Properties

Label 197.4.e.a.6.9
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.9
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.46189 + 0.790154i) q^{2} +(-6.86422 - 1.56671i) q^{3} +(4.15258 - 1.99978i) q^{4} +(-5.36100 + 11.1322i) q^{5} +25.0011 q^{6} +(-6.97041 + 30.5394i) q^{7} +(9.41411 - 7.50750i) q^{8} +(20.3367 + 9.79366i) q^{9} +O(q^{10})\) \(q+(-3.46189 + 0.790154i) q^{2} +(-6.86422 - 1.56671i) q^{3} +(4.15258 - 1.99978i) q^{4} +(-5.36100 + 11.1322i) q^{5} +25.0011 q^{6} +(-6.97041 + 30.5394i) q^{7} +(9.41411 - 7.50750i) q^{8} +(20.3367 + 9.79366i) q^{9} +(9.76302 - 42.7746i) q^{10} +(51.0601 - 11.6541i) q^{11} +(-31.6373 + 7.22101i) q^{12} +(36.5528 + 29.1499i) q^{13} -111.232i q^{14} +(54.2401 - 68.0149i) q^{15} +(-49.6479 + 62.2565i) q^{16} +(-35.1628 + 73.0164i) q^{17} +(-78.1420 - 17.8354i) q^{18} +68.1535 q^{19} +56.9483i q^{20} +(95.6928 - 198.708i) q^{21} +(-167.556 + 80.6907i) q^{22} +(43.0673 + 188.690i) q^{23} +(-76.3826 + 36.7839i) q^{24} +(-17.2501 - 21.6309i) q^{25} +(-149.575 - 72.0314i) q^{26} +(24.3743 + 19.4378i) q^{27} +(32.1267 + 140.756i) q^{28} +(9.24750 + 40.5160i) q^{29} +(-134.031 + 278.318i) q^{30} +(-197.401 + 45.0554i) q^{31} +(80.8879 - 167.965i) q^{32} -368.747 q^{33} +(64.0357 - 280.559i) q^{34} +(-302.603 - 241.318i) q^{35} +104.035 q^{36} +(81.4516 + 102.137i) q^{37} +(-235.940 + 53.8517i) q^{38} +(-205.237 - 257.359i) q^{39} +(33.1062 + 145.048i) q^{40} +(109.623 + 52.7917i) q^{41} +(-174.268 + 763.518i) q^{42} +(-76.1644 - 333.698i) q^{43} +(188.726 - 150.504i) q^{44} +(-218.051 + 173.890i) q^{45} +(-298.189 - 619.195i) q^{46} +(213.666 + 267.928i) q^{47} +(438.332 - 349.558i) q^{48} +(-575.034 - 276.922i) q^{49} +(76.8096 + 61.2536i) q^{50} +(355.761 - 446.110i) q^{51} +(210.082 + 47.9498i) q^{52} +(323.807 - 155.937i) q^{53} +(-99.7398 - 48.0322i) q^{54} +(-143.997 + 630.891i) q^{55} +(163.654 + 339.831i) q^{56} +(-467.821 - 106.777i) q^{57} +(-64.0276 - 132.955i) q^{58} +(114.468 + 501.519i) q^{59} +(89.2217 - 390.906i) q^{60} +(-6.93619 - 30.3894i) q^{61} +(647.778 - 311.954i) q^{62} +(-440.848 + 552.805i) q^{63} +(-5.55328 + 24.3305i) q^{64} +(-520.464 + 250.642i) q^{65} +(1276.56 - 291.366i) q^{66} +(-120.500 + 96.0953i) q^{67} +373.524i q^{68} -1362.69i q^{69} +(1238.26 + 596.313i) q^{70} +(-376.432 + 781.668i) q^{71} +(264.978 - 60.4796i) q^{72} +(371.669 - 296.396i) q^{73} +(-362.680 - 289.228i) q^{74} +(84.5188 + 175.505i) q^{75} +(283.013 - 136.292i) q^{76} +1640.58i q^{77} +(913.861 + 728.780i) q^{78} +(-286.693 - 595.323i) q^{79} +(-426.892 - 886.450i) q^{80} +(-516.840 - 648.097i) q^{81} +(-421.217 - 96.1400i) q^{82} +706.004 q^{83} -1016.52i q^{84} +(-624.327 - 782.882i) q^{85} +(527.345 + 1095.04i) q^{86} -292.599i q^{87} +(393.192 - 493.048i) q^{88} +(789.115 + 180.110i) q^{89} +(617.468 - 774.280i) q^{90} +(-1145.01 + 913.114i) q^{91} +(556.179 + 697.427i) q^{92} +1425.59 q^{93} +(-951.392 - 758.710i) q^{94} +(-365.371 + 758.701i) q^{95} +(-818.386 + 1026.22i) q^{96} +(601.906 + 289.863i) q^{97} +(2209.51 + 504.307i) q^{98} +(1152.53 + 263.058i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.46189 + 0.790154i −1.22396 + 0.279361i −0.785200 0.619242i \(-0.787440\pi\)
−0.438762 + 0.898603i \(0.644583\pi\)
\(3\) −6.86422 1.56671i −1.32102 0.301514i −0.496840 0.867842i \(-0.665506\pi\)
−0.824180 + 0.566328i \(0.808363\pi\)
\(4\) 4.15258 1.99978i 0.519073 0.249972i
\(5\) −5.36100 + 11.1322i −0.479503 + 0.995697i 0.511176 + 0.859476i \(0.329210\pi\)
−0.990678 + 0.136221i \(0.956504\pi\)
\(6\) 25.0011 1.70111
\(7\) −6.97041 + 30.5394i −0.376367 + 1.64897i 0.332113 + 0.943240i \(0.392238\pi\)
−0.708480 + 0.705731i \(0.750619\pi\)
\(8\) 9.41411 7.50750i 0.416049 0.331788i
\(9\) 20.3367 + 9.79366i 0.753213 + 0.362728i
\(10\) 9.76302 42.7746i 0.308734 1.35265i
\(11\) 51.0601 11.6541i 1.39956 0.319441i 0.544847 0.838535i \(-0.316588\pi\)
0.854717 + 0.519094i \(0.173730\pi\)
\(12\) −31.6373 + 7.22101i −0.761075 + 0.173710i
\(13\) 36.5528 + 29.1499i 0.779841 + 0.621903i 0.930336 0.366708i \(-0.119515\pi\)
−0.150495 + 0.988611i \(0.548087\pi\)
\(14\) 111.232i 2.12342i
\(15\) 54.2401 68.0149i 0.933649 1.17076i
\(16\) −49.6479 + 62.2565i −0.775749 + 0.972758i
\(17\) −35.1628 + 73.0164i −0.501661 + 1.04171i 0.484326 + 0.874888i \(0.339065\pi\)
−0.985987 + 0.166822i \(0.946649\pi\)
\(18\) −78.1420 17.8354i −1.02324 0.233547i
\(19\) 68.1535 0.822920 0.411460 0.911428i \(-0.365019\pi\)
0.411460 + 0.911428i \(0.365019\pi\)
\(20\) 56.9483i 0.636702i
\(21\) 95.6928 198.708i 0.994376 2.06484i
\(22\) −167.556 + 80.6907i −1.62378 + 0.781969i
\(23\) 43.0673 + 188.690i 0.390442 + 1.71064i 0.663104 + 0.748528i \(0.269239\pi\)
−0.272662 + 0.962110i \(0.587904\pi\)
\(24\) −76.3826 + 36.7839i −0.649647 + 0.312854i
\(25\) −17.2501 21.6309i −0.138001 0.173047i
\(26\) −149.575 72.0314i −1.12823 0.543328i
\(27\) 24.3743 + 19.4378i 0.173734 + 0.138549i
\(28\) 32.1267 + 140.756i 0.216835 + 0.950017i
\(29\) 9.24750 + 40.5160i 0.0592144 + 0.259435i 0.995867 0.0908248i \(-0.0289503\pi\)
−0.936652 + 0.350260i \(0.886093\pi\)
\(30\) −134.031 + 278.318i −0.815686 + 1.69379i
\(31\) −197.401 + 45.0554i −1.14368 + 0.261038i −0.752065 0.659089i \(-0.770942\pi\)
−0.391619 + 0.920127i \(0.628085\pi\)
\(32\) 80.8879 167.965i 0.446847 0.927887i
\(33\) −368.747 −1.94517
\(34\) 64.0357 280.559i 0.323001 1.41516i
\(35\) −302.603 241.318i −1.46141 1.16543i
\(36\) 104.035 0.481644
\(37\) 81.4516 + 102.137i 0.361907 + 0.453817i 0.929133 0.369745i \(-0.120555\pi\)
−0.567226 + 0.823562i \(0.691983\pi\)
\(38\) −235.940 + 53.8517i −1.00722 + 0.229892i
\(39\) −205.237 257.359i −0.842673 1.05668i
\(40\) 33.1062 + 145.048i 0.130864 + 0.573352i
\(41\) 109.623 + 52.7917i 0.417567 + 0.201090i 0.630857 0.775899i \(-0.282703\pi\)
−0.213290 + 0.976989i \(0.568418\pi\)
\(42\) −174.268 + 763.518i −0.640241 + 2.80508i
