Properties

Label 197.4.e.a.6.5
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.5
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.65379 + 1.06220i) q^{2} +(-8.36922 - 1.91022i) q^{3} +(13.3217 - 6.41540i) q^{4} +(3.98034 - 8.26527i) q^{5} +40.9776 q^{6} +(1.20188 - 5.26576i) q^{7} +(-25.3257 + 20.1966i) q^{8} +(42.0688 + 20.2593i) q^{9} +O(q^{10})\) \(q+(-4.65379 + 1.06220i) q^{2} +(-8.36922 - 1.91022i) q^{3} +(13.3217 - 6.41540i) q^{4} +(3.98034 - 8.26527i) q^{5} +40.9776 q^{6} +(1.20188 - 5.26576i) q^{7} +(-25.3257 + 20.1966i) q^{8} +(42.0688 + 20.2593i) q^{9} +(-9.74433 + 42.6927i) q^{10} +(-8.34305 + 1.90425i) q^{11} +(-123.747 + 28.2445i) q^{12} +(0.743095 + 0.592598i) q^{13} +25.7824i q^{14} +(-49.1009 + 61.5706i) q^{15} +(22.6562 - 28.4100i) q^{16} +(-27.6943 + 57.5078i) q^{17} +(-217.299 - 49.5970i) q^{18} +31.5270 q^{19} -135.643i q^{20} +(-20.1175 + 41.7745i) q^{21} +(36.8041 - 17.7239i) q^{22} +(4.18955 + 18.3556i) q^{23} +(250.536 - 120.652i) q^{24} +(25.4647 + 31.9317i) q^{25} +(-4.08766 - 1.96851i) q^{26} +(-132.170 - 105.402i) q^{27} +(-17.7709 - 77.8596i) q^{28} +(21.8724 + 95.8294i) q^{29} +(163.105 - 338.691i) q^{30} +(306.453 - 69.9460i) q^{31} +(37.1772 - 77.1993i) q^{32} +73.4624 q^{33} +(67.7988 - 297.046i) q^{34} +(-38.7391 - 30.8934i) q^{35} +690.400 q^{36} +(0.808741 + 1.01413i) q^{37} +(-146.720 + 33.4879i) q^{38} +(-5.08713 - 6.37906i) q^{39} +(66.1250 + 289.713i) q^{40} +(60.2505 + 29.0151i) q^{41} +(49.2500 - 215.778i) q^{42} +(-36.4981 - 159.909i) q^{43} +(-98.9273 + 78.8919i) q^{44} +(334.897 - 267.071i) q^{45} +(-38.9946 - 80.9731i) q^{46} +(-273.440 - 342.883i) q^{47} +(-243.885 + 194.491i) q^{48} +(282.749 + 136.165i) q^{49} +(-152.425 - 121.555i) q^{50} +(341.632 - 428.393i) q^{51} +(13.7011 + 3.12718i) q^{52} +(-426.819 + 205.545i) q^{53} +(727.051 + 350.129i) q^{54} +(-17.4691 + 76.5371i) q^{55} +(75.9119 + 157.633i) q^{56} +(-263.857 - 60.2235i) q^{57} +(-203.579 - 422.737i) q^{58} +(-18.7246 - 82.0377i) q^{59} +(-259.108 + 1135.23i) q^{60} +(103.230 + 452.278i) q^{61} +(-1351.87 + 651.027i) q^{62} +(157.242 - 197.175i) q^{63} +(-155.701 + 682.172i) q^{64} +(7.85576 - 3.78313i) q^{65} +(-341.878 + 78.0315i) q^{66} +(253.841 - 202.431i) q^{67} +943.773i q^{68} -161.625i q^{69} +(213.098 + 102.623i) q^{70} +(351.069 - 729.002i) q^{71} +(-1474.59 + 336.565i) q^{72} +(802.606 - 640.057i) q^{73} +(-4.84092 - 3.86050i) q^{74} +(-152.123 - 315.887i) q^{75} +(419.994 - 202.259i) q^{76} +46.2212i q^{77} +(30.4503 + 24.2833i) q^{78} +(-445.028 - 924.109i) q^{79} +(-144.637 - 300.342i) q^{80} +(118.784 + 148.950i) q^{81} +(-311.213 - 71.0322i) q^{82} -1275.01 q^{83} +685.571i q^{84} +(365.085 + 457.802i) q^{85} +(339.709 + 705.413i) q^{86} -843.799i q^{87} +(172.834 - 216.727i) q^{88} +(882.126 + 201.339i) q^{89} +(-1274.86 + 1598.62i) q^{90} +(4.01359 - 3.20073i) q^{91} +(173.571 + 217.651i) q^{92} -2698.39 q^{93} +(1636.74 + 1305.26i) q^{94} +(125.488 - 260.579i) q^{95} +(-458.612 + 575.082i) q^{96} +(142.203 + 68.4812i) q^{97} +(-1460.49 - 333.346i) q^{98} +(-389.561 - 88.9147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.65379 + 1.06220i −1.64536 + 0.375543i −0.942085 0.335373i \(-0.891138\pi\)
−0.703277 + 0.710916i \(0.748281\pi\)
\(3\) −8.36922 1.91022i −1.61066 0.367622i −0.679913 0.733293i \(-0.737983\pi\)
−0.930744 + 0.365670i \(0.880840\pi\)
\(4\) 13.3217 6.41540i 1.66522 0.801926i
\(5\) 3.98034 8.26527i 0.356013 0.739268i −0.643648 0.765322i \(-0.722580\pi\)
0.999661 + 0.0260537i \(0.00829408\pi\)
\(6\) 40.9776 2.78817
\(7\) 1.20188 5.26576i 0.0648952 0.284324i −0.932060 0.362305i \(-0.881990\pi\)
0.996955 + 0.0779803i \(0.0248471\pi\)
\(8\) −25.3257 + 20.1966i −1.11925 + 0.892570i
\(9\) 42.0688 + 20.2593i 1.55810 + 0.750343i
\(10\) −9.74433 + 42.6927i −0.308143 + 1.35006i
\(11\) −8.34305 + 1.90425i −0.228684 + 0.0521956i −0.335327 0.942102i \(-0.608847\pi\)
0.106643 + 0.994297i \(0.465990\pi\)
\(12\) −123.747 + 28.2445i −2.97690 + 0.679458i
\(13\) 0.743095 + 0.592598i 0.0158536 + 0.0126429i 0.631385 0.775470i \(-0.282487\pi\)
−0.615531 + 0.788113i \(0.711058\pi\)
\(14\) 25.7824i 0.492188i
\(15\) −49.1009 + 61.5706i −0.845186 + 1.05983i
\(16\) 22.6562 28.4100i 0.354004 0.443907i
\(17\) −27.6943 + 57.5078i −0.395109 + 0.820452i 0.604605 + 0.796526i \(0.293331\pi\)
−0.999714 + 0.0239265i \(0.992383\pi\)
\(18\) −217.299 49.5970i −2.84543 0.649451i
\(19\) 31.5270 0.380673 0.190337 0.981719i \(-0.439042\pi\)
0.190337 + 0.981719i \(0.439042\pi\)
\(20\) 135.643i 1.51654i
\(21\) −20.1175 + 41.7745i −0.209048 + 0.434093i
\(22\) 36.8041 17.7239i 0.356666 0.171762i
\(23\) 4.18955 + 18.3556i 0.0379818 + 0.166409i 0.990362 0.138504i \(-0.0442295\pi\)
−0.952380 + 0.304914i \(0.901372\pi\)
\(24\) 250.536 120.652i 2.13085 1.02616i
\(25\) 25.4647 + 31.9317i 0.203717 + 0.255454i
\(26\) −4.08766 1.96851i −0.0308329 0.0148484i
\(27\) −132.170 105.402i −0.942081 0.751285i
\(28\) −17.7709 77.8596i −0.119943 0.525503i
\(29\) 21.8724 + 95.8294i 0.140055 + 0.613623i 0.995420 + 0.0955968i \(0.0304759\pi\)
−0.855365 + 0.518026i \(0.826667\pi\)
\(30\) 163.105 338.691i 0.992625 2.06121i
\(31\) 306.453 69.9460i 1.77550 0.405247i 0.795778 0.605588i \(-0.207062\pi\)
0.979726 + 0.200341i \(0.0642049\pi\)
\(32\) 37.1772 77.1993i 0.205377 0.426470i
\(33\) 73.4624 0.387520
\(34\) 67.7988 297.046i 0.341982 1.49832i
\(35\) −38.7391 30.8934i −0.187089 0.149198i
\(36\) 690.400 3.19630
\(37\) 0.808741 + 1.01413i 0.00359341 + 0.00450600i 0.783625 0.621234i \(-0.213368\pi\)
−0.780032 + 0.625740i \(0.784797\pi\)
\(38\) −146.720 + 33.4879i −0.626345 + 0.142959i
\(39\) −5.08713 6.37906i −0.0208870 0.0261915i
\(40\) 66.1250 + 289.713i 0.261382 + 1.14519i
\(41\) 60.2505 + 29.0151i 0.229501 + 0.110522i 0.545101 0.838371i \(-0.316491\pi\)
−0.315600 + 0.948892i \(0.602206\pi\)
\(42\) 49.2500 215.778i 0.180939 0.792746i
