Properties

Label 197.4.e.a.6.18
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.18
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77835 + 0.405896i) q^{2} +(3.55906 + 0.812332i) q^{3} +(-4.20998 + 2.02742i) q^{4} +(-2.71301 + 5.63362i) q^{5} -6.65897 q^{6} +(-6.79789 + 29.7835i) q^{7} +(18.0729 - 14.4126i) q^{8} +(-12.3191 - 5.93258i) q^{9} +O(q^{10})\) \(q+(-1.77835 + 0.405896i) q^{2} +(3.55906 + 0.812332i) q^{3} +(-4.20998 + 2.02742i) q^{4} +(-2.71301 + 5.63362i) q^{5} -6.65897 q^{6} +(-6.79789 + 29.7835i) q^{7} +(18.0729 - 14.4126i) q^{8} +(-12.3191 - 5.93258i) q^{9} +(2.53801 - 11.1197i) q^{10} +(1.46669 - 0.334762i) q^{11} +(-16.6305 + 3.79581i) q^{12} +(4.27585 + 3.40988i) q^{13} -55.7247i q^{14} +(-14.2321 + 17.8465i) q^{15} +(-2.98266 + 3.74013i) q^{16} +(49.8853 - 103.588i) q^{17} +(24.3157 + 5.54991i) q^{18} -149.144 q^{19} -29.2178i q^{20} +(-48.3882 + 100.479i) q^{21} +(-2.47240 + 1.19065i) q^{22} +(-5.84219 - 25.5963i) q^{23} +(76.0303 - 36.6143i) q^{24} +(53.5590 + 67.1608i) q^{25} +(-8.98801 - 4.32840i) q^{26} +(-116.087 - 92.5765i) q^{27} +(-31.7647 - 139.170i) q^{28} +(3.12361 + 13.6854i) q^{29} +(18.0658 - 37.5141i) q^{30} +(-90.6296 + 20.6856i) q^{31} +(-76.4515 + 158.753i) q^{32} +5.49197 q^{33} +(-46.6675 + 204.464i) q^{34} +(-149.346 - 119.100i) q^{35} +63.8912 q^{36} +(28.4364 + 35.6581i) q^{37} +(265.230 - 60.5369i) q^{38} +(12.4481 + 15.6094i) q^{39} +(32.1635 + 140.917i) q^{40} +(-153.112 - 73.7348i) q^{41} +(45.2670 - 198.328i) q^{42} +(-123.951 - 543.067i) q^{43} +(-5.49603 + 4.38294i) q^{44} +(66.8438 - 53.3062i) q^{45} +(20.7789 + 43.1478i) q^{46} +(-36.0545 - 45.2109i) q^{47} +(-13.6537 + 10.8885i) q^{48} +(-531.814 - 256.108i) q^{49} +(-122.507 - 97.6959i) q^{50} +(261.693 - 328.152i) q^{51} +(-24.9145 - 5.68658i) q^{52} +(-519.476 + 250.167i) q^{53} +(244.020 + 117.514i) q^{54} +(-2.09321 + 9.17097i) q^{55} +(306.402 + 636.250i) q^{56} +(-530.812 - 121.154i) q^{57} +(-11.1097 - 23.0696i) q^{58} +(-35.7291 - 156.539i) q^{59} +(23.7346 - 103.988i) q^{60} +(170.408 + 746.605i) q^{61} +(152.775 - 73.5725i) q^{62} +(260.437 - 326.578i) q^{63} +(80.0360 - 350.661i) q^{64} +(-30.8104 + 14.8375i) q^{65} +(-9.76663 + 2.22917i) q^{66} +(-383.617 + 305.925i) q^{67} +537.241i q^{68} -95.8446i q^{69} +(313.932 + 151.182i) q^{70} +(-3.27513 + 6.80087i) q^{71} +(-308.147 + 70.3324i) q^{72} +(378.975 - 302.223i) q^{73} +(-65.0433 - 51.8703i) q^{74} +(136.063 + 282.537i) q^{75} +(627.893 - 302.377i) q^{76} +45.9588i q^{77} +(-28.4728 - 22.7063i) q^{78} +(284.213 + 590.173i) q^{79} +(-12.9785 - 26.9502i) q^{80} +(-107.781 - 135.153i) q^{81} +(302.215 + 68.9786i) q^{82} +548.302 