.0950941i
\(508\) −6688.49 −0.584161
\(509\) 15003.2 + 3424.39i 1.30650 + 0.298199i 0.818429 0.574608i \(-0.194845\pi\)
0.488066 + 0.872807i \(0.337702\pi\)
\(510\) −4706.38 5901.62i −0.408632 0.512408i
\(511\) −3719.02 7722.62i −0.321956 0.668549i
\(512\) 2639.10 + 5480.15i 0.227799 + 0.473029i
\(513\) 1456.94 + 1161.87i 0.125390 + 0.0999956i
\(514\) 1318.96i 0.113185i
\(515\) 10326.9 4973.19i 0.883611 0.425524i
\(516\) −536.274 1113.58i −0.0457522 0.0950054i
\(517\) −19573.8 15609.6i −1.66510 1.32787i
\(518\) −18500.0 + 14753.3i −1.56920 + 1.25139i
\(519\) 3584.25 818.081i 0.303143 0.0691903i
\(520\) −3958.60 + 8220.12i −0.333839 + 0.693224i
\(521\) 7555.36 + 3638.47i 0.635329 + 0.305958i 0.723685 0.690131i \(-0.242447\pi\)
−0.0883561 + 0.996089i \(0.528161\pi\)
\(522\) 17909.5i 1.50168i
\(523\) 11634.1i 0.972702i −0.873763 0.486351i \(-0.838328\pi\)
0.873763 0.486351i \(-0.161672\pi\)
\(524\) 2076.65 1656.07i 0.173127 0.138064i
\(525\) 1236.59 282.245i 0.102799 0.0234632i
\(526\) −6278.70 + 3023.66i −0.520465 + 0.250643i
\(527\) −3164.05 + 13862.6i −0.261534 + 1.14585i
\(528\) −4779.89 + 5993.79i −0.393973 + 0.494027i
\(529\) 7815.19 3763.60i 0.642326 0.309328i
\(530\) 2218.80 + 9721.20i 0.181846 + 0.796721i
\(531\) 1821.58 7980.85i 0.148869 0.652240i
\(532\) −343.356 1504.34i −0.0279819 0.122597i
\(533\) 7002.00 + 14539.8i 0.569025 + 1.18159i
\(534\) 4013.65 + 916.090i 0.325258 + 0.0742380i
\(535\) 2640.27 + 5482.58i 0.213363 + 0.443052i
\(536\) 310.315 1359.58i 0.0250066 0.109561i
\(537\) 4588.28 + 2209.60i 0.368713 + 0.177563i
\(538\) 12842.7 6184.73i 1.02916 0.495618i
\(539\) 6054.15 + 1381.82i 0.483805 + 0.110425i
\(540\) −2951.50 + 3701.07i −0.235208 + 0.294942i
\(541\) −2357.90 1880.36i −0.187383 0.149433i 0.525305 0.850914i \(-0.323951\pi\)
−0.712688 + 0.701481i \(0.752522\pi\)
\(542\) 3936.59 + 1895.76i 0.311976 + 0.150240i
\(543\) −1039.02 + 828.588i −0.0821151 + 0.0654846i
\(544\) 11334.0 + 14212.3i 0.893272 + 1.12013i
\(545\) −3360.94 6979.07i −0.264159 0.548533i
\(546\) −3629.09 + 2894.10i −0.284452 + 0.226843i
\(547\) −4785.23 + 3816.10i −0.374043 + 0.298290i −0.792410 0.609988i \(-0.791174\pi\)
0.418367 + 0.908278i \(0.362603\pi\)
\(548\) −2360.53 10342.1i −0.184008 0.806194i
\(549\) −1816.95 + 7960.59i −0.141249 + 0.618852i
\(550\) 9884.77 + 4760.26i 0.766342 + 0.369051i
\(551\) 1056.31 + 4628.01i 0.0816705 + 0.357822i