\(43\) −76.1644 333.698i −0.270115 1.18345i −0.909877 0.414879i \(-0.863824\pi\)
0.639761 0.768574i \(-0.279033\pi\)
\(44\) 188.726 150.504i 0.646624 0.515666i
\(45\) −218.051 + 173.890i −0.722335 + 0.576043i
\(46\) −298.189 619.195i −0.955772 1.98468i
\(47\) 213.666 + 267.928i 0.663114 + 0.831519i 0.993678 0.112265i \(-0.0358105\pi\)
−0.330564 + 0.943783i \(0.607239\pi\)
\(48\) 438.332 349.558i 1.31808 1.05113i
\(49\) −575.034 276.922i −1.67648 0.807352i
\(50\) 76.8096 + 61.2536i 0.217250 + 0.173251i
\(51\) 355.761 446.110i 0.976794 1.22486i
\(52\) 210.082 + 47.9498i 0.560253 + 0.127874i
\(53\) 323.807 155.937i 0.839213 0.404144i 0.0356510 0.999364i \(-0.488650\pi\)
0.803563 + 0.595220i \(0.202935\pi\)
\(54\) −99.7398 48.0322i −0.251349 0.121044i
\(55\) −143.997 + 630.891i −0.353028 + 1.54672i
\(56\) 163.654 + 339.831i 0.390522 + 0.810926i
\(57\) −467.821 106.777i −1.08709 0.248122i
\(58\) −64.0276 132.955i −0.144952 0.300997i
\(59\) 114.468 + 501.519i 0.252585 + 1.10665i 0.928986 + 0.370114i \(0.120681\pi\)
−0.676401 + 0.736533i \(0.736462\pi\)
\(60\) 89.2217 390.906i 0.191974 0.841095i
\(61\) −6.93619 30.3894i −0.0145588 0.0637863i 0.967127 0.254295i \(-0.0818434\pi\)
−0.981686 + 0.190509i \(0.938986\pi\)
\(62\) 647.778 311.954i 1.32690 0.639002i
\(63\) −440.848 + 552.805i −0.881612 + 1.10551i
\(64\) −5.55328 + 24.3305i −0.0108462 + 0.0475205i
\(65\) −520.464 + 250.642i −0.993162 + 0.478282i
\(66\) 1276.56 291.366i 2.38081 0.543405i
\(67\) −120.500 + 96.0953i −0.219722 + 0.175223i −0.727165 0.686463i \(-0.759162\pi\)
0.507443 + 0.861686i \(0.330591\pi\)
\(68\) 373.524i 0.666124i
\(69\) 1362.69i 2.37751i
\(70\) 1238.26 + 596.313i 2.11428 + 1.01819i
\(71\) −376.432 + 781.668i −0.629214 + 1.30658i 0.305844 + 0.952082i \(0.401061\pi\)
−0.935058 + 0.354495i \(0.884653\pi\)
\(72\) 264.978 60.4796i 0.433722 0.0989942i
\(73\) 371.669 296.396i 0.595899 0.475213i −0.278490 0.960439i \(-0.589834\pi\)
0.874389 + 0.485226i \(0.161263\pi\)
\(74\) −362.680 289.228i −0.569740 0.454352i
\(75\) 84.5188 + 175.505i 0.130125 + 0.270208i
\(76\) 283.013 136.292i 0.427155 0.205707i
\(77\) 1640.58i 2.42807i
\(78\) 913.861 + 728.780i 1.32660 + 1.05792i
\(79\) −286.693 595.323i −0.408297 0.847837i −0.999157 0.0410626i \(-0.986926\pi\)
0.590860 0.806774i \(-0.298789\pi\)
\(80\) −426.892 886.450i −0.596599 1.23885i
\(81\) −516.840 648.097i −0.708971 0.889022i
\(82\) −421.217 96.1400i −0.567264 0.129474i
\(83\) 706.004 0.933663 0.466832 0.884346i \(-0.345395\pi\)
0.466832 + 0.884346i \(0.345395\pi\)
\(84\) 1016.52i 1.32037i
\(85\) −624.327 782.882i −0.796680 0.999005i
\(86\) 527.345 + 1095.04i 0.661222 + 1.37304i
\(87\) 292.599i 0.360573i
\(88\) 393.192 493.048i 0.476300 0.597262i
\(89\) 789.115 + 180.110i 0.939843 + 0.214513i 0.664887 0.746944i \(-0.268480\pi\)
0.274956 + 0.961457i \(0.411337\pi\)
\(90\) 617.468 774.280i 0.723187 0.906847i
\(91\) −1145.01 + 913.114i −1.31901 + 1.05187i
\(92\) 556.179 + 697.427i 0.630280 + 0.790346i
\(93\) 1425.59 1.58954
\(94\) −951.392 758.710i −1.04392 0.832499i
\(95\) −365.371 + 758.701i −0.394592 + 0.819379i
\(96\) −818.386 + 1026.22i −0.870064 + 1.09103i
\(97\) 601.906 + 289.863i 0.630045 + 0.303414i 0.721520 0.692394i \(-0.243444\pi\)
−0.0914751 + 0.995807i \(0.529158\pi\)
\(98\) 2209.51 + 504.307i 2.27750 + 0.519824i
\(99\) 1152.53 + 263.058i 1.17004 + 0.267054i
\(100\) −114.889 55.3278i −0.114889 0.0553278i
\(101\) 976.631 1224.66i 0.962163 1.20651i −0.0162529 0.999868i \(-0.505174\pi\)
0.978416 0.206646i \(-0.0662549\pi\)
\(102\) −879.109 + 1825.49i −0.853380 + 1.77206i
\(103\) 66.6824 + 53.1774i 0.0637904 + 0.0508711i 0.654866 0.755745i \(-0.272725\pi\)
−0.591076 + 0.806616i \(0.701297\pi\)
\(104\) 562.956 0.530792
\(105\) 1699.06 + 2130.55i 1.57915 + 1.98019i
\(106\) −997.770 + 795.695i −0.914264 + 0.729101i
\(107\) −911.419 + 1142.88i −0.823460 + 1.03259i 0.175383 + 0.984500i \(0.443883\pi\)
−0.998843 + 0.0480856i \(0.984688\pi\)
\(108\) 140.087 + 31.9740i 0.124814 + 0.0284880i
\(109\) −950.675 + 1192.11i −0.835396 + 1.04755i 0.162749 + 0.986668i \(0.447964\pi\)
−0.998145 + 0.0608856i \(0.980608\pi\)
\(110\) 2297.86i 1.99174i
\(111\) −399.082 828.702i −0.341254 0.708621i
\(112\) −1555.21 1950.17i −1.31208 1.64530i
\(113\) 2198.90i 1.83058i −0.402795 0.915290i \(-0.631961\pi\)
0.402795 0.915290i \(-0.368039\pi\)
\(114\) 1703.91 1.39988
\(115\) −2331.43 532.134i −1.89050 0.431493i
\(116\) 119.424 + 149.753i 0.0955882 + 0.119864i
\(117\) 457.881 + 950.800i 0.361805 + 0.751295i
\(118\) −792.553 1645.75i −0.618309 1.28393i
\(119\) −1984.77 1582.80i −1.52894 1.21929i
\(120\) 1047.51i 0.796866i
\(121\) 1272.13 612.625i 0.955769 0.460274i
\(122\) 48.0246 + 99.7242i 0.0356389 + 0.0740049i
\(123\) −669.768 534.122i −0.490983 0.391546i
\(124\) −729.621 + 581.854i −0.528403 + 0.421387i
\(125\) −1172.48 + 267.611i −0.838958 + 0.191487i
\(126\) 1089.36 2262.09i 0.770224 1.59939i
\(127\) −608.014 292.804i −0.424823 0.204584i 0.209242 0.977864i \(-0.432900\pi\)
−0.634065 + 0.773280i \(0.718615\pi\)
\(128\) 1402.80i 0.968683i
\(129\) 2409.90i 1.64481i
\(130\) 1603.74 1278.94i 1.08198 0.862850i
\(131\) 697.686 159.242i 0.465322 0.106207i 0.0165692 0.999863i \(-0.494726\pi\)
0.448752 + 0.893656i \(0.351868\pi\)
\(132\) −1531.25 + 737.411i −1.00968 + 0.486238i
\(133\) −475.058 + 2081.36i −0.309720 + 1.35697i
\(134\) 341.227 427.885i 0.219981 0.275848i
\(135\) −347.057 + 167.134i −0.221258 + 0.106552i
\(136\) 217.144 + 951.369i 0.136911 + 0.599847i
\(137\) 207.915 910.937i 0.129660 0.568077i −0.867804 0.496906i \(-0.834469\pi\)
0.997464 0.0711710i \(-0.0226736\pi\)
\(138\) 1076.73 + 4717.47i 0.664184 + 2.90998i
\(139\) −48.1744 100.035i −0.0293964 0.0610423i 0.885754 0.464156i \(-0.153642\pi\)
−0.915150 + 0.403114i \(0.867928\pi\)
\(140\) −1739.17 396.953i −1.04990 0.239633i
\(141\) −1046.88 2173.87i −0.625272 1.29839i