q^{83} -521.119i q^{84} +(448.235 + 562.069i) q^{85} +(440.857 + 915.450i) q^{86} +51.2447i q^{87} +(21.6825 - 27.1890i) q^{88} +(1560.11 + 356.085i) q^{89} +(-97.2348 + 121.929i) q^{90} +(-130.625 + 104.170i) q^{91} +(76.4900 + 95.9154i) q^{92} -339.360 q^{93} +(82.4684 + 65.7664i) q^{94} +(404.628 - 840.220i) q^{95} +(-401.056 + 502.908i) q^{96} +(82.9077 + 39.9262i) q^{97} +(1049.70 + 239.588i) q^{98} +(-20.0543 - 4.57727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77835 + 0.405896i −0.628741 + 0.143506i −0.525005 0.851099i \(-0.675937\pi\)
−0.103736 + 0.994605i \(0.533080\pi\)
\(3\) 3.55906 + 0.812332i 0.684941 + 0.156333i 0.550811 0.834630i \(-0.314319\pi\)
0.134131 + 0.990964i \(0.457176\pi\)
\(4\) −4.20998 + 2.02742i −0.526248 + 0.253428i
\(5\) −2.71301 + 5.63362i −0.242659 + 0.503886i −0.986355 0.164631i \(-0.947357\pi\)
0.743696 + 0.668518i \(0.233071\pi\)
\(6\) −6.65897 −0.453085
\(7\) −6.79789 + 29.7835i −0.367052 + 1.60816i 0.367782 + 0.929912i \(0.380117\pi\)
−0.734834 + 0.678247i \(0.762740\pi\)
\(8\) 18.0729 14.4126i 0.798716 0.636955i
\(9\) −12.3191 5.93258i −0.456264 0.219725i
\(10\) 2.53801 11.1197i 0.0802588 0.351637i
\(11\) 1.46669 0.334762i 0.0402021 0.00917587i −0.202373 0.979309i \(-0.564865\pi\)
0.242575 + 0.970133i \(0.422008\pi\)
\(12\) −16.6305 + 3.79581i −0.400068 + 0.0913129i
\(13\) 4.27585 + 3.40988i 0.0912237 + 0.0727485i 0.668040 0.744126i \(-0.267134\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(14\) 55.7247i 1.06379i
\(15\) −14.2321 + 17.8465i −0.244981 + 0.307197i
\(16\) −2.98266 + 3.74013i −0.0466040 + 0.0584396i
\(17\) 49.8853 103.588i 0.711704 1.47787i −0.159630 0.987177i \(-0.551030\pi\)
0.871334 0.490691i \(-0.163256\pi\)
\(18\) 24.3157 + 5.54991i 0.318404 + 0.0726736i
\(19\) −149.144 −1.80084 −0.900420 0.435022i \(-0.856740\pi\)
−0.900420 + 0.435022i \(0.856740\pi\)
\(20\) 29.2178i 0.326665i
\(21\) −48.3882 + 100.479i −0.502818 + 1.04411i
\(22\) −2.47240 + 1.19065i −0.0239599 + 0.0115385i
\(23\) −5.84219 25.5963i −0.0529644 0.232052i 0.941517 0.336966i \(-0.109401\pi\)
−0.994481 + 0.104913i \(0.966543\pi\)
\(24\) 76.0303 36.6143i 0.646651 0.311411i
\(25\) 53.5590 + 67.1608i 0.428472 + 0.537287i
\(26\) −8.98801 4.32840i −0.0677959 0.0326488i
\(27\) −116.087 92.5765i −0.827444 0.659865i
\(28\) −31.7647 139.170i −0.214392 0.939311i
\(29\) 3.12361 + 13.6854i 0.0200014 + 0.0876318i 0.983944 0.178480i \(-0.0571180\pi\)
−0.963942 + 0.266112i \(0.914261\pi\)
\(30\) 18.0658 37.5141i 0.109945 0.228303i
\(31\) −90.6296 + 20.6856i −0.525083 + 0.119847i −0.476842 0.878989i \(-0.658219\pi\)
−0.0482407 + 0.998836i \(0.515361\pi\)