\(552\) −747.712 937.601i −0.0576535 0.0722952i
\(553\) 2872.51 655.633i 0.220889 0.0504165i
\(554\) −16863.8 21146.6i −1.29328 1.62172i
\(555\) −9150.43 −0.699845
\(556\) 7392.82 + 5895.57i 0.563894 + 0.449691i
\(557\) −788.713 + 3455.58i −0.0599979 + 0.262868i −0.996027 0.0890555i \(-0.971615\pi\)
0.936029 + 0.351923i \(0.114472\pi\)
\(558\) 12018.2 0.911776
\(559\) −4160.03 + 8638.38i −0.314759 + 0.653604i
\(560\) −16041.7 + 3661.42i −1.21051 + 0.276291i
\(561\) −4241.62 + 8807.82i −0.319218 + 0.662864i
\(562\) 4971.62 + 21782.1i 0.373159 + 1.63492i
\(563\) −1763.63 7726.98i −0.132022 0.578425i −0.997054 0.0767080i \(-0.975559\pi\)
0.865032 0.501717i \(-0.167298\pi\)
\(564\) −2238.50 1785.15i −0.167124 0.133277i
\(565\) 3227.55 + 1554.30i 0.240325 + 0.115735i
\(566\) 8973.21 + 11252.0i 0.666382 + 0.835616i
\(567\) −7424.11 + 3575.26i −0.549882 + 0.264809i
\(568\) −612.430 2683.23i −0.0452412 0.198214i
\(569\) −17323.7 + 8342.64i −1.27636 + 0.614660i −0.944451 0.328652i \(-0.893406\pi\)
−0.331905 + 0.943313i \(0.607691\pi\)
\(570\) 733.731 1523.61i 0.0539169 0.111960i
\(571\) 4874.82i 0.357277i −0.983915 0.178638i \(-0.942831\pi\)
0.983915 0.178638i \(-0.0571692\pi\)
\(572\) −14167.1 −1.03559
\(573\) 5627.75 + 1284.50i 0.410301 + 0.0936486i
\(574\) −7110.65 + 14765.4i −0.517061 + 1.07369i
\(575\) −1900.31 + 2382.92i −0.137824 + 0.172825i
\(576\) −174.071 + 218.278i −0.0125919 + 0.0157898i
\(577\) 20095.5i 1.44989i 0.688807 + 0.724945i \(0.258135\pi\)
−0.688807 + 0.724945i \(0.741865\pi\)
\(578\) 15008.4 + 11968.8i 1.08005 + 0.861310i
\(579\) −6166.14 + 1407.38i −0.442584 + 0.101017i
\(580\) −11756.6 + 2683.36i −0.841664 + 0.192104i
\(581\) 777.565 3406.73i 0.0555229 0.243262i
\(582\) −484.819 233.477i −0.0345299 0.0166287i
\(583\) 10096.3 8051.51i 0.717230 0.571972i
\(584\) −1573.62 + 6894.46i −0.111501 + 0.488519i
\(585\) 17463.4 1.23422
\(586\) −12354.3 + 25654.0i −0.870907 + 1.80846i
\(587\) 15923.7 7668.46i 1.11966 0.539201i 0.219875 0.975528i \(-0.429435\pi\)
0.899788 + 0.436327i \(0.143721\pi\)
\(588\) 692.365 + 158.028i 0.0485589 + 0.0110833i
\(589\) −3105.64 + 708.842i −0.217259 + 0.0495880i
\(590\) −15621.0 −1.09001
\(591\) 1807.13 + 3996.82i 0.125779 + 0.278184i
\(592\) 34670.0 2.40697
\(593\) −21706.3 + 4954.32i −1.50315 + 0.343085i −0.893312 0.449437i \(-0.851625\pi\)
−0.609843 + 0.792522i \(0.708767\pi\)
\(594\) 16939.2 + 3866.27i 1.17008 + 0.267062i