\(142\) 685.526 3003.49i 0.405127 1.77498i
\(143\) 2206.11 + 1062.41i 1.29010 + 0.621279i
\(144\) −1619.40 + 779.860i −0.937151 + 0.451308i
\(145\) −500.609 114.261i −0.286712 0.0654403i
\(146\) −1052.48 + 1319.77i −0.596601 + 0.748115i
\(147\) 3513.30 + 2801.76i 1.97124 + 1.57201i
\(148\) 542.486 + 261.247i 0.301298 + 0.145097i
\(149\) 1154.23 920.468i 0.634619 0.506092i −0.252521 0.967591i \(-0.581260\pi\)
0.887140 + 0.461499i \(0.152688\pi\)
\(150\) −431.271 540.797i −0.234754 0.294372i
\(151\) 452.972 + 940.606i 0.244122 + 0.506924i 0.986643 0.162899i \(-0.0520844\pi\)
−0.742521 + 0.669823i \(0.766370\pi\)
\(152\) 641.605 511.663i 0.342375 0.273035i
\(153\) −1430.19 + 1140.54i −0.755715 + 0.602663i
\(154\) −1296.31 5679.50i −0.678309 2.97186i
\(155\) 556.698 2439.05i 0.288484 1.26393i
\(156\) −1366.92 658.276i −0.701549 0.337848i
\(157\) −526.690 2307.58i −0.267735 1.17302i −0.912641 0.408762i \(-0.865961\pi\)
0.644906 0.764262i \(-0.276897\pi\)
\(158\) 1462.89 + 1834.41i 0.736593 + 0.923658i
\(159\) −2466.99 + 563.075i −1.23047 + 0.280847i
\(160\) 1436.19 + 1800.93i 0.709630 + 0.889848i
\(161\) −6062.68 −2.96774
\(162\) 2301.34 + 1835.26i 1.11611 + 0.890070i
\(163\) −596.273 + 2612.44i −0.286526 + 1.25535i 0.602732 + 0.797944i \(0.294079\pi\)
−0.889258 + 0.457407i \(0.848778\pi\)
\(164\) 560.791 0.267015
\(165\) 1976.85 4104.97i 0.932713 1.93680i
\(166\) −2444.11 + 557.852i −1.14277 + 0.260829i
\(167\) −1589.16 + 3299.93i −0.736366 + 1.52908i 0.108496 + 0.994097i \(0.465396\pi\)
−0.844863 + 0.534983i \(0.820318\pi\)
\(168\) −590.940 2589.08i −0.271381 1.18900i
\(169\) −2.48601 10.8919i −0.00113155 0.00495763i
\(170\) 2779.95 + 2216.93i 1.25419 + 1.00018i
\(171\) 1386.02 + 667.472i 0.619834 + 0.298496i
\(172\) −983.601 1233.40i −0.436040 0.546777i
\(173\) 547.903 263.856i 0.240788 0.115957i −0.309599 0.950867i \(-0.600195\pi\)
0.550386 + 0.834910i \(0.314480\pi\)
\(174\) 231.198 + 1012.94i 0.100730 + 0.441328i
\(175\) 780.834 376.030i 0.337289 0.162430i
\(176\) −1809.48 + 3757.43i −0.774971 + 1.60924i
\(177\) 3621.87i 1.53806i
\(178\) −2874.14 −1.21026
\(179\) −3185.94 727.171i −1.33033 0.303638i −0.502478 0.864590i \(-0.667578\pi\)
−0.827849 + 0.560951i \(0.810435\pi\)
\(180\) −557.732 + 1158.14i −0.230950 + 0.479572i
\(181\) 1223.20 1533.84i 0.502317 0.629886i −0.464433 0.885608i \(-0.653742\pi\)
0.966750 + 0.255723i \(0.0823134\pi\)
\(182\) 3242.39 4065.83i 1.32056 1.65593i
\(183\) 219.467i 0.0886527i
\(184\) 1822.03 + 1453.02i 0.730012 + 0.582165i
\(185\) −1573.68 + 359.181i −0.625400 + 0.142743i
\(186\) −4935.23 + 1126.43i −1.94553 + 0.444055i
\(187\) −944.476 + 4138.02i −0.369342 + 1.61819i
\(188\) 1423.06 + 685.310i 0.552061 + 0.265858i
\(189\) −763.517 + 608.885i −0.293850 + 0.234338i
\(190\) 665.384 2915.24i 0.254063 1.11312i
\(191\) 2763.04 1.04674 0.523368 0.852107i \(-0.324675\pi\)
0.523368 + 0.852107i \(0.324675\pi\)
\(192\) 76.2378 158.309i 0.0286562 0.0595052i
\(193\) −2483.62 + 1196.05i −0.926294 + 0.446080i −0.835314 0.549773i \(-0.814714\pi\)
−0.0909801 + 0.995853i \(0.529000\pi\)
\(194\) −2312.77 527.874i −0.855913 0.195357i
\(195\) 3965.26 905.045i 1.45620 0.332367i
\(196\) −2941.66 −1.07203
\(197\) −1560.09 + 2282.87i −0.564224 + 0.825622i
\(198\) −4197.80 −1.50669
\(199\) 1143.03 260.890i 0.407173 0.0929346i −0.0140285 0.999902i \(-0.504466\pi\)
0.421202 + 0.906967i \(0.361608\pi\)
\(200\) −324.788 74.1308i −0.114830 0.0262092i
\(201\) 977.690 470.831i 0.343089 0.165223i
\(202\) −2413.32 + 5011.31i −0.840598 + 1.74552i
\(203\) −1301.79 −0.450088
\(204\) 585.205 2563.95i 0.200846 0.879963i
\(205\) −1175.38 + 937.334i −0.400449 + 0.319348i
\(206\) −272.865 131.405i −0.0922885 0.0444438i
\(207\) −972.120 + 4259.13i −0.326411 + 1.43010i
\(208\) −3629.55 + 828.420i −1.20992 + 0.276157i
\(209\) 3479.93 794.271i 1.15173 0.262875i
\(210\) −7565.41 6033.21i −2.48601 1.98253i
\(211\) 512.335i 0.167159i −0.996501 0.0835796i \(-0.973365\pi\)
0.996501 0.0835796i \(-0.0266353\pi\)
\(212\) 1032.80 1295.08i 0.334588 0.419560i
\(213\) 3808.56 4775.78i 1.22516 1.53630i
\(214\) 2252.18 4676.70i 0.719419 1.49389i
\(215\) 4123.12 + 941.076i 1.30788 + 0.298515i
\(216\) 375.391 0.118251
\(217\) 6342.54i 1.98415i
\(218\) 2349.18 4878.13i 0.729847 1.51554i
\(219\) −3015.59 + 1452.23i −0.930477 + 0.448094i
\(220\) 663.684 + 2907.79i 0.203389 + 0.891105i
\(221\) −3413.72 + 1643.96i −1.03906 + 0.500384i
\(222\) 2036.38 + 2553.54i 0.615644 + 0.771993i
\(223\) 3405.49 + 1640.00i 1.02264 + 0.492477i 0.868561 0.495582i \(-0.165045\pi\)
0.154077 + 0.988059i \(0.450760\pi\)
\(224\) 4565.74 + 3641.05i 1.36188 + 1.08606i
\(225\) −138.965 608.844i −0.0411747 0.180398i
\(226\) 1737.47 + 7612.36i 0.511394 + 2.24056i
\(227\) −655.683 + 1361.54i −0.191715 + 0.398099i −0.974563 0.224113i \(-0.928052\pi\)
0.782849 + 0.622212i \(0.213766\pi\)
\(228\) −2156.19 + 492.137i −0.626304 + 0.142950i
\(229\) 1250.21 2596.09i 0.360770 0.749146i −0.639029 0.769182i \(-0.720664\pi\)
0.999799 + 0.0200360i \(0.00637808\pi\)
\(230\) 8491.62 2.43444
\(231\) 2570.32 11261.3i 0.732097 3.20753i
\(232\) 391.231 + 311.996i 0.110714 + 0.0882911i
\(233\) 117.331 0.0329896 0.0164948 0.999864i \(-0.494749\pi\)
0.0164948 + 0.999864i \(0.494749\pi\)
\(234\) −2336.41 2929.77i −0.652718 0.818483i
\(235\) −4128.10 + 942.213i −1.14591 + 0.261545i
\(236\) 1478.26 + 1853.69i 0.407741 + 0.511291i
\(237\) 1035.22 + 4535.59i 0.283733 + 1.24312i
\(238\) 8121.72 + 3911.22i 2.21199 + 1.06524i
\(239\) 1542.46 6757.96i 0.417462 1.82902i −0.129135 0.991627i \(-0.541220\pi\)
0.546597 0.837395i \(-0.315923\pi\)
\(240\) 1541.47 + 6753.60i 0.414588 + 1.81643i
\(241\) 1228.16 979.424i 0.328268 0.261785i −0.445461 0.895301i \(-0.646960\pi\)
0.773730 + 0.633516i \(0.218389\pi\)
\(242\) −3919.90 + 3126.02i −1.04124 + 0.830364i
\(243\) 2167.10 + 4500.03i 0.572097 + 1.18797i