\(32\) −76.4515 + 158.753i −0.422339 + 0.876995i
\(33\) 5.49197 0.0289706
\(34\) −46.6675 + 204.464i −0.235394 + 1.03133i
\(35\) −149.346 119.100i −0.721261 0.575186i
\(36\) 63.8912 0.295792
\(37\) 28.4364 + 35.6581i 0.126349 + 0.158437i 0.840982 0.541063i \(-0.181978\pi\)
−0.714633 + 0.699499i \(0.753406\pi\)
\(38\) 265.230 60.5369i 1.13226 0.258431i
\(39\) 12.4481 + 15.6094i 0.0511099 + 0.0640898i
\(40\) 32.1635 + 140.917i 0.127137 + 0.557025i
\(41\) −153.112 73.7348i −0.583221 0.280864i 0.118918 0.992904i \(-0.462057\pi\)
−0.702139 + 0.712040i \(0.747772\pi\)
\(42\) 45.2670 198.328i 0.166306 0.728633i
\(43\) −123.951 543.067i −0.439591 1.92597i −0.371916 0.928266i \(-0.621299\pi\)
−0.0676746 0.997707i \(-0.521558\pi\)
\(44\) −5.49603 + 4.38294i −0.0188308 + 0.0150171i
\(45\) 66.8438 53.3062i 0.221433 0.176587i
\(46\) 20.7789 + 43.1478i 0.0666017 + 0.138300i
\(47\) −36.0545 45.2109i −0.111896 0.140313i 0.722730 0.691131i \(-0.242887\pi\)
−0.834625 + 0.550818i \(0.814316\pi\)
\(48\) −13.6537 + 10.8885i −0.0410571 + 0.0327419i
\(49\) −531.814 256.108i −1.55048 0.746671i
\(50\) −122.507 97.6959i −0.346502 0.276326i
\(51\) 261.693 328.152i 0.718515 0.900990i
\(52\) −24.9145 5.68658i −0.0664427 0.0151651i
\(53\) −519.476 + 250.167i −1.34633 + 0.648359i −0.961545 0.274647i \(-0.911439\pi\)
−0.384786 + 0.923006i \(0.625725\pi\)
\(54\) 244.020 + 117.514i 0.614943 + 0.296141i
\(55\) −2.09321 + 9.17097i −0.00513180 + 0.0224839i
\(56\) 306.402 + 636.250i 0.731154 + 1.51826i
\(57\) −530.812 121.154i −1.23347 0.281531i
\(58\) −11.1097 23.0696i −0.0251514 0.0522274i
\(59\) −35.7291 156.539i −0.0788395 0.345418i 0.920088 0.391711i \(-0.128117\pi\)
−0.998928 + 0.0462922i \(0.985259\pi\)
\(60\) 23.7346 103.988i 0.0510687 0.223747i
\(61\) 170.408 + 746.605i 0.357680 + 1.56710i 0.758957 + 0.651141i \(0.225709\pi\)
−0.401277 + 0.915957i \(0.631434\pi\)
\(62\) 152.775 73.5725i 0.312942 0.150705i
\(63\) 260.437 326.578i 0.520826 0.653095i
\(64\) 80.0360 350.661i 0.156320 0.684884i
\(65\) −30.8104 + 14.8375i −0.0587932 + 0.0283133i
\(66\) −9.76663 + 2.22917i −0.0182150 + 0.00415745i
\(67\) −383.617 + 305.925i −0.699497 + 0.557830i −0.907374 0.420325i \(-0.861916\pi\)
0.207877 + 0.978155i \(0.433345\pi\)
\(68\) 537.241i 0.958090i
\(69\) 95.8446i 0.167222i
\(70\) 313.932 + 151.182i 0.536029 + 0.258138i
\(71\) −3.27513 + 6.80087i −0.00547445 + 0.0113678i −0.903688 0.428191i \(-0.859151\pi\)
0.898214 + 0.439559i \(0.144865\pi\)
\(72\) −308.147 + 70.3324i −0.504381 + 0.115122i
\(73\) 378.975 302.223i 0.607613 0.484555i −0.270686 0.962668i \(-0.587250\pi\)
0.878298 + 0.478113i \(0.158679\pi\)
\(74\) −65.0433 51.8703i −0.102177 0.0814838i