\(595\) −18904.2 + 9103.78i −1.30252 + 0.627258i
\(596\) 4123.57 8562.69i 0.283403 0.588492i
\(597\) 6467.64 0.443388
\(598\) 2481.97 10874.2i 0.169725 0.743612i
\(599\) 4429.24 3532.20i 0.302127 0.240938i −0.460677 0.887568i \(-0.652394\pi\)
0.762804 + 0.646630i \(0.223822\pi\)
\(600\) −942.838 454.047i −0.0641520 0.0308940i
\(601\) 2817.91 12346.1i 0.191256 0.837949i −0.784681 0.619899i \(-0.787173\pi\)
0.975938 0.218049i \(-0.0699694\pi\)
\(602\) −9492.54 + 2166.61i −0.642670 + 0.146685i
\(603\) −2602.34 + 593.966i −0.175747 + 0.0401130i
\(604\) −6781.80 5408.30i −0.456867 0.364339i
\(605\) 30962.1i 2.08064i
\(606\) 6297.75 7897.12i 0.422159 0.529371i
\(607\) −593.436 + 744.146i −0.0396818 + 0.0497594i −0.801276 0.598294i \(-0.795845\pi\)
0.761595 + 0.648054i \(0.224417\pi\)
\(608\) −1766.98 + 3669.17i −0.117863 + 0.244744i
\(609\) 4988.68 + 1138.63i 0.331940 + 0.0757632i
\(610\) 15581.3 1.03421
\(611\) 22210.3i 1.47059i
\(612\) 4719.26 9799.65i 0.311707 0.647267i
\(613\) −8974.47 + 4321.88i −0.591314 + 0.284762i −0.705514 0.708696i \(-0.749284\pi\)
0.114200 + 0.993458i \(0.463569\pi\)
\(614\) −3605.12 15795.1i −0.236956 1.03817i
\(615\) −5709.91 + 2749.75i −0.374383 + 0.180293i
\(616\) 7481.45 + 9381.45i 0.489345 + 0.613619i
\(617\) −8203.90 3950.79i −0.535294 0.257784i 0.146650 0.989188i \(-0.453151\pi\)
−0.681944 + 0.731404i \(0.738865\pi\)
\(618\) −3761.53 2999.72i −0.244840 0.195253i
\(619\) −6200.27 27165.2i −0.402601 1.76391i −0.616800 0.787120i \(-0.711571\pi\)
0.214199 0.976790i \(-0.431286\pi\)
\(620\) −1800.68 7889.28i −0.116640 0.511034i
\(621\) −2094.27 + 4348.80i −0.135331 + 0.281017i
\(622\) −15681.4 + 3579.18i −1.01088 + 0.230727i
\(623\) 4965.14 10310.2i 0.319300 0.663034i
\(624\) 6801.11 0.436318
\(625\) 4319.54 18925.1i 0.276450 1.21121i
\(626\) 8294.11 + 6614.33i 0.529552 + 0.422303i
\(627\) −2190.10 −0.139496
\(628\) 258.750 + 324.462i 0.0164415 + 0.0206169i
\(629\) 43101.9 9837.73i 2.73225 0.623619i
\(630\) 11057.2 + 13865.3i 0.699252 + 0.876835i
\(631\) 3727.78 + 16332.5i 0.235183 + 1.03040i 0.945270 + 0.326290i \(0.105799\pi\)
−0.710087 + 0.704114i \(0.751344\pi\)
\(632\) −2190.14 1054.72i −0.137847 0.0663835i
\(633\) 1549.84 6790.30i 0.0973154 0.426367i
\(634\) 1562.41 + 6845.38i 0.0978728 + 0.428809i
\(635\) −15930.2 + 12703.9i −0.995544 + 0.793919i
\(636\) 1154.63 920.787i 0.0719875 0.0574081i
\(637\) −2390.26 4963.43i −0.148674 0.308726i