\(244\) −89.5752 112.324i −0.0235019 0.0294704i
\(245\) 6165.51 4916.83i 1.60776 1.28214i
\(246\) 2740.70 + 1319.85i 0.710328 + 0.342076i
\(247\) 2491.20 + 1986.67i 0.641747 + 0.511776i
\(248\) −1520.10 + 1906.14i −0.389219 + 0.488065i
\(249\) −4846.17 1106.11i −1.23339 0.281513i
\(250\) 3847.54 1852.88i 0.973359 0.468745i
\(251\) 4053.01 + 1951.83i 1.01922 + 0.490830i 0.867417 0.497581i \(-0.165778\pi\)
0.151801 + 0.988411i \(0.451493\pi\)
\(252\) −725.167 + 3177.17i −0.181275 + 0.794217i
\(253\) 4398.05 + 9132.64i 1.09290 + 2.26942i
\(254\) 2336.24 + 533.231i 0.577121 + 0.131724i
\(255\) 3058.97 + 6352.01i 0.751216 + 1.55992i
\(256\) −1152.86 5050.99i −0.281459 1.23315i
\(257\) −764.863 + 3351.08i −0.185645 + 0.813365i 0.793232 + 0.608919i \(0.208397\pi\)
−0.978878 + 0.204446i \(0.934461\pi\)
\(258\) −1904.19 8342.82i −0.459496 2.01318i
\(259\) −3686.95 + 1775.54i −0.884541 + 0.425972i
\(260\) −1660.04 + 2081.62i −0.395966 + 0.496526i
\(261\) −208.735 + 914.529i −0.0495034 + 0.216889i
\(262\) −2289.49 + 1102.56i −0.539866 + 0.259986i
\(263\) 7992.57 1824.25i 1.87393 0.427712i 0.875473 0.483267i \(-0.160550\pi\)
0.998456 + 0.0555549i \(0.0176928\pi\)
\(264\) −3471.42 + 2768.37i −0.809285 + 0.645383i
\(265\) 4440.68i 1.02939i
\(266\) 7580.82i 1.74741i
\(267\) −5134.48 2472.63i −1.17687 0.566752i
\(268\) −308.216 + 640.016i −0.0702510 + 0.145878i
\(269\) 5986.84 1366.46i 1.35697 0.309719i 0.518689 0.854963i \(-0.326420\pi\)
0.838277 + 0.545244i \(0.183563\pi\)
\(270\) 1069.41 852.826i 0.241045 0.192227i
\(271\) −4214.70 3361.11i −0.944740 0.753405i 0.0244548 0.999701i \(-0.492215\pi\)
−0.969195 + 0.246296i \(0.920786\pi\)
\(272\) −2799.98 5814.23i −0.624169 1.29610i
\(273\) 9290.17 4473.91i 2.05959 0.991844i
\(274\) 3317.85i 0.731527i
\(275\) −1132.88 903.442i −0.248419 0.198108i
\(276\) −2725.07 5658.66i −0.594311 1.23410i
\(277\) −2185.97 4539.20i −0.474159 0.984601i −0.991656 0.128916i \(-0.958850\pi\)
0.517497 0.855685i \(-0.326864\pi\)
\(278\) 245.818 + 308.246i 0.0530330 + 0.0665012i
\(279\) −4455.74 1016.99i −0.956123 0.218229i
\(280\) −4660.43 −0.994693
\(281\) 7154.85i 1.51894i −0.650541 0.759471i \(-0.725458\pi\)
0.650541 0.759471i \(-0.274542\pi\)
\(282\) 5341.88 + 6698.51i 1.12803 + 1.41450i
\(283\) −3439.65 7142.50i −0.722494 1.50027i −0.860286 0.509812i \(-0.829715\pi\)
0.137792 0.990461i \(-0.455999\pi\)
\(284\) 3998.72i 0.835494i
\(285\) 3696.65 4635.46i 0.768319 0.963441i
\(286\) −8476.77 1934.77i −1.75259 0.400018i
\(287\) −2376.34 + 2979.84i −0.488750 + 0.612873i
\(288\) 3289.99 2623.68i 0.673141 0.536812i
\(289\) −1031.76 1293.78i −0.210006 0.263339i
\(290\) 1823.34 0.369207
\(291\) −3677.48 2932.70i −0.740818 0.590782i
\(292\) 950.660 1974.07i 0.190525 0.395628i
\(293\) −4842.20 + 6071.93i −0.965476 + 1.21067i 0.0120658 + 0.999927i \(0.496159\pi\)
−0.977542 + 0.210741i \(0.932412\pi\)
\(294\) −14376.5 6923.35i −2.85188 1.37339i
\(295\) −6196.69 1414.35i −1.22300 0.279142i
\(296\) 1533.59 + 350.032i 0.301142 + 0.0687337i
\(297\) 1471.08 + 708.437i 0.287411 + 0.138410i
\(298\) −3268.51 + 4098.58i −0.635367 + 0.796726i
\(299\) −3926.08 + 8152.58i −0.759367 + 1.57684i
\(300\) 701.943 + 559.781i 0.135089 + 0.107730i
\(301\) 10721.8 2.05314
\(302\) −2311.36 2898.36i −0.440411 0.552257i
\(303\) −8622.50 + 6876.21i −1.63482 + 1.30372i
\(304\) −3383.68 + 4243.00i −0.638380 + 0.800503i
\(305\) 375.487 + 85.7025i 0.0704929 + 0.0160895i
\(306\) 4049.97 5078.50i 0.756606 0.948754i
\(307\) 3396.17i 0.631367i −0.948865 0.315683i \(-0.897766\pi\)
0.948865 0.315683i \(-0.102234\pi\)
\(308\) 3280.79 + 6812.63i 0.606950 + 1.26034i
\(309\) −374.409 469.494i −0.0689300 0.0864355i
\(310\) 8883.60i 1.62760i
\(311\) −1306.26 −0.238171 −0.119085 0.992884i \(-0.537996\pi\)
−0.119085 + 0.992884i \(0.537996\pi\)
\(312\) −3864.25 881.990i −0.701186 0.160041i
\(313\) −931.958 1168.64i −0.168298 0.211040i 0.690529 0.723305i \(-0.257378\pi\)
−0.858827 + 0.512265i \(0.828806\pi\)
\(314\) 3646.68 + 7572.42i 0.655396 + 1.36094i
\(315\) −3790.57 7871.21i −0.678015 1.40791i
\(316\) −2381.03 1898.81i −0.423871 0.338026i
\(317\) 3761.31i 0.666424i −0.942852 0.333212i \(-0.891868\pi\)
0.942852 0.333212i \(-0.108132\pi\)
\(318\) 8095.53 3898.60i 1.42759 0.687493i
\(319\) 944.357 + 1960.98i 0.165749 + 0.344181i
\(320\) −241.082 192.256i −0.0421152 0.0335858i
\(321\) 8046.75 6417.07i 1.39915 1.11578i
\(322\) 20988.3 4790.45i 3.63240 0.829072i
\(323\) −2396.47 + 4976.32i −0.412827 + 0.857244i
\(324\) −3442.27 1657.71i −0.590238 0.284244i
\(325\) 1293.51i 0.220772i
\(326\) 9515.13i 1.61655i
\(327\) 8393.33 6693.46i 1.41943 1.13195i
\(328\) 1428.34 326.009i 0.240448 0.0548806i
\(329\) −9671.70 + 4657.65i −1.62072 + 0.780499i
\(330\) −3600.08 + 15773.0i −0.600539 + 2.63113i
\(331\) −3640.31 + 4564.80i −0.604499 + 0.758018i −0.986072 0.166321i \(-0.946811\pi\)
0.381572 + 0.924339i \(0.375383\pi\)
\(332\) 2931.74 1411.85i 0.484639 0.233390i
\(333\) 656.165 + 2874.84i 0.107981 + 0.473095i
\(334\) 2894.05 12679.7i 0.474119 2.07725i
\(335\) −423.756 1856.60i −0.0691113 0.302796i
\(336\) 7619.93 + 15823.0i 1.23721 + 2.56909i
\(337\) 278.429 + 63.5496i 0.0450059 + 0.0102723i 0.244965 0.969532i \(-0.421224\pi\)
−0.199959 + 0.979804i \(0.564081\pi\)
\(338\) 17.2126 + 35.7423i 0.00276994 + 0.00575184i
\(339\) −3445.05 + 15093.8i −0.551946 + 2.41823i
\(340\) −4158.16 2002.46i −0.663258 0.319408i
\(341\) −9554.22 + 4601.07i −1.51727 + 0.730680i
\(342\) −5325.65 1215.55i −0.842042 0.192191i
\(343\) 5766.22 7230.61i 0.907716 1.13824i
\(344\) −3222.26 2569.67i −0.505037 0.402753i
\(345\) 15169.7 + 7305.36i 2.36728 + 1.14002i
\(346\) −1688.29 + 1346.37i −0.262321 + 0.209194i
\(347\) 2981.63 + 3738.85i 0.461275 + 0.578421i 0.957011 0.290053i \(-0.0936729\pi\)
−0.495735 + 0.868474i \(0.665101\pi\)
\(348\) −585.132 1215.04i −0.0901332 0.187164i