\(43\) −36.4981 159.909i −0.129440 0.567113i −0.997501 0.0706552i \(-0.977491\pi\)
0.868061 0.496457i \(-0.165366\pi\)
\(44\) −98.9273 + 78.8919i −0.338951 + 0.270305i
\(45\) 334.897 267.071i 1.10941 0.884725i
\(46\) −38.9946 80.9731i −0.124988 0.259540i
\(47\) −273.440 342.883i −0.848624 1.06414i −0.997166 0.0752343i \(-0.976030\pi\)
0.148542 0.988906i \(-0.452542\pi\)
\(48\) −243.885 + 194.491i −0.733369 + 0.584842i
\(49\) 282.749 + 136.165i 0.824340 + 0.396981i
\(50\) −152.425 121.555i −0.431123 0.343809i
\(51\) 341.632 428.393i 0.938002 1.17622i
\(52\) 13.7011 + 3.12718i 0.0365384 + 0.00833965i
\(53\) −426.819 + 205.545i −1.10619 + 0.532714i −0.895600 0.444860i \(-0.853253\pi\)
−0.210592 + 0.977574i \(0.567539\pi\)
\(54\) 727.051 + 350.129i 1.83221 + 0.882343i
\(55\) −17.4691 + 76.5371i −0.0428279 + 0.187641i
\(56\) 75.9119 + 157.633i 0.181146 + 0.376153i
\(57\) −263.857 60.2235i −0.613134 0.139944i
\(58\) −203.579 422.737i −0.460884 0.957035i
\(59\) −18.7246 82.0377i −0.0413175 0.181024i 0.950059 0.312072i \(-0.101023\pi\)
−0.991376 + 0.131048i \(0.958166\pi\)
\(60\) −259.108 + 1135.23i −0.557512 + 2.44262i
\(61\) 103.230 + 452.278i 0.216675 + 0.949316i 0.959915 + 0.280291i \(0.0904310\pi\)
−0.743240 + 0.669025i \(0.766712\pi\)
\(62\) −1351.87 + 651.027i −2.76916 + 1.33356i
\(63\) 157.242 197.175i 0.314454 0.394313i
\(64\) −155.701 + 682.172i −0.304104 + 1.33237i
\(65\) 7.85576 3.78313i 0.0149906 0.00721908i
\(66\) −341.878 + 78.0315i −0.637611 + 0.145531i
\(67\) 253.841 202.431i 0.462859 0.369118i −0.364118 0.931353i \(-0.618630\pi\)
0.826978 + 0.562235i \(0.190058\pi\)
\(68\) 943.773i 1.68308i
\(69\) 161.625i 0.281991i
\(70\) 213.098 + 102.623i 0.363859 + 0.175225i
\(71\) 351.069 729.002i 0.586820 1.21854i −0.370316 0.928906i \(-0.620751\pi\)
0.957136 0.289639i \(-0.0935351\pi\)
\(72\) −1474.59 + 336.565i −2.41364 + 0.550897i
\(73\) 802.606 640.057i 1.28682 1.02621i 0.289200 0.957269i \(-0.406611\pi\)
0.997621 0.0689364i \(-0.0219605\pi\)
\(74\) −4.84092 3.86050i −0.00760466 0.00606452i
\(75\) −152.123 315.887i −0.234209 0.486339i
\(76\) 419.994 202.259i 0.633903 0.305272i
\(77\) 46.2212i 0.0684077i
\(78\) 30.4503 + 24.2833i 0.0442027 + 0.0352505i
\(79\) −445.028 924.109i −0.633791 1.31608i −0.932304 0.361675i \(-0.882205\pi\)
0.298513 0.954406i \(-0.403509\pi\)
\(80\) −144.637 300.342i −0.202136 0.419740i
\(81\) 118.784 + 148.950i 0.162941 + 0.204321i
\(82\) −311.213 71.0322i −0.419118 0.0956610i
\(83\) −1275.01 −1.68616 −0.843078 0.537791i \(-0.819259\pi\)
−0.843078 + 0.537791i \(0.819259\pi\)
\(84\) 685.571i 0.890499i
\(85\) 365.085 + 457.802i 0.465870 + 0.584183i
\(86\) 339.709 + 705.413i 0.425951 + 0.884496i
\(87\) 843.799i 1.03982i
\(88\) 172.834 216.727i 0.209366 0.262536i
\(89\) 882.126 + 201.339i 1.05062 + 0.239797i 0.712766 0.701402i \(-0.247442\pi\)
0.337853 + 0.941199i \(0.390299\pi\)
\(90\) −1274.86 + 1598.62i −1.49313 + 1.87232i
\(91\) 4.01359 3.20073i 0.00462350 0.00368712i
\(92\) 173.571 + 217.651i 0.196696 + 0.246649i
\(93\) −2698.39 −3.00871
\(94\) 1636.74 + 1305.26i 1.79592 + 1.43220i
\(95\) 125.488 260.579i 0.135525 0.281420i
\(96\) −458.612 + 575.082i −0.487572 + 0.611396i
\(97\) 142.203 + 68.4812i 0.148850 + 0.0716826i 0.506826 0.862048i \(-0.330819\pi\)
−0.357976 + 0.933731i \(0.616533\pi\)
\(98\) −1460.49 333.346i −1.50542 0.343603i
\(99\) −389.561 88.9147i −0.395478 0.0902653i
\(100\) 544.088 + 262.019i 0.544088 + 0.262019i
\(101\) 199.474 250.132i 0.196519 0.246426i −0.673802 0.738912i \(-0.735340\pi\)
0.870321 + 0.492485i \(0.163911\pi\)
\(102\) −1134.85 + 2356.53i −1.10163 + 2.28756i
\(103\) 707.856 + 564.496i 0.677156 + 0.540014i 0.900571 0.434709i \(-0.143149\pi\)
−0.223414 + 0.974724i \(0.571720\pi\)
\(104\) −30.7878 −0.0290288
\(105\) 265.203 + 332.554i 0.246487 + 0.309085i
\(106\) 1768.00 1409.93i 1.62003 1.29193i
\(107\) −43.8569 + 54.9948i −0.0396243 + 0.0496873i −0.801249 0.598331i \(-0.795831\pi\)
0.761624 + 0.648019i \(0.224402\pi\)
\(108\) −2436.94 556.215i −2.17124 0.495572i
\(109\) 1028.08 1289.17i 0.903412 1.13284i −0.0872076 0.996190i \(-0.527794\pi\)
0.990619 0.136652i \(-0.0436342\pi\)
\(110\) 374.743i 0.324821i
\(111\) −4.83133 10.0324i −0.00413125 0.00857864i
\(112\) −122.370 153.448i −0.103240 0.129459i
\(113\) 75.2610i 0.0626545i −0.999509 0.0313272i \(-0.990027\pi\)
0.999509 0.0313272i \(-0.00997340\pi\)
\(114\) 1291.90 1.06138
\(115\) 168.390 + 38.4339i 0.136543 + 0.0311651i
\(116\) 906.163 + 1136.29i 0.725303 + 0.909501i
\(117\) 19.2555 + 39.9845i 0.0152151 + 0.0315946i
\(118\) 174.280 + 361.897i 0.135965 + 0.282333i
\(119\) 269.537 + 214.949i 0.207634 + 0.165583i
\(120\) 2550.98i 1.94060i
\(121\) −1133.21 + 545.725i −0.851397 + 0.410011i
\(122\) −960.817 1995.16i −0.713019 1.48060i
\(123\) −448.824 357.926i −0.329017 0.262383i
\(124\) 3633.76 2897.82i 2.63162 2.09865i
\(125\) 1483.25 338.542i 1.06133 0.242241i
\(126\) −522.332 + 1084.63i −0.369310 + 0.766879i
\(127\) 1744.64 + 840.174i 1.21899 + 0.587034i 0.929030 0.370004i \(-0.120644\pi\)
0.289960 + 0.957039i \(0.406358\pi\)
\(128\) 2654.59i 1.83309i
\(129\) 1408.03i 0.961009i
\(130\) −32.5406 + 25.9503i −0.0219538 + 0.0175076i
\(131\) 191.715 43.7576i 0.127864 0.0291841i −0.158110 0.987422i \(-0.550540\pi\)
0.285974 + 0.958237i \(0.407683\pi\)
\(132\) 978.646 471.291i 0.645304 0.310762i
\(133\) 37.8916 166.014i 0.0247039 0.108235i
\(134\) −966.299 + 1211.70i −0.622952 + 0.781157i
\(135\) −1397.26 + 672.886i −0.890794 + 0.428984i
\(136\) −460.082 2015.75i −0.290086 1.27095i
\(137\) 354.124 1551.52i 0.220839 0.967557i −0.736010 0.676971i \(-0.763292\pi\)
0.956849 0.290587i \(-0.0938505\pi\)
\(138\) 171.678 + 752.170i 0.105900 + 0.463978i
\(139\) −838.853 1741.90i −0.511875 1.06292i −0.983465 0.181101i \(-0.942034\pi\)
0.471590 0.881818i \(-0.343680\pi\)
\(140\) −714.265 163.026i −0.431189 0.0984160i
\(141\) 1633.50 + 3391.99i 0.975641 + 2.02594i