\(638\) 27595.9 + 34604.2i 1.71243 + 2.14732i
\(639\) −4118.68 + 3284.54i −0.254980 + 0.203340i
\(640\) 17574.8 + 8463.58i 1.08548 + 0.522738i
\(641\) 2952.52 + 2354.55i 0.181930 + 0.145085i 0.710221 0.703979i \(-0.248595\pi\)
−0.528290 + 0.849064i \(0.677167\pi\)
\(642\) 1592.55 1997.00i 0.0979019 0.122765i
\(643\) 21655.6 + 4942.75i 1.32817 + 0.303146i 0.827000 0.562203i \(-0.190046\pi\)
0.501170 + 0.865349i \(0.332903\pi\)
\(644\) 3600.95 1734.12i 0.220337 0.106109i
\(645\) −3392.37 1633.68i −0.207092 0.0997302i
\(646\) −1818.10 + 7965.60i −0.110731 + 0.485143i
\(647\) −13560.8 28159.2i −0.824001 1.71106i −0.694519 0.719474i \(-0.744383\pi\)
−0.129482 0.991582i \(-0.541331\pi\)
\(648\) 6627.96 + 1512.79i 0.401807 + 0.0917098i
\(649\) 8777.73 + 18227.1i 0.530903 + 1.10243i
\(650\) −2165.80 9489.01i −0.130692 0.572599i
\(651\) −764.083 + 3347.67i −0.0460012 + 0.201544i
\(652\) −2146.88 9406.09i −0.128954 0.564986i
\(653\) −29964.9 + 14430.3i −1.79574 + 0.864781i −0.861902 + 0.507074i \(0.830727\pi\)
−0.933834 + 0.357707i \(0.883559\pi\)
\(654\) −2027.24 + 2542.08i −0.121210 + 0.151993i
\(655\) 1800.53 7888.63i 0.107408 0.470587i
\(656\) 21634.2 10418.5i 1.28761 0.620082i
\(657\) 13196.5 3012.02i 0.783631 0.178859i
\(658\) −17634.2 + 14062.8i −1.04476 + 0.833167i
\(659\) 27712.1i 1.63811i 0.573718 + 0.819053i \(0.305501\pi\)
−0.573718 + 0.819053i \(0.694499\pi\)
\(660\) 5563.53i 0.328122i
\(661\) 7594.73 + 3657.43i 0.446900 + 0.215216i 0.643778 0.765212i \(-0.277366\pi\)
−0.196878 + 0.980428i \(0.563080\pi\)
\(662\) −3262.21 + 6774.05i −0.191525 + 0.397705i
\(663\) 8455.18 1929.84i 0.495282 0.113045i
\(664\) −2253.99 + 1797.50i −0.131735 + 0.105055i
\(665\) −3675.08 2930.78i −0.214306 0.170904i
\(666\) −16213.0 33666.7i −0.943307 1.95880i
\(667\) −11078.1 + 5334.92i −0.643095 + 0.309698i
\(668\) 16991.7i 0.984174i
\(669\) −5239.90 4178.68i −0.302819 0.241490i
\(670\) 2210.02 + 4589.15i 0.127433 + 0.264618i
\(671\) −8755.45 18180.9i −0.503726 1.04600i
\(672\) 2737.03 + 3432.12i 0.157118 + 0.197019i
\(673\) −17606.1 4018.48i −1.00842 0.230165i −0.313759 0.949503i \(-0.601588\pi\)
−0.694661 + 0.719337i \(0.744446\pi\)
\(674\) −25608.1 −1.46348
\(675\) 4211.94i 0.240174i
\(676\) 1861.10 + 2333.74i 0.105889 + 0.132780i
\(677\) 6485.51 + 13467.3i 0.368181 + 0.764535i 0.999944 0.0106267i \(-0.00338265\pi\)
−0.631763 + 0.775162i \(0.717668\pi\)
\(678\) 1503.67i 0.0851740i