\(349\) 4013.56 3200.71i 0.615590 0.490916i −0.265345 0.964153i \(-0.585486\pi\)
0.880935 + 0.473237i \(0.156915\pi\)
\(350\) −2406.04 + 1918.75i −0.367452 + 0.293033i
\(351\) 324.337 + 1421.01i 0.0493215 + 0.216092i
\(352\) 2172.65 9519.02i 0.328985 1.44138i
\(353\) −5346.76 2574.86i −0.806173 0.388233i −0.0150479 0.999887i \(-0.504790\pi\)
−0.791125 + 0.611654i \(0.790504\pi\)
\(354\) 2861.84 + 12538.5i 0.429675 + 1.88253i
\(355\) −6683.66 8381.05i −0.999245 1.25301i
\(356\) 3637.05 830.132i 0.541469 0.123587i
\(357\) 11144.1 + 13974.3i 1.65213 + 2.07170i
\(358\) 11604.0 1.71310
\(359\) 4346.10 + 3465.90i 0.638937 + 0.509535i 0.888532 0.458815i \(-0.151726\pi\)
−0.249595 + 0.968350i \(0.580297\pi\)
\(360\) −747.276 + 3274.03i −0.109403 + 0.479324i
\(361\) −2214.10 −0.322802
\(362\) −3022.60 + 6276.49i −0.438851 + 0.911284i
\(363\) −9691.98 + 2212.13i −1.40137 + 0.319853i
\(364\) −2928.72 + 6081.54i −0.421721 + 0.875712i
\(365\) 1307.03 + 5726.49i 0.187434 + 0.821201i
\(366\) −173.412 759.769i −0.0247661 0.108508i
\(367\) −1816.31 1448.46i −0.258339 0.206019i 0.485752 0.874097i \(-0.338546\pi\)
−0.744091 + 0.668078i \(0.767117\pi\)
\(368\) −13885.4 6686.86i −1.96692 0.947220i
\(369\) 1712.35 + 2147.22i 0.241576 + 0.302927i
\(370\) 5164.08 2486.89i 0.725589 0.349425i
\(371\) 2505.16 + 10975.8i 0.350569 + 1.53594i
\(372\) 5919.88 2850.86i 0.825084 0.397340i
\(373\) 4352.45 9037.96i 0.604186 1.25461i −0.344619 0.938743i \(-0.611992\pi\)
0.948805 0.315863i \(-0.102294\pi\)
\(374\) 15071.6i 2.08379i
\(375\) 8467.43 1.16602
\(376\) 4022.95 + 918.211i 0.551776 + 0.125939i
\(377\) −843.014 + 1750.54i −0.115166 + 0.239144i
\(378\) 2162.10 2711.19i 0.294197 0.368911i
\(379\) −507.375 + 636.229i −0.0687655 + 0.0862292i −0.815025 0.579426i \(-0.803277\pi\)
0.746259 + 0.665656i \(0.231848\pi\)
\(380\) 3881.23i 0.523955i
\(381\) 3714.80 + 2962.46i 0.499515 + 0.398350i
\(382\) −9565.34 + 2183.23i −1.28117 + 0.292418i
\(383\) 1376.61 314.203i 0.183660 0.0419191i −0.129702 0.991553i \(-0.541402\pi\)
0.313361 + 0.949634i \(0.398545\pi\)
\(384\) 2197.79 9629.15i 0.292072 1.27965i
\(385\) −18263.3 8795.14i −2.41762 1.16426i
\(386\) 7652.95 6103.02i 1.00913 0.804756i
\(387\) 1719.19 7532.26i 0.225817 0.989370i
\(388\) 3079.13 0.402884
\(389\) 1169.03 2427.52i 0.152371 0.316401i −0.810786 0.585343i \(-0.800960\pi\)
0.963156 + 0.268942i \(0.0866741\pi\)
\(390\) −13012.2 + 6266.33i −1.68948 + 0.813610i
\(391\) −15291.9 3490.27i −1.97786 0.451433i
\(392\) −7492.42 + 1710.10i −0.965369 + 0.220339i
\(393\) −5038.56 −0.646722
\(394\) 3597.06 9135.74i 0.459942 1.16815i
\(395\) 8164.24 1.03997
\(396\) 5312.05 1212.44i 0.674092 0.153857i
\(397\) 1419.14 + 323.910i 0.179407 + 0.0409485i 0.311281 0.950318i \(-0.399242\pi\)
−0.131873 + 0.991267i \(0.542099\pi\)
\(398\) −3750.91 + 1806.34i −0.472402 + 0.227497i
\(399\) 6521.80 13542.7i 0.818292 1.69920i
\(400\) 2203.10 0.275387
\(401\) 1196.94 5244.14i 0.149058 0.653067i −0.844090 0.536202i \(-0.819858\pi\)
0.993148 0.116865i \(-0.0372844\pi\)
\(402\) −3012.63 + 2402.49i −0.373771 + 0.298073i
\(403\) −8528.92 4107.31i −1.05423 0.507691i
\(404\) 1606.50 7038.53i 0.197837 0.866782i
\(405\) 9985.55 2279.14i 1.22515 0.279633i
\(406\) 4506.65 1028.61i 0.550890 0.125737i
\(407\) 5349.25 + 4265.88i 0.651480 + 0.519538i
\(408\) 6870.61i 0.833691i
\(409\) −3372.66 + 4229.18i −0.407744 + 0.511295i −0.942726 0.333569i \(-0.891747\pi\)
0.534982 + 0.844864i \(0.320318\pi\)
\(410\) 3328.40 4173.68i 0.400921 0.502740i
\(411\) −2854.35 + 5927.13i −0.342567 + 0.711347i
\(412\) 383.247 + 87.4736i 0.0458282 + 0.0104600i
\(413\) −16114.0 −1.91989
\(414\) 15512.8i 1.84157i
\(415\) −3784.89 + 7859.40i −0.447694 + 0.929646i
\(416\) 7852.86 3781.74i 0.925525 0.445709i
\(417\) 173.953 + 762.139i 0.0204281 + 0.0895015i
\(418\) −11419.5 + 5499.35i −1.33624 + 0.643498i
\(419\) −190.222 238.531i −0.0221789 0.0278114i 0.770618 0.637297i \(-0.219947\pi\)
−0.792797 + 0.609485i \(0.791376\pi\)
\(420\) 11316.1 + 5449.55i 1.31469 + 0.633121i
\(421\) 12798.6 + 10206.5i 1.48163 + 1.18156i 0.940111 + 0.340868i \(0.110721\pi\)
0.541516 + 0.840690i \(0.317850\pi\)
\(422\) 404.823 + 1773.65i 0.0466979 + 0.204597i
\(423\) 1721.27 + 7541.36i 0.197851 + 0.866840i
\(424\) 1877.66 3898.99i 0.215064 0.446585i
\(425\) 2185.97 498.934i 0.249495 0.0569455i
\(426\) −9411.20 + 19542.6i −1.07036 + 2.22263i
\(427\) 976.422 0.110661
\(428\) −1499.23 + 6568.55i −0.169318 + 0.741829i
\(429\) −13478.7 10748.9i −1.51692 1.20970i
\(430\) −15017.4 −1.68419
\(431\) −2806.48 3519.22i −0.313651 0.393306i 0.599870 0.800097i \(-0.295219\pi\)
−0.913521 + 0.406792i \(0.866647\pi\)
\(432\) −2420.26 + 552.409i −0.269548 + 0.0615227i
\(433\) 5126.49 + 6428.42i 0.568969 + 0.713464i 0.980187 0.198073i \(-0.0634682\pi\)
−0.411219 + 0.911537i \(0.634897\pi\)
\(434\) 5011.58 + 21957.2i 0.554294 + 2.42852i
\(435\) 3257.28 + 1568.62i 0.359022 + 0.172896i
\(436\) −1563.80 + 6851.47i −0.171772 + 0.752582i
\(437\) 2935.19 + 12859.9i 0.321303 + 1.40772i
\(438\) 9292.14 7410.24i 1.01369 0.808390i
\(439\) 2872.87 2291.04i 0.312334 0.249078i −0.454758 0.890615i \(-0.650274\pi\)
0.767092 + 0.641537i \(0.221703\pi\)
\(440\) 3380.82 + 7020.34i 0.366305 + 0.760640i
\(441\) −8982.24 11263.4i −0.969899 1.21622i
\(442\) 10518.9 8388.58i 1.13198 0.902724i
\(443\) −15384.9 7408.96i −1.65002 0.794606i −0.999380 0.0352167i \(-0.988788\pi\)
−0.650637 0.759389i \(-0.725498\pi\)
\(444\) −3314.44 2643.18i −0.354271 0.282522i
\(445\) −6235.48 + 7819.05i −0.664247 + 0.832940i
\(446\) −13085.3 2986.63i −1.38925 0.317087i
\(447\) −9365.00 + 4509.95i −0.990938 + 0.477211i
\(448\) −704.329 339.187i −0.0742777 0.0357703i
\(449\) 2834.74 12419.8i 0.297950 1.30541i −0.575223 0.817996i \(-0.695085\pi\)
0.873174 0.487409i \(-0.162058\pi\)
\(450\) 962.160 + 1997.95i 0.100793 + 0.209298i
\(451\) 6212.62 + 1417.99i 0.648649 + 0.148050i