\(142\) −859.457 + 3765.53i −0.507916 + 2.22532i
\(143\) −7.32813 3.52904i −0.00428538 0.00206373i
\(144\) 1528.69 736.177i 0.884657 0.426028i
\(145\) 879.116 + 200.652i 0.503494 + 0.114919i
\(146\) −3055.29 + 3831.21i −1.73190 + 2.17174i
\(147\) −2106.28 1679.70i −1.18179 0.942446i
\(148\) 17.2799 + 8.32155i 0.00959728 + 0.00462181i
\(149\) −956.631 + 762.888i −0.525975 + 0.419451i −0.850146 0.526548i \(-0.823486\pi\)
0.324171 + 0.945999i \(0.394915\pi\)
\(150\) 1043.48 + 1308.48i 0.568000 + 0.712249i
\(151\) −772.955 1605.06i −0.416571 0.865018i −0.998653 0.0518879i \(-0.983476\pi\)
0.582082 0.813130i \(-0.302238\pi\)
\(152\) −798.443 + 636.737i −0.426068 + 0.339778i
\(153\) −2330.13 + 1858.22i −1.23124 + 0.981882i
\(154\) −49.0960 215.104i −0.0256901 0.112555i
\(155\) 641.667 2811.33i 0.332516 1.45685i
\(156\) −108.694 52.3441i −0.0557850 0.0268646i
\(157\) −315.353 1381.65i −0.160305 0.702343i −0.989638 0.143587i \(-0.954136\pi\)
0.829333 0.558755i \(-0.188721\pi\)
\(158\) 3052.65 + 3827.90i 1.53706 + 1.92741i
\(159\) 3964.78 904.936i 1.97753 0.451359i
\(160\) −490.095 614.560i −0.242159 0.303658i
\(161\) 101.692 0.0497791
\(162\) −711.009 567.011i −0.344828 0.274991i
\(163\) −285.696 + 1251.72i −0.137285 + 0.601485i 0.858740 + 0.512411i \(0.171248\pi\)
−0.996025 + 0.0890734i \(0.971609\pi\)
\(164\) 988.784 0.470799
\(165\) 292.406 607.186i 0.137962 0.286481i
\(166\) 5933.65 1354.32i 2.77434 0.633225i
\(167\) −216.291 + 449.132i −0.100222 + 0.208113i −0.945051 0.326924i \(-0.893988\pi\)
0.844829 + 0.535037i \(0.179702\pi\)
\(168\) −334.211 1464.27i −0.153482 0.672447i
\(169\) −488.677 2141.04i −0.222429 0.974527i
\(170\) −2185.30 1742.72i −0.985911 0.786238i
\(171\) 1326.30 + 638.714i 0.593128 + 0.285636i
\(172\) −1512.10 1896.11i −0.670327 0.840564i
\(173\) −1346.56 + 648.471i −0.591776 + 0.284984i −0.705706 0.708504i \(-0.749370\pi\)
0.113930 + 0.993489i \(0.463656\pi\)
\(174\) 896.280 + 3926.86i 0.390499 + 1.71089i
\(175\) 198.750 95.7130i 0.0858520 0.0413441i
\(176\) −134.922 + 280.169i −0.0577850 + 0.119992i
\(177\) 722.360i 0.306757i
\(178\) −4319.09 −1.81870
\(179\) 800.124 + 182.623i 0.334101 + 0.0762564i 0.386280 0.922381i \(-0.373760\pi\)
−0.0521796 + 0.998638i \(0.516617\pi\)
\(180\) 2748.03 5706.34i 1.13792 2.36292i
\(181\) −716.697 + 898.709i −0.294319 + 0.369064i −0.906902 0.421342i \(-0.861559\pi\)
0.612583 + 0.790406i \(0.290130\pi\)
\(182\) −15.2786 + 19.1587i −0.00622266 + 0.00780297i
\(183\) 3982.41i 1.60868i
\(184\) −476.824 380.254i −0.191043 0.152352i
\(185\) 11.6011 2.64788i 0.00461044 0.00105230i
\(186\) 12557.7 2866.22i 4.95041 1.12990i
\(187\) 121.546 532.527i 0.0475311 0.208247i
\(188\) −5842.42 2813.56i −2.26650 1.09149i
\(189\) −713.876 + 569.297i −0.274745 + 0.219102i
\(190\) −307.210 + 1345.97i −0.117302 + 0.513933i
\(191\) 945.779 0.358294 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(192\) 2606.20 5411.83i 0.979616 2.03419i
\(193\) 3353.26 1614.85i 1.25064 0.602276i 0.312955 0.949768i \(-0.398681\pi\)
0.937683 + 0.347492i \(0.112967\pi\)
\(194\) −734.521 167.650i −0.271833 0.0620441i
\(195\) −72.9732 + 16.6557i −0.0267986 + 0.00611660i
\(196\) 4640.25 1.69105
\(197\) 2751.57 272.466i 0.995133 0.0985399i
\(198\) 1907.38 0.684603
\(199\) −2116.22 + 483.014i −0.753845 + 0.172060i −0.582140 0.813088i \(-0.697785\pi\)
−0.171705 + 0.985148i \(0.554927\pi\)
\(200\) −1289.82 294.393i −0.456020 0.104084i
\(201\) −2511.14 + 1209.30i −0.881204 + 0.424365i
\(202\) −662.619 + 1375.94i −0.230800 + 0.479262i
\(203\) 530.903 0.183557
\(204\) 1802.81 7898.65i 0.618737 2.71086i
\(205\) 479.635 382.496i 0.163411 0.130316i
\(206\) −3893.82 1875.16i −1.31697 0.634218i
\(207\) −195.622 + 857.076i −0.0656844 + 0.287782i
\(208\) 33.6715 7.68529i 0.0112245 0.00256192i
\(209\) −263.031 + 60.0352i −0.0870539 + 0.0198695i
\(210\) −1587.43 1265.94i −0.521635 0.415990i
\(211\) 3290.12i 1.07347i 0.843752 + 0.536733i \(0.180342\pi\)
−0.843752 + 0.536733i \(0.819658\pi\)
\(212\) −4367.31 + 5476.44i −1.41485 + 1.77417i
\(213\) −4330.73 + 5430.56i −1.39313 + 1.74693i
\(214\) 145.685 302.519i 0.0465366 0.0966343i
\(215\) −1466.96 334.825i −0.465331 0.106209i
\(216\) 5476.07 1.72500
\(217\) 1697.78i 0.531118i
\(218\) −3415.10 + 7091.53i −1.06101 + 2.20321i
\(219\) −7939.84 + 3823.62i −2.44988 + 1.17980i
\(220\) 258.298 + 1131.68i 0.0791566 + 0.346808i
\(221\) −54.6585 + 26.3221i −0.0166368 + 0.00801185i
\(222\) 33.1403 + 41.5566i 0.0100191 + 0.0125635i
\(223\) 1150.68 + 554.139i 0.345540 + 0.166403i 0.598601 0.801047i \(-0.295723\pi\)
−0.253062 + 0.967450i \(0.581438\pi\)
\(224\) −361.831 288.550i −0.107928 0.0860696i
\(225\) 424.356 + 1859.22i 0.125735 + 0.550881i
\(226\) 79.9419 + 350.249i 0.0235295 + 0.103089i
\(227\) 1861.39 3865.21i 0.544249 1.13015i −0.429615 0.903012i \(-0.641351\pi\)
0.973864 0.227133i \(-0.0729352\pi\)
\(228\) −3901.38 + 890.465i −1.13323 + 0.258651i
\(229\) −551.662 + 1145.54i −0.159191 + 0.330564i −0.965274 0.261238i \(-0.915869\pi\)
0.806083 + 0.591803i \(0.201583\pi\)
\(230\) −824.476 −0.236367
\(231\) 88.2927 386.836i 0.0251482 0.110181i
\(232\) −2489.36 1985.20i −0.704458 0.561787i
\(233\) −3629.38 −1.02047 −0.510233 0.860036i \(-0.670441\pi\)
−0.510233 + 0.860036i \(0.670441\pi\)
\(234\) −132.082 165.626i −0.0368995 0.0462706i
\(235\) −3922.40 + 895.263i −1.08881 + 0.248513i
\(236\) −775.749 972.758i −0.213970 0.268310i
\(237\) 1959.28 + 8584.18i 0.537000 + 2.35275i
\(238\) −1482.69 714.024i −0.403816 0.194468i
\(239\) −231.922 + 1016.12i −0.0627690 + 0.275009i −0.996567 0.0827920i \(-0.973616\pi\)
0.933798 + 0.357801i \(0.116473\pi\)
\(240\) 636.780 + 2789.91i 0.171266 + 0.750367i
\(241\) −2094.37 + 1670.20i −0.559793 + 0.446420i −0.862062 0.506803i \(-0.830827\pi\)
0.302269 + 0.953223i \(0.402256\pi\)
\(242\) 4694.05 3743.38i 1.24688 0.994353i
\(243\) 1270.82 + 2638.89i 0.335487 + 0.696646i