\(75\) 136.063 + 282.537i 0.209482 + 0.434994i
\(76\) 627.893 302.377i 0.947688 0.456382i
\(77\) 45.9588i 0.0680194i
\(78\) −28.4728 22.7063i −0.0413321 0.0329613i
\(79\) 284.213 + 590.173i 0.404765 + 0.840503i 0.999335 + 0.0364591i \(0.0116079\pi\)
−0.594570 + 0.804044i \(0.702678\pi\)
\(80\) −12.9785 26.9502i −0.0181380 0.0376640i
\(81\) −107.781 135.153i −0.147847 0.185395i
\(82\) 302.215 + 68.9786i 0.407001 + 0.0928952i
\(83\) 548.302 0.725108 0.362554 0.931963i \(-0.381905\pi\)
0.362554 + 0.931963i \(0.381905\pi\)
\(84\) 521.119i 0.676889i
\(85\) 448.235 + 562.069i 0.571976 + 0.717235i
\(86\) 440.857 + 915.450i 0.552778 + 1.14785i
\(87\) 51.2447i 0.0631495i
\(88\) 21.6825 27.1890i 0.0262655 0.0329358i
\(89\) 1560.11 + 356.085i 1.85811 + 0.424101i 0.996509 0.0834889i \(-0.0266063\pi\)
0.861599 + 0.507590i \(0.169463\pi\)
\(90\) −97.2348 + 121.929i −0.113883 + 0.142804i
\(91\) −130.625 + 104.170i −0.150475 + 0.120000i
\(92\) 76.4900 + 95.9154i 0.0866808 + 0.108694i
\(93\) −339.360 −0.378387
\(94\) 82.4684 + 65.7664i 0.0904890 + 0.0721626i
\(95\) 404.628 840.220i 0.436989 0.907418i
\(96\) −401.056 + 502.908i −0.426381 + 0.534665i
\(97\) 82.9077 + 39.9262i 0.0867835 + 0.0417927i 0.476772 0.879027i \(-0.341807\pi\)
−0.389989 + 0.920820i \(0.627521\pi\)
\(98\) 1049.70 + 239.588i 1.08200 + 0.246960i
\(99\) −20.0543 4.57727i −0.0203590 0.00464680i
\(100\) −361.646 174.159i −0.361646 0.174159i
\(101\) −819.672 + 1027.84i −0.807529 + 1.01261i 0.191984 + 0.981398i \(0.438508\pi\)
−0.999513 + 0.0312111i \(0.990064\pi\)
\(102\) −332.185 + 689.789i −0.322463 + 0.669600i
\(103\) −252.290 201.194i −0.241348 0.192469i 0.495344 0.868697i \(-0.335042\pi\)
−0.736692 + 0.676228i \(0.763613\pi\)
\(104\) 126.422 0.119199
\(105\) −434.784 545.202i −0.404100 0.506726i
\(106\) 822.268 655.737i 0.753450 0.600857i
\(107\) −1144.70 + 1435.41i −1.03423 + 1.29689i −0.0803293 + 0.996768i \(0.525597\pi\)
−0.953902 + 0.300117i \(0.902974\pi\)
\(108\) 676.416 + 154.388i 0.602668 + 0.137555i
\(109\) 2.87545 3.60570i 0.00252677 0.00316847i −0.780566 0.625073i \(-0.785069\pi\)
0.783093 + 0.621904i \(0.213641\pi\)
\(110\) 17.1588i 0.0148730i
\(111\) 72.2406 + 150.009i 0.0617727 + 0.128272i
\(112\) −91.1185 114.259i −0.0768740 0.0963970i
\(113\) 95.9501i 0.0798781i −0.999202 0.0399391i \(-0.987284\pi\)
0.999202 0.0399391i \(-0.0127164\pi\)
\(114\) 993.144 0.815934
\(115\) 160.050 + 36.5303i 0.129780 + 0.0296215i
\(116\) −40.8965 51.2826i −0.0327340 0.0410471i
\(117\) −32.4454 67.3736i −0.0256374 0.0532367i
\(118\) 127.078 + 263.879i 0.0991393 + 0.205865i
\(119\) 2746.10 + 2189.94i 2.11541 + 1.68699i
\(120\) 527.661i 0.401405i