\(452\) −4397.32 9131.13i −0.457594 0.950204i
\(453\) −1635.64 7166.21i −0.169645 0.743262i
\(454\) 1194.08 5231.59i 0.123438 0.540817i
\(455\) −4026.60 17641.7i −0.414879 1.81771i
\(456\) −5205.74 + 2506.95i −0.534608 + 0.257454i
\(457\) 7328.86 9190.10i 0.750174 0.940689i −0.249442 0.968390i \(-0.580247\pi\)
0.999616 + 0.0277012i \(0.00881868\pi\)
\(458\) −2276.78 + 9975.24i −0.232286 + 1.01771i
\(459\) −2276.35 + 1096.23i −0.231483 + 0.111476i
\(460\) −10745.6 + 2452.61i −1.08917 + 0.248595i
\(461\) −8170.18 + 6515.50i −0.825430 + 0.658258i −0.942256 0.334894i \(-0.891299\pi\)
0.116826 + 0.993152i \(0.462728\pi\)
\(462\) 41016.3i 4.13041i
\(463\) 8050.64i 0.808089i 0.914739 + 0.404044i \(0.132396\pi\)
−0.914739 + 0.404044i \(0.867604\pi\)
\(464\) −2981.50 1435.82i −0.298303 0.143655i
\(465\) −7642.59 + 15870.0i −0.762186 + 1.58270i
\(466\) −406.185 + 92.7092i −0.0403781 + 0.00921603i
\(467\) 12999.1 10366.5i 1.28807 1.02720i 0.290545 0.956861i \(-0.406163\pi\)
0.997523 0.0703390i \(-0.0224081\pi\)
\(468\) 3802.78 + 3032.62i 0.375606 + 0.299536i
\(469\) −2094.76 4349.81i −0.206241 0.428263i
\(470\) 13546.5 6523.67i 1.32948 0.640244i
\(471\) 16664.9i 1.63031i
\(472\) 4842.77 + 3861.98i 0.472260 + 0.376615i
\(473\) −7777.93 16151.0i −0.756088 1.57003i
\(474\) −7167.63 14883.7i −0.694557 1.44226i
\(475\) −1175.65 1474.22i −0.113563 0.142404i
\(476\) −11407.2 2603.62i −1.09842 0.250707i
\(477\) 8112.38 0.778701
\(478\) 24614.1i 2.35528i
\(479\) −10694.5 13410.4i −1.02013 1.27920i −0.959698 0.281032i \(-0.909323\pi\)
−0.0604332 0.998172i \(-0.519248\pi\)
\(480\) −7036.79 14612.0i −0.669134 1.38947i
\(481\) 6107.71i 0.578976i
\(482\) −3477.86 + 4361.09i −0.328656 + 0.412121i
\(483\) 41615.6 + 9498.48i 3.92044 + 0.894816i
\(484\) 4057.50 5087.95i 0.381058 0.477832i
\(485\) −6453.64 + 5146.61i −0.604216 + 0.481846i
\(486\) −11058.0 13866.3i −1.03210 1.29421i
\(487\) 6171.69 0.574263 0.287132 0.957891i \(-0.407298\pi\)
0.287132 + 0.957891i \(0.407298\pi\)
\(488\) −293.447 234.016i −0.0272207 0.0217078i
\(489\) 8185.89 16998.2i 0.757012 1.57195i
\(490\) −17459.3 + 21893.2i −1.60965 + 2.01844i
\(491\) 13663.6 + 6580.03i 1.25586 + 0.604792i 0.939078 0.343705i \(-0.111682\pi\)
0.316786 + 0.948497i \(0.397396\pi\)
\(492\) −3849.39 878.598i −0.352732 0.0805087i
\(493\) −3283.50 749.436i −0.299962 0.0684643i
\(494\) −10194.0 4909.19i −0.928445 0.447116i
\(495\) −9107.16 + 11420.0i −0.826942 + 1.03695i
\(496\) 6995.54 14526.4i 0.633284 1.31503i
\(497\) −21247.8 16944.5i −1.91769 1.52931i
\(498\) 17650.9 1.58826
\(499\) −11655.1 14615.1i −1.04560 1.31115i −0.948812 0.315840i \(-0.897714\pi\)
−0.0967909 0.995305i \(-0.530858\pi\)
\(500\) −4333.65 + 3455.97i −0.387614 + 0.309112i
\(501\) 16078.4 20161.7i 1.43379 1.79792i
\(502\) −15573.3 3554.51i −1.38460 0.316027i
\(503\) −2278.59 + 2857.27i −0.201983 + 0.253279i −0.872498 0.488617i \(-0.837502\pi\)
0.670515 + 0.741896i \(0.266073\pi\)
\(504\) 8513.84i 0.752453i
\(505\) 8397.45 + 17437.5i 0.739963 + 1.53655i
\(506\) −22441.7 28141.1i −1.97166 2.47238i
\(507\) 78.6593i 0.00689030i
\(508\) −3110.37 −0.271654
\(509\) 21264.0 + 4853.36i 1.85169 + 0.422635i 0.995560 0.0941309i \(-0.0300072\pi\)
0.856127 + 0.516766i \(0.172864\pi\)
\(510\) −15608.9 19572.9i −1.35524 1.69942i
\(511\) 6461.07 + 13416.6i 0.559336 + 1.16147i
\(512\) 3112.89 + 6463.99i 0.268695 + 0.557950i
\(513\) 1661.19 + 1324.76i 0.142970 + 0.114014i
\(514\) 12205.4i 1.04739i
\(515\) −949.468 + 457.240i −0.0812399 + 0.0391231i
\(516\) 4819.27 + 10007.3i 0.411156 + 0.853775i
\(517\) 14032.3 + 11190.4i 1.19369 + 0.951938i
\(518\) 11360.9 9059.99i 0.963645 0.768481i
\(519\) −4174.31 + 952.759i −0.353048 + 0.0805809i
\(520\) −3018.01 + 6266.95i −0.254516 + 0.528508i
\(521\) 8016.07 + 3860.34i 0.674070 + 0.324615i 0.739417 0.673248i \(-0.235101\pi\)
−0.0653473 + 0.997863i \(0.520816\pi\)
\(522\) 3330.93i 0.279293i
\(523\) 7145.62i 0.597430i 0.954342 + 0.298715i \(0.0965581\pi\)
−0.954342 + 0.298715i \(0.903442\pi\)
\(524\) 2578.75 2056.48i 0.214987 0.171446i
\(525\) −5948.95 + 1357.81i −0.494540 + 0.112875i
\(526\) −26228.0 + 12630.7i −2.17413 + 1.04701i
\(527\) 3651.38 15997.8i 0.301815 1.32234i
\(528\) 18307.5 22956.9i 1.50896 1.89218i
\(529\) −22787.2 + 10973.7i −1.87287 + 0.901925i
\(530\) −3508.82 15373.1i −0.287572 1.25994i
\(531\) −2583.79 + 11320.3i −0.211162 + 0.925160i
\(532\) 2189.55 + 9593.05i 0.178438 + 0.781788i
\(533\) 2468.16 + 5125.19i 0.200578 + 0.416504i
\(534\) 19728.8 + 4502.96i 1.59878 + 0.364910i
\(535\) −7836.72 16273.1i −0.633292 1.31504i
\(536\) −412.962 + 1809.30i −0.0332784 + 0.145802i
\(537\) 20729.7 + 9982.91i 1.66584 + 0.802225i
\(538\) −19646.1 + 9461.04i −1.57435 + 0.758168i
\(539\) −32588.6 7438.13i −2.60425 0.594403i
\(540\) −1106.95 + 1388.07i −0.0882140 + 0.110617i
\(541\) 7822.33 + 6238.10i 0.621642 + 0.495743i 0.882922 0.469520i \(-0.155573\pi\)
−0.261280 + 0.965263i \(0.584144\pi\)
\(542\) 17246.6 + 8305.52i 1.36680 + 0.658215i
\(543\) −10799.4 + 8612.20i −0.853490 + 0.680635i
\(544\) 9419.98 + 11812.3i 0.742423 + 0.930969i
\(545\) −8174.26 16974.0i −0.642471 1.33411i
\(546\) −28626.5 + 22828.9i −2.24377 + 1.78935i
\(547\) −758.778 + 605.105i −0.0593108 + 0.0472988i −0.652697 0.757619i \(-0.726362\pi\)
0.593386 + 0.804918i \(0.297791\pi\)
\(548\) −958.286 4198.52i −0.0747006 0.327285i
\(549\) 156.564 685.953i 0.0121712 0.0533256i
\(550\) 4635.77 + 2232.47i 0.359399 + 0.173078i
\(551\) 630.250 + 2761.30i 0.0487287 + 0.213495i
\(552\) −10230.4 12828.5i −0.788829 0.989160i
\(553\) 20179.2 4605.76i 1.55173 0.354172i
\(554\) 11154.2 + 13987.0i 0.855412 + 1.07265i
\(555\) 11364.8 0.869204
\(556\) −400.096 319.066i −0.0305177 0.0243371i
\(557\) 531.065 2326.75i 0.0403984 0.176997i −0.950704 0.310101i \(-0.899637\pi\)
0.991102 + 0.133104i \(0.0424943\pi\)
\(558\) 16228.9 1.23122
\(559\) 6943.24 14417.8i 0.525345 1.09089i