\(244\) 4276.74 + 5362.87i 1.12209 + 1.40706i
\(245\) 2250.87 1795.01i 0.586951 0.468078i
\(246\) 2468.92 + 1188.97i 0.639889 + 0.308154i
\(247\) 23.4276 + 18.6829i 0.00603506 + 0.00481280i
\(248\) −6348.47 + 7960.73i −1.62552 + 2.03833i
\(249\) 10670.9 + 2435.56i 2.71582 + 0.619869i
\(250\) −6543.14 + 3151.01i −1.65530 + 0.797149i
\(251\) −4505.52 2169.74i −1.13301 0.545630i −0.229123 0.973397i \(-0.573586\pi\)
−0.903889 + 0.427768i \(0.859300\pi\)
\(252\) 829.776 3635.48i 0.207424 0.908786i
\(253\) −69.9073 145.164i −0.0173717 0.0360727i
\(254\) −9011.61 2056.84i −2.22614 0.508101i
\(255\) −2180.97 4528.84i −0.535599 1.11218i
\(256\) 1574.09 + 6896.53i 0.384299 + 1.68372i
\(257\) −1579.40 + 6919.79i −0.383346 + 1.67955i 0.303566 + 0.952810i \(0.401823\pi\)
−0.686913 + 0.726740i \(0.741034\pi\)
\(258\) −1495.61 6552.68i −0.360901 1.58121i
\(259\) 6.31217 3.03978i 0.00151436 0.000729278i
\(260\) 80.3819 100.796i 0.0191734 0.0240426i
\(261\) −1021.29 + 4474.55i −0.242207 + 1.06118i
\(262\) −845.720 + 407.277i −0.199423 + 0.0960369i
\(263\) 4275.73 975.908i 1.00248 0.228810i 0.310383 0.950612i \(-0.399543\pi\)
0.692100 + 0.721801i \(0.256686\pi\)
\(264\) −1860.48 + 1483.69i −0.433731 + 0.345889i
\(265\) 4345.92i 1.00743i
\(266\) 812.841i 0.187363i
\(267\) −6998.11 3370.11i −1.60403 0.772462i
\(268\) 2082.92 4325.22i 0.474755 0.985840i
\(269\) 7678.85 1752.65i 1.74047 0.397252i 0.769921 0.638139i \(-0.220295\pi\)
0.970553 + 0.240887i \(0.0774382\pi\)
\(270\) 5787.82 4615.64i 1.30458 1.04037i
\(271\) −3902.41 3112.07i −0.874740 0.697582i 0.0794322 0.996840i \(-0.474689\pi\)
−0.954172 + 0.299259i \(0.903261\pi\)
\(272\) 1006.35 + 2089.71i 0.224334 + 0.465835i
\(273\) −39.7047 + 19.1208i −0.00880234 + 0.00423899i
\(274\) 7596.60i 1.67492i
\(275\) −273.259 217.917i −0.0599205 0.0477850i
\(276\) −1036.89 2153.13i −0.226136 0.469576i
\(277\) −2697.01 5600.41i −0.585010 1.21479i −0.957951 0.286931i \(-0.907365\pi\)
0.372941 0.927855i \(-0.378349\pi\)
\(278\) 5754.08 + 7215.39i 1.24139 + 1.55666i
\(279\) 14309.2 + 3265.98i 3.07049 + 0.700820i
\(280\) 1605.03 0.342568
\(281\) 3731.98i 0.792283i 0.918190 + 0.396141i \(0.129651\pi\)
−0.918190 + 0.396141i \(0.870349\pi\)
\(282\) −11204.9 14050.5i −2.36611 2.96701i
\(283\) 918.249 + 1906.76i 0.192877 + 0.400513i 0.974870 0.222774i \(-0.0715111\pi\)
−0.781993 + 0.623287i \(0.785797\pi\)
\(284\) 11963.8i 2.49973i
\(285\) −1548.00 + 1941.14i −0.321740 + 0.403449i
\(286\) 37.8521 + 8.63950i 0.00782602 + 0.00178624i
\(287\) 225.200 282.392i 0.0463176 0.0580804i
\(288\) 3128.00 2494.50i 0.639998 0.510381i
\(289\) 523.034 + 655.864i 0.106459 + 0.133496i
\(290\) −4304.35 −0.871587
\(291\) −1059.31 844.773i −0.213395 0.170177i
\(292\) 6585.87 13675.7i 1.31989 2.74079i
\(293\) 3898.76 4888.90i 0.777366 0.974786i −0.222634 0.974902i \(-0.571465\pi\)
1.00000 0.000115903i \(3.68930e-5\pi\)
\(294\) 11586.4 + 5579.70i 2.29840 + 1.10685i
\(295\) −752.594 171.775i −0.148535 0.0339021i
\(296\) −40.9638 9.34973i −0.00804384 0.00183595i
\(297\) 1303.42 + 627.692i 0.254653 + 0.122634i
\(298\) 3641.62 4566.45i 0.707897 0.887675i
\(299\) −7.76428 + 16.1227i −0.00150174 + 0.00311839i
\(300\) −4053.08 3232.22i −0.780016 0.622042i
\(301\) −885.907 −0.169644
\(302\) 5302.05 + 6648.56i 1.01026 + 1.26683i
\(303\) −2147.25 + 1712.37i −0.407116 + 0.324664i
\(304\) 714.283 895.683i 0.134760 0.168983i
\(305\) 4149.09 + 947.003i 0.778939 + 0.177788i
\(306\) 8870.14 11122.8i 1.65710 2.07794i
\(307\) 7979.71i 1.48347i −0.670692 0.741736i \(-0.734003\pi\)
0.670692 0.741736i \(-0.265997\pi\)
\(308\) 296.528 + 615.746i 0.0548579 + 0.113914i
\(309\) −4845.89 6076.56i −0.892146 1.11872i
\(310\) 13764.9i 2.52192i
\(311\) 5991.63 1.09246 0.546229 0.837636i \(-0.316063\pi\)
0.546229 + 0.837636i \(0.316063\pi\)
\(312\) 257.670 + 58.8115i 0.0467554 + 0.0106716i
\(313\) 4447.38 + 5576.84i 0.803134 + 1.00710i 0.999646 + 0.0265964i \(0.00846690\pi\)
−0.196513 + 0.980501i \(0.562962\pi\)
\(314\) 2935.17 + 6094.95i 0.527520 + 1.09541i
\(315\) −1003.83 2084.47i −0.179553 0.372847i
\(316\) −11857.1 9455.70i −2.11080 1.68331i
\(317\) 7105.11i 1.25887i −0.777052 0.629436i \(-0.783286\pi\)
0.777052 0.629436i \(-0.216714\pi\)
\(318\) −17490.0 + 8422.76i −3.08425 + 1.48530i
\(319\) −364.966 757.859i −0.0640569 0.133016i
\(320\) 5018.59 + 4002.20i 0.876712 + 0.699155i
\(321\) 472.100 376.487i 0.0820874 0.0654625i
\(322\) −473.252 + 108.017i −0.0819046 + 0.0186942i
\(323\) −873.118 + 1813.05i −0.150407 + 0.312324i
\(324\) 2537.98 + 1222.23i 0.435182 + 0.209573i
\(325\) 38.8186i 0.00662544i
\(326\) 6128.69i 1.04122i
\(327\) −11066.8 + 8825.47i −1.87154 + 1.49251i
\(328\) −2111.89 + 482.025i −0.355517 + 0.0811444i
\(329\) −2134.18 + 1027.77i −0.357633 + 0.172227i
\(330\) −715.842 + 3136.31i −0.119412 + 0.523176i
\(331\) −270.677 + 339.418i −0.0449479 + 0.0563629i −0.803797 0.594903i \(-0.797190\pi\)
0.758849 + 0.651266i \(0.225762\pi\)
\(332\) −16985.4 + 8179.73i −2.80781 + 1.35217i
\(333\) 13.4773 + 59.0477i 0.00221787 + 0.00971710i
\(334\) 529.504 2319.91i 0.0867460 0.380059i
\(335\) −662.775 2903.81i −0.108093 0.473588i
\(336\) 731.027 + 1517.99i 0.118693 + 0.246468i
\(337\) 4974.12 + 1135.31i 0.804029 + 0.183514i 0.604736 0.796426i \(-0.293279\pi\)
0.199292 + 0.979940i \(0.436136\pi\)
\(338\) 4548.40 + 9444.85i 0.731954 + 1.51992i
\(339\) −143.765 + 629.876i −0.0230332 + 0.100915i
\(340\) 7800.54 + 3756.54i 1.24425 + 0.599197i
\(341\) −2423.56 + 1167.13i −0.384877 + 0.185347i
\(342\) −6850.77 1563.64i −1.08318 0.247229i
\(343\) 2211.92 2773.66i 0.348199 0.436628i
\(344\) 4153.94 + 3312.66i 0.651063 + 0.519205i
\(345\) −1335.88 643.324i −0.208467 0.100393i
\(346\) 5577.81 4448.16i 0.866662 0.691140i
\(347\) 2097.14 + 2629.73i 0.324439 + 0.406834i 0.917125 0.398600i \(-0.130504\pi\)
−0.592686 + 0.805434i \(0.701932\pi\)
\(348\) −5413.31 11240.9i −0.833862 1.73153i