\(679\) −932.588 + 1169.43i −0.0527090 + 0.0660950i
\(680\) 16876.9 + 3852.05i 0.951766 + 0.217234i
\(681\) −6003.93 + 7528.69i −0.337843 + 0.423642i
\(682\) −23221.2 + 18518.3i −1.30379 + 1.03974i
\(683\) −4485.86 5625.09i −0.251313 0.315136i 0.640133 0.768265i \(-0.278879\pi\)
−0.891445 + 0.453128i \(0.850308\pi\)
\(684\) 2436.73 0.136214
\(685\) −25265.7 20148.7i −1.40927 1.12386i
\(686\) 10539.8 21886.1i 0.586604 1.21810i
\(687\) −513.218 + 643.555i −0.0285014 + 0.0357397i
\(688\) 12853.3 + 6189.83i 0.712250 + 0.343001i
\(689\) −11168.9 2549.24i −0.617566 0.140955i
\(690\) 4270.40 + 974.691i 0.235611 + 0.0537766i
\(691\) −8536.08 4110.76i −0.469939 0.226311i 0.183899 0.982945i \(-0.441128\pi\)
−0.653838 + 0.756634i \(0.726842\pi\)
\(692\) 6302.74 7903.38i 0.346234 0.434164i
\(693\) 9965.28 20693.1i 0.546248 1.13430i
\(694\) −14948.1 11920.7i −0.817611 0.652023i
\(695\) 28805.6 1.57217
\(696\) −2632.18 3300.65i −0.143351 0.179757i
\(697\) 23939.5 19091.1i 1.30096 1.03748i
\(698\) −22859.5 + 28664.8i −1.23960 + 1.55441i
\(699\) 3847.16 + 878.090i 0.208173 + 0.0475142i
\(700\) 2174.50 2726.73i 0.117412 0.147230i
\(701\) 29801.0i 1.60566i 0.596207 + 0.802831i \(0.296674\pi\)
−0.596207 + 0.802831i \(0.703326\pi\)
\(702\) −6687.84 13887.4i −0.359567 0.746649i
\(703\) 6175.32 + 7743.60i 0.331304 + 0.415442i
\(704\) 689.968i 0.0369377i
\(705\) −8722.16 −0.465951
\(706\) −24157.4 5513.77i −1.28779 0.293929i
\(707\) −17505.5 21951.3i −0.931208 1.16770i
\(708\) 1003.84 + 2084.49i 0.0532861 + 0.110650i
\(709\) −5441.77 11300.0i −0.288251 0.598560i 0.705684 0.708527i \(-0.250640\pi\)
−0.993935 + 0.109967i \(0.964926\pi\)
\(710\) 7859.40 + 6267.67i 0.415434 + 0.331298i
\(711\) 4652.88i 0.245424i
\(712\) −8506.30 + 4096.42i −0.447734 + 0.215618i
\(713\) −3580.01 7433.97i −0.188040 0.390469i
\(714\) 6885.74 + 5491.19i 0.360914 + 0.287819i
\(715\) −33742.2 + 26908.5i −1.76488 + 1.40744i
\(716\) 13651.7 3115.91i 0.712553 0.162636i
\(717\) −3726.90 + 7738.98i −0.194119 + 0.403093i
\(718\) −7381.37 3554.68i −0.383663 0.184763i
\(719\) 8825.89i 0.457789i −0.973451 0.228894i \(-0.926489\pi\)
0.973451 0.228894i \(-0.0735110\pi\)
\(720\) 25984.3i 1.34497i
\(721\) −10455.7 + 8338.17i −0.540072 + 0.430693i
\(722\) 21726.8 4958.99i 1.11993 0.255616i
\(723\) 2703.55 1301.96i 0.139068 0.0669715i
\(724\) −813.120 + 3562.51i −0.0417395 + 0.182873i