\(121\) −1197.15 + 576.517i −0.899437 + 0.433146i
\(122\) −606.088 1258.56i −0.449776 0.933969i
\(123\) −485.037 386.804i −0.355564 0.283553i
\(124\) 339.611 270.830i 0.245951 0.196139i
\(125\) −1285.67 + 293.447i −0.919953 + 0.209973i
\(126\) −330.591 + 686.480i −0.233741 + 0.485369i
\(127\) −198.387 95.5383i −0.138614 0.0667532i 0.363291 0.931676i \(-0.381653\pi\)
−0.501905 + 0.864923i \(0.667367\pi\)
\(128\) 753.538i 0.520344i
\(129\) 2033.50i 1.38790i
\(130\) 48.7691 38.8921i 0.0329026 0.0262389i
\(131\) −2144.57 + 489.483i −1.43032 + 0.326461i −0.866392 0.499365i \(-0.833567\pi\)
−0.563926 + 0.825826i \(0.690710\pi\)
\(132\) −23.1211 + 11.1345i −0.0152457 + 0.00734194i
\(133\) 1013.86 4442.03i 0.661001 2.89604i
\(134\) 558.031 699.749i 0.359751 0.451113i
\(135\) 836.486 402.830i 0.533283 0.256816i
\(136\) −591.404 2591.11i −0.372886 1.63372i
\(137\) −435.631 + 1908.62i −0.271668 + 1.19025i 0.636376 + 0.771379i \(0.280433\pi\)
−0.908044 + 0.418875i \(0.862425\pi\)
\(138\) 38.9030 + 170.445i 0.0239974 + 0.105139i
\(139\) −549.477 1141.00i −0.335295 0.696247i 0.663349 0.748310i \(-0.269135\pi\)
−0.998644 + 0.0520630i \(0.983420\pi\)
\(140\) 870.210 + 198.620i 0.525330 + 0.119903i
\(141\) −91.5939 190.197i −0.0547064 0.113599i
\(142\) 3.06387 13.4237i 0.00181066 0.00793303i
\(143\) 7.41284 + 3.56984i 0.00433492 + 0.00208759i
\(144\) 58.9324 28.3804i 0.0341044 0.0164238i
\(145\) −85.5729 19.5315i −0.0490100 0.0111862i
\(146\) −551.279 + 691.282i −0.312494 + 0.391856i
\(147\) −1684.71 1343.51i −0.945257 0.753818i
\(148\) −192.011 92.4675i −0.106643 0.0513566i
\(149\) −550.826 + 439.269i −0.302855 + 0.241519i −0.763111 0.646267i \(-0.776329\pi\)
0.460256 + 0.887786i \(0.347758\pi\)
\(150\) −356.648 447.222i −0.194134 0.243437i
\(151\) −762.611 1583.58i −0.410996 0.853443i −0.999005 0.0445883i \(-0.985802\pi\)
0.588009 0.808854i \(-0.299912\pi\)
\(152\) −2695.46 + 2149.56i −1.43836 + 1.14705i
\(153\) −1229.09 + 980.164i −0.649450 + 0.517919i
\(154\) −18.6545 81.7308i −0.00976119 0.0427666i
\(155\) 129.344 566.693i 0.0670268 0.293664i
\(156\) −84.0529 40.4777i −0.0431386 0.0207744i
\(157\) 312.786 + 1370.40i 0.159000 + 0.696625i 0.990084 + 0.140478i \(0.0448638\pi\)
−0.831084 + 0.556147i \(0.812279\pi\)
\(158\) −744.978 934.173i −0.375109 0.470372i
\(159\) −2052.07 + 468.371i −1.02352 + 0.233611i
\(160\) −686.941 861.397i −0.339422 0.425621i
\(161\) 802.062 0.392617
\(162\) 246.529 + 196.601i 0.119563 + 0.0953482i
\(163\) 470.520 2061.48i 0.226098 0.990600i −0.726690 0.686965i \(-0.758943\pi\)
0.952788 0.303635i \(-0.0982003\pi\)
\(164\) 794.090 0.378097
\(165\) −14.8998 + 30.9397i −0.00702997 + 0.0145979i