\(349\) 3764.83 3002.35i 0.577440 0.460493i −0.290699 0.956815i \(-0.593888\pi\)
0.868139 + 0.496321i \(0.165316\pi\)
\(350\) −823.275 + 656.540i −0.125731 + 0.100267i
\(351\) −35.7539 156.648i −0.00543704 0.0238212i
\(352\) −163.165 + 714.872i −0.0247066 + 0.108247i
\(353\) 11761.5 + 5664.05i 1.77338 + 0.854014i 0.963632 + 0.267234i \(0.0861098\pi\)
0.809747 + 0.586780i \(0.199605\pi\)
\(354\) −767.289 3361.71i −0.115200 0.504726i
\(355\) −4628.02 5803.36i −0.691916 0.867635i
\(356\) 13043.1 2977.01i 1.94181 0.443205i
\(357\) −1845.22 2313.83i −0.273555 0.343028i
\(358\) −3917.59 −0.578355
\(359\) −3756.71 2995.88i −0.552289 0.440436i 0.307159 0.951658i \(-0.400621\pi\)
−0.859449 + 0.511222i \(0.829193\pi\)
\(360\) −3087.57 + 13527.5i −0.452025 + 1.98045i
\(361\) −5865.05 −0.855088
\(362\) 2380.75 4943.68i 0.345661 0.717773i
\(363\) 10526.5 2402.61i 1.52204 0.347395i
\(364\) 32.9340 68.3881i 0.00474233 0.00984755i
\(365\) −2095.59 9181.40i −0.300516 1.31665i
\(366\) 4230.10 + 18533.3i 0.604128 + 2.64686i
\(367\) 870.484 + 694.187i 0.123812 + 0.0987365i 0.683438 0.730009i \(-0.260484\pi\)
−0.559626 + 0.828745i \(0.689055\pi\)
\(368\) 616.403 + 296.844i 0.0873159 + 0.0420491i
\(369\) 1946.84 + 2441.26i 0.274657 + 0.344409i
\(370\) −51.1766 + 24.6454i −0.00719066 + 0.00346284i
\(371\) 569.369 + 2494.57i 0.0796770 + 0.349088i
\(372\) −35947.2 + 17311.3i −5.01015 + 2.41276i
\(373\) 2243.27 4658.20i 0.311400 0.646628i −0.685260 0.728299i \(-0.740311\pi\)
0.996659 + 0.0816708i \(0.0260256\pi\)
\(374\) 2607.37i 0.360492i
\(375\) −13060.4 −1.79849
\(376\) 13850.1 + 3161.20i 1.89964 + 0.433580i
\(377\) −40.5350 + 84.1719i −0.00553756 + 0.0114989i
\(378\) 2717.52 3407.67i 0.369773 0.463681i
\(379\) 3480.13 4363.94i 0.471668 0.591452i −0.487911 0.872893i \(-0.662241\pi\)
0.959579 + 0.281441i \(0.0908124\pi\)
\(380\) 4276.42i 0.577305i
\(381\) −12996.4 10364.2i −1.74757 1.39364i
\(382\) −4401.45 + 1004.60i −0.589524 + 0.134555i
\(383\) 13455.7 3071.18i 1.79518 0.409738i 0.810733 0.585416i \(-0.199069\pi\)
0.984448 + 0.175678i \(0.0562118\pi\)
\(384\) −5070.86 + 22216.9i −0.673883 + 2.95248i
\(385\) 382.031 + 183.976i 0.0505717 + 0.0243540i
\(386\) −13890.1 + 11077.0i −1.83157 + 1.46063i
\(387\) 1704.20 7466.59i 0.223849 0.980744i
\(388\) 2333.72 0.305352
\(389\) 2776.82 5766.12i 0.361929 0.751553i −0.637899 0.770120i \(-0.720196\pi\)
0.999828 + 0.0185673i \(0.00591049\pi\)
\(390\) 321.910 155.024i 0.0417963 0.0201280i
\(391\) −1171.62 267.414i −0.151538 0.0345875i
\(392\) −9910.85 + 2262.09i −1.27697 + 0.291461i
\(393\) −1688.09 −0.216674
\(394\) −12515.8 + 4190.70i −1.60035 + 0.535849i
\(395\) −9409.37 −1.19857
\(396\) −5760.05 + 1314.69i −0.730942 + 0.166833i
\(397\) −14189.4 3238.65i −1.79382 0.409428i −0.809689 0.586859i \(-0.800364\pi\)
−0.984133 + 0.177431i \(0.943222\pi\)
\(398\) 9335.40 4495.69i 1.17573 0.566203i
\(399\) −634.246 + 1317.03i −0.0795790 + 0.165247i
\(400\) 1484.11 0.185514
\(401\) 3422.32 14994.2i 0.426191 1.86726i −0.0676484 0.997709i \(-0.521550\pi\)
0.493839 0.869553i \(-0.335593\pi\)
\(402\) 10401.8 8295.15i 1.29053 1.02917i
\(403\) 269.174 + 129.627i 0.0332717 + 0.0160228i
\(404\) 1052.63 4611.89i 0.129630 0.567946i
\(405\) 1703.91 388.907i 0.209057 0.0477159i
\(406\) −2470.71 + 563.923i −0.302018 + 0.0689336i
\(407\) −8.67853 6.92089i −0.00105695 0.000842889i
\(408\) 17749.1i 2.15371i
\(409\) 2419.66 3034.16i 0.292530 0.366821i −0.613749 0.789501i \(-0.710339\pi\)
0.906279 + 0.422680i \(0.138911\pi\)
\(410\) −1825.83 + 2289.52i −0.219931 + 0.275784i
\(411\) −5927.49 + 12308.6i −0.711391 + 1.47722i
\(412\) 13051.3 + 2978.88i 1.56066 + 0.356211i
\(413\) −454.496 −0.0541508
\(414\) 4196.44i 0.498173i
\(415\) −5075.00 + 10538.3i −0.600293 + 1.24652i
\(416\) 73.3744 35.3352i 0.00864778 0.00416455i
\(417\) 3693.14 + 16180.7i 0.433702 + 1.90017i
\(418\) 1160.32 558.782i 0.135773 0.0653850i
\(419\) 8860.34 + 11110.5i 1.03307 + 1.29543i 0.954401 + 0.298526i \(0.0964950\pi\)
0.0786673 + 0.996901i \(0.474934\pi\)
\(420\) 5666.43 + 2728.81i 0.658317 + 0.317029i
\(421\) 9220.14 + 7352.81i 1.06737 + 0.851198i 0.989321 0.145752i \(-0.0465602\pi\)
0.0780468 + 0.996950i \(0.475132\pi\)
\(422\) −3494.76 15311.5i −0.403133 1.76624i
\(423\) −4556.73 19964.4i −0.523773 2.29480i
\(424\) 6658.18 13825.9i 0.762617 1.58359i
\(425\) −2541.55 + 580.092i −0.290078 + 0.0662084i
\(426\) 14386.0 29872.8i 1.63616 3.39751i
\(427\) 2505.66 0.283975
\(428\) −231.435 + 1013.98i −0.0261375 + 0.114516i
\(429\) 54.5895 + 43.5337i 0.00614361 + 0.00489936i
\(430\) 7182.59 0.805523
\(431\) −666.526 835.797i −0.0744905 0.0934081i 0.743190 0.669080i \(-0.233312\pi\)
−0.817681 + 0.575672i \(0.804740\pi\)
\(432\) −5988.97 + 1366.94i −0.667001 + 0.152239i
\(433\) 2706.37 + 3393.69i 0.300370 + 0.376652i 0.908996 0.416806i \(-0.136850\pi\)
−0.608626 + 0.793457i \(0.708279\pi\)
\(434\) 1803.37 + 7901.09i 0.199458 + 0.873882i
\(435\) −6974.22 3358.61i −0.768709 0.370191i
\(436\) 5425.22 23769.5i 0.595920 2.61090i
\(437\) 132.084 + 578.698i 0.0144587 + 0.0633476i
\(438\) 32888.9 26228.0i 3.58788 2.86124i
\(439\) 6241.07 4977.09i 0.678520 0.541101i −0.222471 0.974939i \(-0.571412\pi\)
0.900991 + 0.433838i \(0.142841\pi\)
\(440\) −1103.37 2291.17i −0.119548 0.248244i
\(441\) 9136.30 + 11456.6i 0.986535 + 1.23708i
\(442\) 226.410 180.556i 0.0243647 0.0194302i
\(443\) 3077.69 + 1482.14i 0.330081 + 0.158958i 0.591582 0.806245i \(-0.298503\pi\)
−0.261502 + 0.965203i \(0.584218\pi\)
\(444\) −128.723 102.653i −0.0137589 0.0109723i
\(445\) 5175.29 6489.61i 0.551308 0.691319i
\(446\) −5943.63 1356.59i −0.631029 0.144028i
\(447\) 9463.54 4557.40i 1.00137 0.482232i
\(448\) 3405.02 + 1639.77i 0.359090 + 0.172929i
\(449\) 2213.88 9699.64i 0.232694 1.01950i −0.714701 0.699430i \(-0.753437\pi\)
0.947395 0.320068i \(-0.103706\pi\)
\(450\) −3949.72 8201.68i −0.413759 0.859180i