\(560\) 30047.2 6858.08i 2.26737 0.517512i
\(561\) 12966.2 26924.5i 0.975815 2.02630i
\(562\) 5653.43 + 24769.3i 0.424334 + 1.85913i
\(563\) 164.535 + 720.875i 0.0123167 + 0.0539631i 0.980713 0.195454i \(-0.0626181\pi\)
−0.968396 + 0.249417i \(0.919761\pi\)
\(564\) −8694.52 6933.65i −0.649123 0.517658i
\(565\) 24478.7 + 11788.3i 1.82270 + 0.877768i
\(566\) 17551.3 + 22008.7i 1.30342 + 1.63444i
\(567\) 23395.1 11266.5i 1.73280 0.834475i
\(568\) 2324.61 + 10184.8i 0.171723 + 0.752365i
\(569\) 3124.77 1504.81i 0.230223 0.110870i −0.315216 0.949020i \(-0.602077\pi\)
0.545440 + 0.838150i \(0.316363\pi\)
\(570\) −9134.68 + 18968.4i −0.671245 + 1.39385i
\(571\) 1333.35i 0.0977217i 0.998806 + 0.0488608i \(0.0155591\pi\)
−0.998806 + 0.0488608i \(0.984441\pi\)
\(572\) 11285.6 0.824958
\(573\) −18966.1 4328.89i −1.38276 0.315606i
\(574\) 5872.11 12193.6i 0.426998 0.886671i
\(575\) 3338.63 4186.51i 0.242140 0.303634i
\(576\) −351.220 + 440.416i −0.0254065 + 0.0318588i
\(577\) 7635.05i 0.550869i −0.961320 0.275435i \(-0.911178\pi\)
0.961320 0.275435i \(-0.0888217\pi\)
\(578\) 4594.12 + 3663.69i 0.330606 + 0.263650i
\(579\) 18922.0 4318.81i 1.35815 0.309989i
\(580\) −2307.32 + 526.630i −0.165183 + 0.0377019i
\(581\) −4921.14 + 21560.9i −0.351400 + 1.53958i
\(582\) 15048.3 + 7246.89i 1.07178 + 0.516140i
\(583\) 14716.3 11735.9i 1.04543 0.833705i
\(584\) 1273.74 5580.62i 0.0902530 0.395424i
\(585\) −13039.2 −0.921549
\(586\) 11965.4 24846.4i 0.843492 1.75153i
\(587\) −7501.43 + 3612.50i −0.527457 + 0.254010i −0.678608 0.734501i \(-0.737416\pi\)
0.151151 + 0.988511i \(0.451702\pi\)
\(588\) 20192.2 + 4608.73i 1.41618 + 0.323233i
\(589\) −13453.5 + 3070.68i −0.941161 + 0.214814i
\(590\) 22569.8 1.57489
\(591\) 14285.4 13225.9i 0.994287 0.920541i
\(592\) −10402.6 −0.722203
\(593\) 13883.0 3168.71i 0.961395 0.219432i 0.287105 0.957899i \(-0.407307\pi\)
0.674290 + 0.738467i \(0.264450\pi\)
\(594\) −5652.50 1290.15i −0.390446 0.0891168i
\(595\) 28260.5 13609.6i 1.94717 0.937710i
\(596\) 2952.30 6130.52i 0.202905 0.421336i
\(597\) −8254.77 −0.565905
\(598\) 7149.85 31325.5i 0.488928 2.14213i
\(599\) 19157.1 15277.3i 1.30674 1.04209i 0.310949 0.950426i \(-0.399353\pi\)
0.995790 0.0916634i \(-0.0292184\pi\)
\(600\) 2113.28 + 1017.70i 0.143790 + 0.0692457i
\(601\) −184.923 + 810.202i −0.0125510 + 0.0549897i −0.980816 0.194938i \(-0.937550\pi\)
0.968265 + 0.249927i \(0.0804067\pi\)
\(602\) −37117.8 + 8471.89i −2.51297 + 0.573569i
\(603\) −3391.70 + 774.133i −0.229056 + 0.0522805i
\(604\) 3762.01 + 3000.10i 0.253434 + 0.202107i
\(605\) 17445.9i 1.17236i
\(606\) 24416.9 30617.8i 1.63674 2.05241i
\(607\) −6707.04 + 8410.37i −0.448485 + 0.562383i −0.953757 0.300577i \(-0.902821\pi\)
0.505272 + 0.862960i \(0.331392\pi\)
\(608\) 5512.79 11447.4i 0.367719 0.763577i
\(609\) 8935.77 + 2039.53i 0.594574 + 0.135708i
\(610\) −1367.61 −0.0907754
\(611\) 16021.9i 1.06084i
\(612\) −3658.17 + 7596.26i −0.241622 + 0.501733i
\(613\) −14638.1 + 7049.33i −0.964480 + 0.464469i −0.848740 0.528810i \(-0.822638\pi\)
−0.115740 + 0.993280i \(0.536924\pi\)
\(614\) 2683.50 + 11757.2i 0.176380 + 0.772769i
\(615\) 9536.60 4592.58i 0.625289 0.301123i
\(616\) 12316.6 + 15444.6i 0.805604 + 1.01020i
\(617\) 4031.12 + 1941.28i 0.263025 + 0.126666i 0.560749 0.827986i \(-0.310513\pi\)
−0.297724 + 0.954652i \(0.596227\pi\)
\(618\) 1667.13 + 1329.49i 0.108514 + 0.0865374i
\(619\) −3559.24 15594.0i −0.231111 1.01256i −0.948720 0.316118i \(-0.897621\pi\)
0.717609 0.696446i \(-0.245237\pi\)
\(620\) −2565.83 11241.6i −0.166204 0.728185i
\(621\) −2617.99 + 5436.32i −0.169173 + 0.351292i
\(622\) 4522.13 1032.15i 0.291512 0.0665358i
\(623\) −11000.9 + 22843.6i −0.707452 + 1.46904i
\(624\) 26211.9 1.68160
\(625\) 4076.12 17858.6i 0.260872 1.14295i
\(626\) 4149.74 + 3309.31i 0.264947 + 0.211288i
\(627\) −25131.4 −1.60072
\(628\) −6801.77 8529.14i −0.432197 0.541958i
\(629\) −10321.7 + 2355.87i −0.654300 + 0.149340i
\(630\) 19342.0 + 24254.1i 1.22318 + 1.53382i
\(631\) 2618.02 + 11470.3i 0.165169 + 0.723652i 0.987883 + 0.155197i \(0.0496014\pi\)
−0.822715 + 0.568455i \(0.807541\pi\)
\(632\) −7168.35 3452.09i −0.451173 0.217274i
\(633\) −802.682 + 3516.78i −0.0504009 + 0.220821i
\(634\) 2972.01 + 13021.2i 0.186173 + 0.815678i
\(635\) 6519.13 5198.83i 0.407408 0.324897i
\(636\) −9118.36 + 7271.65i −0.568501 + 0.453364i
\(637\) −12946.9 26884.5i −0.805297 1.67222i
\(638\) −4818.73 6042.50i −0.299021 0.374961i
\(639\) −15310.8 + 12209.9i −0.947864 + 0.755896i
\(640\) −15616.3 7520.43i −0.964515 0.464486i
\(641\) −15357.4 12247.1i −0.946304 0.754652i 0.0231996 0.999731i \(-0.492615\pi\)
−0.969503 + 0.245079i \(0.921186\pi\)
\(642\) −22786.5 + 28573.3i −1.40080 + 1.75654i
\(643\) −4496.87 1026.38i −0.275800 0.0629495i 0.0823839 0.996601i \(-0.473747\pi\)
−0.358184 + 0.933651i \(0.616604\pi\)
\(644\) −25175.8 + 12124.0i −1.54047 + 0.741853i
\(645\) −26827.6 12919.5i −1.63773 0.788689i
\(646\) 4364.25 19121.0i 0.265804 1.16456i
\(647\) 2798.21 + 5810.53i 0.170029 + 0.353069i 0.968519 0.248939i \(-0.0800818\pi\)
−0.798490 + 0.602008i \(0.794368\pi\)
\(648\) −9731.18 2221.08i −0.589934 0.134648i
\(649\) 11689.5 + 24273.6i 0.707018 + 1.46814i
\(650\) 1022.07 + 4477.99i 0.0616753 + 0.270217i
\(651\) −9936.95 + 43536.6i −0.598248 + 2.62110i
\(652\) 2748.23 + 12040.8i 0.165075 + 0.723242i
\(653\) −15062.9 + 7253.90i −0.902690 + 0.434712i −0.826860 0.562408i \(-0.809875\pi\)
−0.0758299 + 0.997121i \(0.524161\pi\)
\(654\) −23767.9 + 29804.0i −1.42110 + 1.78200i
\(655\) −1967.57 + 8620.51i −0.117373 + 0.514246i
\(656\) −8729.19 + 4203.76i −0.519539 + 0.250197i
\(657\) 10461.4 2387.73i 0.621212 0.141788i
\(658\) 29802.1 23766.4i 1.76566 1.40807i
\(659\) 529.037i 0.0312722i −0.999878 0.0156361i \(-0.995023\pi\)
0.999878 0.0156361i \(-0.00497732\pi\)
\(660\) 20999.5i 1.23849i