\(725\) −6689.69 + 8388.61i −0.342688 + 0.429717i
\(726\) −11709.3 + 5638.88i −0.598583 + 0.288262i
\(727\) −1267.22 5552.07i −0.0646475 0.283239i 0.932263 0.361780i \(-0.117831\pi\)
−0.996911 + 0.0785411i \(0.974974\pi\)
\(728\) 2368.75 10378.2i 0.120593 0.528352i
\(729\) −2117.18 9275.95i −0.107564 0.471267i
\(730\) −11207.1 23271.7i −0.568209 1.17990i
\(731\) 17735.7 + 4048.05i 0.897371 + 0.204819i
\(732\) −1001.29 2079.20i −0.0505584 0.104986i
\(733\) −702.632 + 3078.43i −0.0354056 + 0.155122i −0.989541 0.144255i \(-0.953922\pi\)
0.954135 + 0.299377i \(0.0967787\pi\)
\(734\) 8940.38 + 4305.46i 0.449585 + 0.216509i
\(735\) 1949.18 938.676i 0.0978185 0.0471069i
\(736\) −10284.0 2347.26i −0.515047 0.117556i
\(737\) 4112.94 5157.47i 0.205566 0.257772i
\(738\) −20234.0 16136.1i −1.00925 0.804847i
\(739\) −7735.03 3724.99i −0.385031 0.185421i 0.231348 0.972871i \(-0.425687\pi\)
−0.616378 + 0.787450i \(0.711401\pi\)
\(740\) −19671.1 + 15687.2i −0.977196 + 0.779288i
\(741\) 1211.39 + 1519.04i 0.0600562 + 0.0753081i
\(742\) −5047.78 10481.8i −0.249744 0.518598i
\(743\) 25554.0 20378.6i 1.26176 1.00622i 0.262610 0.964902i \(-0.415417\pi\)
0.999146 0.0413152i \(-0.0131548\pi\)
\(744\) 2214.91 1766.33i 0.109143 0.0870387i
\(745\) −6442.45 28226.2i −0.316823 1.38809i
\(746\) 10359.3 45387.1i 0.508420 2.22753i
\(747\) 4971.73 + 2394.26i 0.243516 + 0.117271i
\(748\) 5981.42 + 26206.3i 0.292383 + 1.28101i
\(749\) −4426.74 5550.96i −0.215954 0.270798i
\(750\) −5305.75 + 1211.00i −0.258318 + 0.0589595i
\(751\) −17768.1 22280.4i −0.863337 1.08259i −0.995814 0.0914039i \(-0.970865\pi\)
0.132477 0.991186i \(-0.457707\pi\)
\(752\) 33047.3 1.60254
\(753\) 3539.42 + 2822.59i 0.171293 + 0.136602i
\(754\) 8737.31 38280.6i 0.422008 1.84894i
\(755\) −26424.8 −1.27377
\(756\) 2396.44 4976.26i 0.115288 0.239398i
\(757\) 36703.0 8377.22i 1.76221 0.402213i 0.785859 0.618406i \(-0.212221\pi\)
0.976351 + 0.216193i \(0.0693640\pi\)
\(758\) 11797.6 24497.9i 0.565312 1.17388i
\(759\) −1262.32 5530.56i −0.0603678 0.264488i
\(760\) 862.974 + 3780.94i 0.0411886 + 0.180459i
\(761\) 16770.0 + 13373.6i 0.798831 + 0.637047i 0.935403 0.353583i \(-0.115037\pi\)
−0.136572 + 0.990630i \(0.543608\pi\)
\(762\) 7705.60 + 3710.82i 0.366331 + 0.176416i
\(763\) 5635.03 + 7066.11i 0.267368 + 0.335269i
\(764\) 14300.3 6886.68i 0.677183 0.326114i
\(765\) −7373.12 32303.8i −0.348465 1.52673i
\(766\) 46677.3 22478.6i 2.20172 1.06029i