\(451\) −557.925 127.343i −0.0582520 0.0132956i
\(452\) −482.830 1002.61i −0.0502442 0.104333i
\(453\) 3403.02 + 14909.6i 0.352953 + 1.54639i
\(454\) −4556.89 + 19965.0i −0.471069 + 2.06389i
\(455\) −10.4794 45.9134i −0.00107974 0.00473067i
\(456\) 7898.65 3803.79i 0.811159 0.390633i
\(457\) −6284.17 + 7880.10i −0.643241 + 0.806599i −0.991404 0.130835i \(-0.958234\pi\)
0.348163 + 0.937434i \(0.386806\pi\)
\(458\) 1350.53 5917.06i 0.137786 0.603681i
\(459\) 9721.82 4681.78i 0.988618 0.476093i
\(460\) 2489.82 568.284i 0.252366 0.0576008i
\(461\) −14884.6 + 11870.1i −1.50379 + 1.19923i −0.581008 + 0.813898i \(0.697342\pi\)
−0.922778 + 0.385332i \(0.874087\pi\)
\(462\) 1894.03i 0.190733i
\(463\) 13883.4i 1.39355i 0.717288 + 0.696776i \(0.245383\pi\)
−0.717288 + 0.696776i \(0.754617\pi\)
\(464\) 3218.06 + 1549.74i 0.321972 + 0.155053i
\(465\) −10740.5 + 22302.9i −1.07114 + 2.22424i
\(466\) 16890.4 3855.12i 1.67904 0.383229i
\(467\) 6126.48 4885.70i 0.607066 0.484119i −0.271051 0.962565i \(-0.587371\pi\)
0.878117 + 0.478446i \(0.158800\pi\)
\(468\) 513.033 + 409.130i 0.0506730 + 0.0404104i
\(469\) −760.870 1579.96i −0.0749119 0.155556i
\(470\) 17303.1 8332.73i 1.69815 0.817787i
\(471\) 12165.7i 1.19017i
\(472\) 2131.09 + 1699.49i 0.207821 + 0.165732i
\(473\) 609.011 + 1264.62i 0.0592016 + 0.122933i
\(474\) −18236.2 37867.8i −1.76712 3.66946i
\(475\) 802.825 + 1006.71i 0.0775498 + 0.0972444i
\(476\) 4969.68 + 1134.30i 0.478540 + 0.109224i
\(477\) −22120.0 −2.12328
\(478\) 4975.14i 0.476062i
\(479\) −707.519 887.200i −0.0674893 0.0846288i 0.746941 0.664890i \(-0.231522\pi\)
−0.814430 + 0.580262i \(0.802950\pi\)
\(480\) 2927.77 + 6079.58i 0.278404 + 0.578111i
\(481\) 1.23285i 0.000116868i
\(482\) 7972.65 9997.39i 0.753412 0.944748i
\(483\) −851.081 194.254i −0.0801770 0.0182999i
\(484\) −11595.3 + 14540.0i −1.08896 + 1.36551i
\(485\) 1132.03 902.764i 0.105985 0.0845205i
\(486\) −8717.16 10931.0i −0.813618 1.02025i
\(487\) 7390.73 0.687692 0.343846 0.939026i \(-0.388270\pi\)
0.343846 + 0.939026i \(0.388270\pi\)
\(488\) −11748.8 9369.37i −1.08984 0.869122i
\(489\) 4782.11 9930.16i 0.442238 0.918317i
\(490\) −8568.43 + 10744.5i −0.789964 + 0.990583i
\(491\) −3462.18 1667.30i −0.318220 0.153247i 0.267954 0.963432i \(-0.413652\pi\)
−0.586174 + 0.810185i \(0.699367\pi\)
\(492\) −8275.35 1888.80i −0.758296 0.173076i
\(493\) −6116.68 1396.09i −0.558786 0.127539i
\(494\) −128.872 62.0614i −0.0117373 0.00565237i
\(495\) −2285.49 + 2865.91i −0.207526 + 0.260229i
\(496\) 4955.91 10291.1i 0.448643 0.931617i
\(497\) −3416.81 2724.82i −0.308380 0.245925i
\(498\) −52247.1 −4.70130
\(499\) −4803.69 6023.63i −0.430947 0.540391i 0.518185 0.855268i \(-0.326608\pi\)
−0.949132 + 0.314878i \(0.898036\pi\)
\(500\) 17587.6 14025.6i 1.57308 1.25449i
\(501\) 2668.13 3345.72i 0.237930 0.298355i
\(502\) 23272.4 + 5311.78i 2.06912 + 0.472264i
\(503\) 301.187 377.676i 0.0266983 0.0334786i −0.768303 0.640086i \(-0.778899\pi\)
0.795001 + 0.606608i \(0.207470\pi\)
\(504\) 8169.34i 0.722007i
\(505\) −1273.44 2644.32i −0.112212 0.233011i
\(506\) 479.526 + 601.307i 0.0421295 + 0.0528288i
\(507\) 18852.3i 1.65140i
\(508\) 28631.7 2.50064
\(509\) −5812.69 1326.71i −0.506175 0.115531i −0.0381951 0.999270i \(-0.512161\pi\)
−0.467980 + 0.883739i \(0.655018\pi\)
\(510\) 14960.3 + 18759.6i 1.29893 + 1.62880i
\(511\) −2405.75 4995.60i −0.208267 0.432470i
\(512\) −5436.67 11289.4i −0.469275 0.974461i
\(513\) −4166.94 3323.02i −0.358625 0.285994i
\(514\) 33880.8i 2.90743i
\(515\) 7483.22 3603.73i 0.640292 0.308348i
\(516\) 9033.09 + 18757.4i 0.770658 + 1.60029i
\(517\) 2934.26 + 2339.99i 0.249610 + 0.199057i
\(518\) −26.1467 + 20.8513i −0.00221780 + 0.00176863i
\(519\) 12508.4 2854.96i 1.05792 0.241462i
\(520\) −122.546 + 254.470i −0.0103346 + 0.0214601i
\(521\) 9514.64 + 4582.01i 0.800084 + 0.385300i 0.788811 0.614636i \(-0.210697\pi\)
0.0112734 + 0.999936i \(0.496412\pi\)
\(522\) 21908.4i 1.83698i
\(523\) 12139.9i 1.01499i 0.861653 + 0.507497i \(0.169429\pi\)
−0.861653 + 0.507497i \(0.830571\pi\)
\(524\) 2273.25 1812.85i 0.189518 0.151135i
\(525\) −1846.22 + 421.387i −0.153477 + 0.0350302i
\(526\) −18861.7 + 9083.34i −1.56352 + 0.752951i
\(527\) −4464.57 + 19560.6i −0.369032 + 1.61683i
\(528\) 1664.38 2087.07i 0.137184 0.172023i
\(529\) 10642.7 5125.26i 0.874719 0.421243i
\(530\) −4616.22 20225.0i −0.378332 1.65758i
\(531\) 874.304 3830.57i 0.0714530 0.313056i
\(532\) −560.265 2454.68i −0.0456589 0.200045i
\(533\) 27.5775 + 57.2653i 0.00224112 + 0.00465373i
\(534\) 36147.4 + 8250.41i 2.92931 + 0.668596i
\(535\) 279.981 + 581.387i 0.0226255 + 0.0469823i
\(536\) −2340.27 + 10253.4i −0.188590 + 0.826269i
\(537\) −6347.56 3056.83i −0.510089 0.245646i
\(538\) −33874.1 + 16312.9i −2.71453 + 1.30725i
\(539\) −2618.28 597.605i −0.209234 0.0477563i
\(540\) −14297.1 + 17928.0i −1.13935 + 1.42870i
\(541\) −12893.7 10282.4i −1.02466 0.817143i −0.0413662 0.999144i \(-0.513171\pi\)
−0.983298 + 0.182001i \(0.941742\pi\)
\(542\) 21466.6 + 10337.8i 1.70124 + 0.819272i
\(543\) 7714.93 6152.45i 0.609722 0.486237i
\(544\) 3409.96 + 4275.96i 0.268752 + 0.337004i
\(545\) −6563.22 13628.7i −0.515848 1.07117i
\(546\) 164.467 131.158i 0.0128911 0.0102803i
\(547\) 6860.98 5471.45i 0.536297 0.427682i −0.317524 0.948250i \(-0.602851\pi\)
0.853820 + 0.520568i \(0.174280\pi\)
\(548\) −5236.08 22940.8i −0.408165 1.78829i
\(549\) −4820.08 + 21118.2i −0.374710 + 1.64171i
\(550\) 1503.16 + 723.884i 0.116536 + 0.0561209i
\(551\) 689.572 + 3021.21i 0.0533154 + 0.233590i
\(552\) 3264.27 + 4093.27i 0.251697 + 0.315618i
\(553\) −5401.01 + 1232.74i −0.415324 + 0.0947950i
\(554\) 18500.1 + 23198.3i 1.41876 + 1.77907i
\(555\) −102.150 −0.00781269
\(556\) −22349.9 17823.5i −1.70476 1.35950i
\(557\) −1537.82 + 6737.63i −0.116983 + 0.512536i 0.882152 + 0.470964i \(0.156094\pi\)
−0.999136 + 0.0415722i \(0.986763\pi\)