\(661\) 24396.0 + 11748.5i 1.43555 + 0.691322i 0.980020 0.198900i \(-0.0637371\pi\)
0.455526 + 0.890223i \(0.349451\pi\)
\(662\) 8995.44 18679.2i 0.528123 1.09666i
\(663\) 26008.1 5936.19i 1.52349 0.347726i
\(664\) 6646.40 5300.33i 0.388450 0.309778i
\(665\) −20623.5 16446.7i −1.20262 0.959058i
\(666\) −4543.14 9433.92i −0.264329 0.548884i
\(667\) −7246.71 + 3489.83i −0.420680 + 0.202589i
\(668\) 16881.2i 0.977775i
\(669\) −20806.6 16592.7i −1.20244 0.958911i
\(670\) 2934.00 + 6092.50i 0.169179 + 0.351304i
\(671\) −708.325 1470.85i −0.0407520 0.0846224i
\(672\) −25635.7 32146.2i −1.47161 1.84534i
\(673\) 2918.74 + 666.184i 0.167176 + 0.0381567i 0.305289 0.952260i \(-0.401247\pi\)
−0.138114 + 0.990416i \(0.544104\pi\)
\(674\) −1014.10 −0.0579552
\(675\) 862.541i 0.0491840i
\(676\) −32.1048 40.2581i −0.00182662 0.00229052i
\(677\) 2439.04 + 5064.72i 0.138464 + 0.287523i 0.958657 0.284563i \(-0.0918486\pi\)
−0.820194 + 0.572086i \(0.806134\pi\)
\(678\) 54975.0i 3.11402i
\(679\) −13047.8 + 16361.4i −0.737448 + 0.924730i
\(680\) −11755.0 2683.00i −0.662916 0.151306i
\(681\) 6633.89 8318.64i 0.373291 0.468092i
\(682\) 29440.1 23477.7i 1.65296 1.31819i
\(683\) −138.455 173.617i −0.00775670 0.00972659i 0.777938 0.628341i \(-0.216266\pi\)
−0.785695 + 0.618614i \(0.787694\pi\)
\(684\) 7090.36 0.396355
\(685\) 9026.13 + 7198.10i 0.503461 + 0.401497i
\(686\) −14248.7 + 29587.8i −0.793030 + 1.64674i
\(687\) −12649.1 + 15861.4i −0.702462 + 0.880860i
\(688\) 24556.3 + 11825.7i 1.36076 + 0.655305i
\(689\) 16381.6 + 3739.00i 0.905791 + 0.206741i
\(690\) −58288.3 13303.9i −3.21594 0.734017i
\(691\) 1298.26 + 625.208i 0.0714733 + 0.0344197i 0.469279 0.883050i \(-0.344514\pi\)
−0.397806 + 0.917470i \(0.630228\pi\)
\(692\) 1747.56 2191.37i 0.0960002 0.120380i
\(693\) −16067.3 + 33364.0i −0.880729 + 1.82885i
\(694\) −13276.4 10587.5i −0.726172 0.579103i
\(695\) 1371.88 0.0748753
\(696\) −2196.68 2754.56i −0.119634 0.150016i
\(697\) −7709.32 + 6147.98i −0.418955 + 0.334105i
\(698\) −11365.4 + 14251.8i −0.616316 + 0.772835i
\(699\) −805.383 183.823i −0.0435799 0.00994683i
\(700\) 2490.50 3122.99i 0.134474 0.168626i
\(701\) 21977.5i 1.18414i −0.805888 0.592068i \(-0.798312\pi\)
0.805888 0.592068i \(-0.201688\pi\)
\(702\) −2245.64 4663.12i −0.120735 0.250710i
\(703\) 5551.21 + 6961.00i 0.297821 + 0.373455i
\(704\) 1307.04i 0.0699727i
\(705\) 29812.4 1.59262
\(706\) 20544.4 + 4689.13i 1.09518 + 0.249968i
\(707\) 30592.7 + 38362.1i 1.62738 + 2.04067i
\(708\) −7242.94 15040.1i −0.384472 0.798365i
\(709\) 5509.89 + 11441.4i 0.291860 + 0.606053i 0.994411 0.105581i \(-0.0336701\pi\)
−0.702551 + 0.711633i \(0.747956\pi\)
\(710\) 29760.4 + 23733.1i 1.57308 + 1.25449i
\(711\) 14914.7i 0.786702i
\(712\) 8781.00 4228.71i 0.462194 0.222581i
\(713\) −17003.0 35307.2i −0.893084 1.85451i
\(714\) −49621.5 39571.9i −2.60090 2.07414i
\(715\) −23653.9 + 18863.4i −1.23721 + 0.986644i
\(716\) −14684.1 + 3351.54i −0.766437 + 0.174934i
\(717\) −21175.6 + 43971.5i −1.10295 + 2.29030i
\(718\) −17784.3 8564.47i −0.924380 0.445158i
\(719\) 1288.25i 0.0668200i 0.999442 + 0.0334100i \(0.0106367\pi\)
−0.999442 + 0.0334100i \(0.989363\pi\)
\(720\) 22208.3i 1.14952i
\(721\) −2088.81 + 1665.77i −0.107894 + 0.0860423i
\(722\) 7664.97 1749.48i 0.395098 0.0901785i
\(723\) −9964.83 + 4798.81i −0.512581 + 0.246846i
\(724\) 2012.08 8815.50i 0.103285 0.452522i
\(725\) 716.877 898.935i 0.0367229 0.0460491i
\(726\) 31804.6 15316.3i 1.62587 0.782977i
\(727\) −1224.70 5365.75i −0.0624781 0.273734i 0.934034 0.357184i \(-0.116263\pi\)
−0.996512 + 0.0834501i \(0.973406\pi\)
\(728\) −3924.03 + 17192.3i −0.199772 + 0.875260i
\(729\) −2844.83 12464.0i −0.144532 0.633237i
\(730\) −9049.62 18791.7i −0.458824 0.952757i
\(731\) 27043.6 + 6172.52i 1.36832 + 0.312310i
\(732\) 438.884 + 911.353i 0.0221607 + 0.0460172i
\(733\) 1887.77 8270.84i 0.0951245 0.416767i −0.904835 0.425762i \(-0.860006\pi\)
0.999960 + 0.00899473i \(0.00286315\pi\)
\(734\) 7432.36 + 3579.24i 0.373751 + 0.179989i
\(735\) −50024.7 + 24090.6i −2.51046 + 1.20897i
\(736\) 35177.1 + 8028.94i 1.76175 + 0.402107i
\(737\) −5032.82 + 6310.96i −0.251542 + 0.315424i
\(738\) −7624.62 6080.43i −0.380306 0.303284i
\(739\) 12624.8 + 6079.77i 0.628430 + 0.302636i 0.720857 0.693083i \(-0.243748\pi\)
−0.0924273 + 0.995719i \(0.529463\pi\)
\(740\) −5816.53 + 4638.53i −0.288946 + 0.230427i
\(741\) −13987.6 17539.9i −0.693453 0.869562i
\(742\) −17345.1 36017.6i −0.858168 1.78200i
\(743\) −18094.9 + 14430.2i −0.893457 + 0.712508i −0.958415 0.285380i \(-0.907880\pi\)
0.0649573 + 0.997888i \(0.479309\pi\)
\(744\) 13420.7 10702.6i 0.661324 0.527389i
\(745\) 4059.04 + 17783.8i 0.199613 + 0.874561i
\(746\) −7926.33 + 34727.5i −0.389013 + 1.70438i
\(747\) 14357.8 + 6914.37i 0.703247 + 0.338666i
\(748\) 4353.10 + 19072.2i 0.212788 + 0.932284i
\(749\) −28550.0 35800.5i −1.39278 1.74649i
\(750\) −29313.3 + 6690.57i −1.42716 + 0.325740i
\(751\) 5170.94 + 6484.15i 0.251252 + 0.315060i 0.891423 0.453173i \(-0.149708\pi\)
−0.640171 + 0.768233i \(0.721136\pi\)
\(752\) −27288.4 −1.32328
\(753\) −24762.8 19747.7i −1.19842 0.955705i
\(754\) 1535.23 6726.28i 0.0741508 0.324876i
\(755\) −12899.4 −0.621799
\(756\) −1952.93 + 4055.31i −0.0939517 + 0.195093i
\(757\) −29195.1 + 6663.60i −1.40174 + 0.319937i −0.855548 0.517724i \(-0.826779\pi\)
−0.546190 + 0.837662i \(0.683922\pi\)
\(758\) 1253.76 2603.46i 0.0600773 0.124752i
\(759\) −15880.9 69578.9i −0.759475 3.32748i
\(760\) 2256.30 + 9885.52i 0.107691 + 0.471823i
\(761\) −29019.9 23142.6i −1.38235 1.10239i −0.982593 0.185771i \(-0.940522\pi\)
−0.399761 0.916620i \(-0.630907\pi\)
\(762\) −15201.0 7320.43i −0.722671 0.348020i
\(763\) −29779.6 37342.5i −1.41297 1.77181i
\(764\) 11473.8 5525.47i 0.543332 0.261655i
\(765\) −5029.51 22035.7i −0.237702 1.04144i
\(766\) −4517.41 + 2175.47i −0.213082 + 0.102615i
\(767\) −10435.1 + 21668.7i −0.491250