\(166\) −975.071 + 222.554i −0.455905 + 0.104057i
\(167\) 676.218 1404.18i 0.313337 0.650652i −0.683515 0.729937i \(-0.739549\pi\)
0.996852 + 0.0792851i \(0.0252638\pi\)
\(168\) 573.656 + 2513.35i 0.263444 + 1.15422i
\(169\) −482.223 2112.76i −0.219492 0.961655i
\(170\) −1025.26 817.618i −0.462552 0.368873i
\(171\) 1837.32 + 884.808i 0.821659 + 0.395690i
\(172\) 1622.86 + 2035.00i 0.719428 + 0.902135i
\(173\) 2727.28 1313.39i 1.19856 0.577197i 0.275296 0.961359i \(-0.411224\pi\)
0.923266 + 0.384162i \(0.125510\pi\)
\(174\) −20.8000 91.1309i −0.00906234 0.0397047i
\(175\) −2364.37 + 1138.62i −1.02131 + 0.491839i
\(176\) −3.12257 + 6.48409i −0.00133735 + 0.00277703i
\(177\) 586.157i 0.248917i
\(178\) −2918.96 −1.22913
\(179\) −1397.52 318.976i −0.583552 0.133192i −0.0794543 0.996839i \(-0.525318\pi\)
−0.504098 + 0.863647i \(0.668175\pi\)
\(180\) −173.337 + 359.938i −0.0717766 + 0.149046i
\(181\) −1122.88 + 1408.04i −0.461121 + 0.578227i −0.956972 0.290180i \(-0.906285\pi\)
0.495851 + 0.868408i \(0.334856\pi\)
\(182\) 190.015 238.271i 0.0773891 0.0970428i
\(183\) 2795.64i 1.12929i
\(184\) −474.496 378.398i −0.190110 0.151608i
\(185\) −278.032 + 63.4591i −0.110494 + 0.0252195i
\(186\) 603.500 137.745i 0.237907 0.0543008i
\(187\) 38.4889 168.631i 0.0150513 0.0659439i
\(188\) 243.450 + 117.240i 0.0944439 + 0.0454818i
\(189\) 3546.40 2828.16i 1.36488 1.08846i
\(190\) −378.528 + 1658.44i −0.144533 + 0.633241i
\(191\) 2436.40 0.922995 0.461497 0.887142i \(-0.347312\pi\)
0.461497 + 0.887142i \(0.347312\pi\)
\(192\) 569.706 1183.01i 0.214140 0.444667i
\(193\) 749.780 361.075i 0.279639 0.134667i −0.288808 0.957387i \(-0.593259\pi\)
0.568447 + 0.822720i \(0.307545\pi\)
\(194\) −163.645 37.3508i −0.0605618 0.0138228i
\(195\) −121.709 + 27.7793i −0.0446962 + 0.0102016i
\(196\) 2758.17 1.00516
\(197\) 285.292 + 2750.27i 0.103179 + 0.994663i
\(198\) 37.5215 0.0134674
\(199\) −3897.88 + 889.665i −1.38851 + 0.316918i −0.850480 0.526008i \(-0.823688\pi\)
−0.538029 + 0.842926i \(0.680831\pi\)
\(200\) 1935.93 + 441.864i 0.684455 + 0.156222i
\(201\) −1613.83 + 777.179i −0.566322 + 0.272726i
\(202\) 1040.47 2160.55i 0.362411 0.752554i
\(203\) −428.835 −0.148267
\(204\) −436.419 + 1912.07i −0.149781 + 0.656235i
\(205\) 830.787 662.531i 0.283047 0.225723i
\(206\) 530.323 + 255.390i 0.179366 + 0.0863781i
\(207\) −79.8815 + 349.984i −0.0268220 + 0.117515i
\(208\) −25.5068 + 5.82176i −0.00850278 + 0.00194070i
\(209\) −218.748 + 49.9277i −0.0723975 + 0.0165243i
\(210\) 994.492 + 793.081i 0.326793 + 0.260608i
\(211\) 1189.73i 0.388172i 0.980985 + 0.194086i \(0.0621740\pi\)
−0.980985 + 0.194086i \(0.937826\pi\)
\(212\) 1679.79 2106.39i 0.544192 0.682395i