\(558\) −70061.0 −5.31526
\(559\) 67.6401 140.456i 0.00511784 0.0106273i
\(560\) −1755.36 + 400.650i −0.132460 + 0.0302331i
\(561\) −2034.49 + 4224.66i −0.153113 + 0.317942i
\(562\) −3964.10 17367.9i −0.297536 1.30359i
\(563\) 2948.37 + 12917.6i 0.220708 + 0.966986i 0.956947 + 0.290264i \(0.0937431\pi\)
−0.736238 + 0.676722i \(0.763400\pi\)
\(564\) 43522.0 + 34707.7i 3.24930 + 2.59123i
\(565\) −622.052 299.565i −0.0463185 0.0223058i
\(566\) −6298.69 7898.31i −0.467763 0.586556i
\(567\) 927.100 446.468i 0.0686676 0.0330686i
\(568\) 5832.27 + 25552.9i 0.430839 + 1.88763i
\(569\) −4234.65 + 2039.30i −0.311996 + 0.150250i −0.583329 0.812236i \(-0.698250\pi\)
0.271332 + 0.962486i \(0.412536\pi\)
\(570\) 5142.21 10677.9i 0.377866 0.784647i
\(571\) 1866.52i 0.136797i 0.997658 + 0.0683987i \(0.0217890\pi\)
−0.997658 + 0.0683987i \(0.978211\pi\)
\(572\) −120.264 −0.00879104
\(573\) −7915.44 1806.65i −0.577089 0.131717i
\(574\) −748.078 + 1553.40i −0.0543975 + 0.112958i
\(575\) −479.441 + 601.200i −0.0347723 + 0.0436031i
\(576\) −20370.5 + 25543.8i −1.47356 + 1.84778i
\(577\) 16964.9i 1.22402i 0.790850 + 0.612010i \(0.209639\pi\)
−0.790850 + 0.612010i \(0.790361\pi\)
\(578\) −3130.74 2496.69i −0.225297 0.179669i
\(579\) −31148.9 + 7109.54i −2.23576 + 0.510298i
\(580\) 12998.6 2966.85i 0.930582 0.212399i
\(581\) −1532.41 + 6713.92i −0.109423 + 0.479416i
\(582\) 5827.12 + 2806.20i 0.415021 + 0.199863i
\(583\) 3169.57 2527.65i 0.225163 0.179562i
\(584\) −7399.59 + 32419.7i −0.524311 + 2.29715i
\(585\) 407.126 0.0287736
\(586\) −12951.1 + 26893.1i −0.912974 + 1.89581i
\(587\) 5259.28 2532.74i 0.369802 0.178087i −0.239747 0.970835i \(-0.577065\pi\)
0.609549 + 0.792748i \(0.291350\pi\)
\(588\) −38835.3 8863.90i −2.72371 0.621668i
\(589\) 9661.56 2205.19i 0.675887 0.154267i
\(590\) 3684.87 0.257125
\(591\) −23549.0 2975.78i −1.63904 0.207119i
\(592\) 47.1345 0.00327232
\(593\) −15122.7 + 3451.65i −1.04724 + 0.239026i −0.711323 0.702865i \(-0.751904\pi\)
−0.335918 + 0.941891i \(0.609046\pi\)
\(594\) −6732.55 1536.66i −0.465051 0.106145i
\(595\) 2849.46 1372.23i 0.196330 0.0945477i
\(596\) −7849.74 + 16300.2i −0.539493 + 1.12027i
\(597\) 18633.8 1.27744
\(598\) 19.0078 83.2788i 0.00129981 0.00569485i
\(599\) 11441.3 9124.16i 0.780434 0.622376i −0.150062 0.988677i \(-0.547947\pi\)
0.930496 + 0.366301i \(0.119376\pi\)
\(600\) 10232.4 + 4927.68i 0.696229 + 0.335286i
\(601\) −3773.75 + 16533.9i −0.256131 + 1.12218i 0.669219 + 0.743066i \(0.266629\pi\)
−0.925349 + 0.379116i \(0.876228\pi\)
\(602\) 4122.82 941.008i 0.279126 0.0637087i
\(603\) 14779.9 3373.41i 0.998148 0.227821i
\(604\) −20594.2 16423.3i −1.38736 1.10638i
\(605\) 11538.5i 0.775380i
\(606\) 8173.95 10249.8i 0.547928 0.687080i
\(607\) −15400.7 + 19311.9i −1.02981 + 1.29134i −0.0740319 + 0.997256i \(0.523587\pi\)
−0.955779 + 0.294086i \(0.904985\pi\)
\(608\) 1172.09 2433.86i 0.0781816 0.162346i
\(609\) −4443.24 1014.14i −0.295648 0.0674796i
\(610\) −20314.9 −1.34840
\(611\) 416.835i 0.0275995i
\(612\) −19120.1 + 39703.4i −1.26289 + 2.62241i
\(613\) 817.780 393.822i 0.0538822 0.0259483i −0.406749 0.913540i \(-0.633337\pi\)
0.460631 + 0.887592i \(0.347623\pi\)
\(614\) 8476.02 + 37135.9i 0.557108 + 2.44085i
\(615\) −4744.83 + 2284.99i −0.311105 + 0.149820i
\(616\) −933.509 1170.58i −0.0610587 0.0765652i
\(617\) 11593.8 + 5583.30i 0.756483 + 0.364303i 0.772038 0.635576i \(-0.219237\pi\)
−0.0155552 + 0.999879i \(0.504952\pi\)
\(618\) 29006.2 + 23131.7i 1.88803 + 1.50565i
\(619\) 5057.74 + 22159.4i 0.328413 + 1.43887i 0.822155 + 0.569264i \(0.192772\pi\)
−0.493741 + 0.869609i \(0.664371\pi\)
\(620\) −9487.69 41568.3i −0.614572 2.69262i
\(621\) 1380.99 2867.66i 0.0892388 0.185306i
\(622\) −27883.8 + 6364.29i −1.79749 + 0.410265i
\(623\) 2120.41 4403.08i 0.136360 0.283155i
\(624\) −296.485 −0.0190206
\(625\) 1969.68 8629.72i 0.126059 0.552302i
\(626\) −26620.9 21229.4i −1.69965 1.35543i
\(627\) 2316.05 0.147519
\(628\) −13064.9 16382.9i −0.830169 1.04100i
\(629\) −80.7179 + 18.4233i −0.00511674 + 0.00116786i
\(630\) 6885.73 + 8634.43i 0.435451 + 0.546038i
\(631\) −2558.78 11210.7i −0.161432 0.707278i −0.989244 0.146273i \(-0.953272\pi\)
0.827813 0.561005i \(-0.189585\pi\)
\(632\) 29934.4 + 14415.7i 1.88406 + 0.907317i
\(633\) 6284.86 27535.8i 0.394630 1.72899i
\(634\) 7547.02 + 33065.7i 0.472761 + 2.07130i
\(635\) 13888.5 11075.7i 0.867952 0.692168i
\(636\) 47012.2 37491.0i 2.93106 2.33744i
\(637\) 129.418 + 268.740i 0.00804982 + 0.0167156i
\(638\) 2503.47 + 3139.25i 0.155350 + 0.194803i
\(639\) 29538.1 23555.8i 1.82865 1.45830i
\(640\) −21940.9 10566.2i −1.35514 0.652602i
\(641\) −8296.17 6615.98i −0.511200 0.407668i 0.333629 0.942704i \(-0.391727\pi\)
−0.844829 + 0.535036i \(0.820298\pi\)
\(642\) −1797.15 + 2253.55i −0.110480 + 0.138537i
\(643\) −23282.6 5314.11i −1.42796 0.325922i −0.562456 0.826827i \(-0.690144\pi\)
−0.865502 + 0.500905i \(0.833001\pi\)
\(644\) 1354.71 652.393i 0.0828929 0.0399191i
\(645\) 11637.8 + 5604.45i 0.710444 + 0.342132i
\(646\) 2137.49 9364.97i 0.130183 0.570371i
\(647\) −8023.70 16661.4i −0.487549 1.01241i −0.989096 0.147275i \(-0.952950\pi\)
0.501547 0.865130i \(-0.332764\pi\)
\(648\) −6016.56 1373.24i −0.364742 0.0832500i
\(649\) 312.440 + 648.789i 0.0188973 + 0.0392407i
\(650\) −41.2330 180.654i −0.00248814 0.0109013i
\(651\) −3243.13 + 14209.1i −0.195251 + 0.855449i
\(652\) 4224.30 + 18507.9i 0.253737 + 1.11169i
\(653\) 10847.3 5223.77i 0.650056 0.313050i −0.0796386 0.996824i \(-0.525377\pi\)
0.729694 + 0.683773i \(0.239662\pi\)
\(654\) 42128.1 52827.0i 2.51887 3.15856i
\(655\) 401.422 1758.74i 0.0239463 0.104916i
\(656\) 2189.37 1054.34i 0.130306 0.0627519i
\(657\) 46731.7 10666.2i 2.77501 0.633377i
\(658\) 8840.33 7049.93i 0.523757 0.417682i
\(659\) 13807.3i 0.816172i −0.912943 0.408086i \(-0.866196\pi\)
0.912943 0.408086i \(-0.133804\pi\)
\(660\) 9964.67i 0.587688i
\(661\) −21292.6 10254.0i −1.25293 0.603380i −0.314635 0.949213i \(-0.601882\pi\)
−0.938296 + 0.345833i \(0.887596\pi\)
\(662\) 899.144 1867.09i 0.0527889 0.109617i
\(663\) 507.730 115.886i 0.0297415 0.00678830i
\(664\) 32290.6 25750.9i 1.88723 1.50501i
\(665\) −1221.33 973.976i −0.0712196 0.0567957i
\(666\) −125.441 260.480i −0.00729838 0.0151553i
\(667\) −1667.37 + 802.964i −0.0967930 + 0.0466131i
\(668\) 7370.81i 0.426924i
\(669\) −8571.78 6835.77i −0.495373 0.395046i
\(670\) 6168.83 + 12809.7i 0.355706 + 0.738630i
\(671\) −1722.50 3576.81i −0.0991004 0.205784i
\(672\) 2477.05 + 3106.12i 0.142194 + 0.178305i
\(673\) 4385.49 + 1000.96i 0.251186 + 0.0573316i 0.346260 0.938139i \(-0.387452\pi\)
−0.0950738 + 0.995470i \(0.530309\pi\)
\(674\) −24354.4 −1.39184
\(675\) 6904.46i 0.393708i
\(676\) −20245.6 25387.2i −1.15189 1.44443i
\(677\) −1012.76 2103.01i −0.0574939 0.119387i 0.870242 0.492624i \(-0.163962\pi\)
−0.927736 + 0.373237i \(0.878248\pi\)
\(678\) 3084.01i 0.174692i
\(679\) 531.516 666.499i 0.0300408 0.0376700i
\(680\) −18492.0 4220.68i −1.04285 0.238023i
\(681\) −22961.8 + 28793.1i −1.29207 + 1.62020i
\(682\) 10039.0 8005.85i 0.563657 0.449501i
\(683\) 3324.89 + 4169.28i 0.186271 + 0.233577i 0.866195 0.499706i \(-0.166559\pi\)
−0.679924 + 0.733283i \(0.737987\pi\)
\(684\) 21766.3 1.21675
\(685\) −11414.2 9102.52i −0.636663 0.507722i
\(686\) −7347.63 + 15257.5i −0.408942 + 0.849176i
\(687\) 6805.21 8533.46i 0.377926 0.473904i
\(688\) −5369.92 2586.02i −0.297567 0.143301i
\(689\) −438.973 100.193i −0.0242722 0.00553997i
\(690\) 6900.22 + 1574.93i 0.380706 + 0.0868936i
\(691\) −15918.9 7666.12i −0.876385 0.422045i −0.0590822 0.998253i \(-0.518817\pi\)
−0.817303 + 0.576208i \(0.804532\pi\)
\(692\) −13778.3 + 17277.5i −0.756899 + 0.949121i
\(693\) −936.407 + 1944.47i −0.0513293 + 0.106586i
\(694\) −12552.9 10010.6i −0.686604 0.547548i
\(695\) −17736.2 −0.968016
\(696\) 17041.8 + 21369.8i 0.928116 + 1.16382i
\(697\) −3337.19 + 2661.32i −0.181356 + 0.144626i
\(698\) −14331.6 + 17971.3i −0.777163 + 0.974532i
\(699\) 30375.1 + 6932.92i 1.64362 + 0.375146i
\(700\) 2033.66 2550.13i 0.109807 0.137694i
\(701\) 7618.51i 0.410481i −0.978712 0.205240i \(-0.934202\pi\)
0.978712 0.205240i \(-0.0657977\pi\)
\(702\) 332.782 + 691.028i 0.0178918 + 0.0371527i
\(703\) 25.4972 + 31.9725i 0.00136792 + 0.00171531i
\(704\) 5987.89i 0.320564i
\(705\) 34537.6 1.84505
\(706\) −60751.9 13866.2i −3.23857 0.739182i
\(707\) −1077.39 1351.01i −0.0573120 0.0718669i
\(708\) 4634.23 + 9623.08i 0.245996 + 0.510816i
\(709\) 10036.5 + 20841.0i 0.531633 + 1.10395i 0.977905 + 0.209050i \(0.0670371\pi\)
−0.446272 + 0.894897i \(0.647249\pi\)
\(710\) 27702.2 + 22091.7i 1.46429 + 1.16773i
\(711\) 47892.1i 2.52615i
\(712\) −26406.8 + 12716.8i −1.38994 + 0.669359i
\(713\) 2567.80 + 5332.10i 0.134874 + 0.280068i
\(714\) 11045.0 + 8808.09i 0.578919 + 0.461673i
\(715\) −58.3370 + 46.5222i −0.00305130 + 0.00243333i
\(716\) 11830.6 2700.26i 0.617502 0.140941i
\(717\) 3882.02 8061.09i 0.202199 0.419870i
\(718\) 20665.2 + 9951.82i 1.07412 + 0.517268i
\(719\) 5863.80i 0.304149i 0.988369 + 0.152074i \(0.0485953\pi\)
−0.988369 + 0.152074i \(0.951405\pi\)
\(720\) 15565.2i 0.805670i
\(721\) 3823.26 3048.95i 0.197483 0.157488i
\(722\) 27294.7 6229.83i 1.40693 0.321122i
\(723\) 20718.7 9977.59i 1.06575 0.513237i
\(724\) −3782.05 + 16570.3i −0.194142 + 0.850592i
\(725\) −2503.02 + 3138.69i −0.128220 + 0.160783i
\(726\) −46436.2 + 22362.5i −2.37384 + 1.14318i
\(727\) 248.408 + 1088.35i 0.0126725 + 0.0555220i 0.980869 0.194670i \(-0.0623635\pi\)
−0.968196 + 0.250192i \(0.919506\pi\)
\(728\) −37.0031 + 162.121i −0.00188383 + 0.00825360i
\(729\) −6739.56 29527.9i −0.342405 1.50017i
\(730\) 19504.9 + 40502.4i 0.988916 + 2.05351i
\(731\) 10206.8 + 2329.63i 0.516432 + 0.117872i
\(732\) −25548.8 53052.6i −1.29004 2.67880i
\(733\) 8585.46 37615.4i 0.432621 1.89544i −0.0124114 0.999923i \(-0.503951\pi\)
0.445033 0.895514i \(-0.353192\pi\)
\(734\) −4788.41 2305.98i −0.240795 0.115961i
\(735\) −22266.9 + 10723.2i −1.11745 + 0.538137i
\(736\) 1572.80 + 358.981i 0.0787691 + 0.0179785i
\(737\) −1732.33 + 2172.27i −0.0865822 + 0.108571i
\(738\) −11653.3 9293.18i −0.581251 0.463532i
\(739\) 8574.98 + 4129.49i 0.426841 + 0.205556i 0.634956 0.772549i \(-0.281018\pi\)
−0.208114 + 0.978104i \(0.566733\pi\)
\(740\) 137.560 109.700i 0.00683351 0.00544954i
\(741\) −160.382 201.113i −0.00795112 0.00997040i
\(742\) −5299.45 11004.4i −0.262195 0.544454i
\(743\) 7735.31 6168.70i 0.381939 0.304587i −0.413635 0.910443i \(-0.635741\pi\)
0.795574 + 0.605856i \(0.207169\pi\)
\(744\) 68338.5 54498.1i 3.36749 2.68548i
\(745\) 2497.75 + 10943.4i 0.122833 + 0.538166i
\(746\) −5491.78 + 24061.0i −0.269528 + 1.18088i
\(747\) −53638.3 25830.9i −2.62721 1.26520i
\(748\) −1797.18 7873.95i −0.0878493 0.384893i
\(749\) 236.879 + 297.037i 0.0115559 + 0.0144906i
\(750\) 60780.1 13872.7i 2.95917 0.675411i
\(751\) −19485.2 24433.7i −0.946773 1.18722i −0.982199 0.187844i \(-0.939850\pi\)
0.0354257 0.999372i \(-0.488721\pi\)
\(752\) −15936.4 −0.772795
\(753\) 33563.0 + 26765.6i 1.62431 + 1.29534i
\(754\) 99.2344 434.774i 0.00479298 0.0209994i
\(755\) −16342.9 −0.787785
\(756\) −5857.79 + 12163.8i −0.281807 + 0.585177i
\(757\) 16505.0 3767.17i 0.792451 0.180872i 0.192911 0.981216i \(-0.438207\pi\)
0.599541 + 0.800344i \(0.295350\pi\)
\(758\) −11560.4 + 24005.4i −0.553948 + 1.15029i
\(759\) 307.775 + 1348.45i 0.0147187 + 0.0644869i
\(760\) 2084.73 + 9133.78i 0.0995012 + 0.435943i
\(761\) 2698.83 + 2152.24i 0.128558 + 0.102521i 0.685658 0.727924i \(-0.259515\pi\)
−0.557100 + 0.830445i \(0.688086\pi\)
\(762\) 71491.1 + 34428.3i 3.39875 + 1.63675i
\(763\) −5552.83 6963.03i −0.263468 0.330378i
\(764\) 12599.4 6067.55i 0.596637 0.287325i
\(765\) 6083.94 + 26655.5i 0.287537 + 1.25978i
\(766\) −59357.8 + 28585.2i −2.79985 + 1.34834i
\(767\) 34.7013