\(213\) −17.1809 + 21.5442i −0.00552685 + 0.00693045i
\(214\) 1453.05 3017.30i 0.464153 0.963823i
\(215\) 3395.71 + 775.049i 1.07714 + 0.245851i
\(216\) −3432.30 −1.08120
\(217\) 2839.89i 0.888406i
\(218\) −3.65001 + 7.57932i −0.00113399 + 0.00235475i
\(219\) 1594.30 767.775i 0.491931 0.236902i
\(220\) −9.78102 42.8535i −0.00299744 0.0131326i
\(221\) 566.524 272.824i 0.172437 0.0830412i
\(222\) −189.357 237.446i −0.0572469 0.0717854i
\(223\) −21.0561 10.1401i −0.00632296 0.00304498i 0.430720 0.902486i \(-0.358260\pi\)
−0.437043 + 0.899441i \(0.643974\pi\)
\(224\) −4208.52 3356.18i −1.25533 1.00109i
\(225\) −261.363 1145.11i −0.0774409 0.339291i
\(226\) 38.9458 + 170.633i 0.0114630 + 0.0502226i
\(227\) 1358.46 2820.87i 0.397199 0.824791i −0.602447 0.798159i \(-0.705807\pi\)
0.999645 0.0266323i \(-0.00847832\pi\)
\(228\) 2480.34 566.121i 0.720458 0.164440i
\(229\) −2764.04 + 5739.58i −0.797610 + 1.65625i −0.0439097 + 0.999036i \(0.513981\pi\)
−0.753700 + 0.657218i \(0.771733\pi\)
\(230\) −299.452 −0.0858489
\(231\) −37.3338 + 163.570i −0.0106337 + 0.0465893i
\(232\) 253.696 + 202.316i 0.0717930 + 0.0572530i
\(233\) −4696.79 −1.32059 −0.660293 0.751008i \(-0.729568\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(234\) 85.0460 + 106.644i 0.0237591 + 0.0297930i
\(235\) 352.517 80.4598i 0.0978540 0.0223345i
\(236\) 467.790 + 586.590i 0.129028 + 0.161796i
\(237\) 532.113 + 2331.34i 0.145841 + 0.638973i
\(238\) −5772.40 2779.84i −1.57214 0.757103i
\(239\) −1063.42 + 4659.13i −0.287810 + 1.26098i 0.599713 + 0.800215i \(0.295282\pi\)
−0.887523 + 0.460764i \(0.847576\pi\)
\(240\) −24.2988 106.460i −0.00653534 0.0286332i
\(241\) −3220.91 + 2568.59i −0.860902 + 0.686546i −0.950934 0.309393i \(-0.899874\pi\)
0.0900328 + 0.995939i \(0.471303\pi\)
\(242\) 1894.94 1511.17i 0.503354 0.401411i
\(243\) 1465.63 + 3043.41i 0.386914 + 0.803434i
\(244\) −2231.09 2797.70i −0.585374 0.734035i
\(245\) 2885.63 2301.21i 0.752475 0.600078i
\(246\) 1019.57 + 490.998i 0.264249 + 0.127256i
\(247\) −637.717 508.563i −0.164279 0.131008i
\(248\) −1339.80 + 1680.06i −0.343055 + 0.430177i
\(249\) 1951.44 + 445.403i 0.496656 + 0.113359i
\(250\) 2167.27 1043.70i 0.548280 0.264038i
\(251\) −403.007 194.078i −0.101345 0.0488052i 0.382524 0.923945i \(-0.375055\pi\)
−0.483869 + 0.875140i \(0.660769\pi\)
\(252\) −434.325 + 1902.90i −0.108571 + 0.475681i
\(253\) −17.1373 35.5861i −0.00425856 0.00884299i
\(254\) 391.580 + 89.3757i 0.0967320 + 0.0220785i
\(255\) 1138.71 + 2364.55i 0.279642 + 0.580683i
\(256\) 946.146 + 4145.34i 0.230993 + 1.01205i
\(257\) −505.071 + 2212.86i −0.122589 + 0.537099i 0.875917 + 0.482462i \(0.160257\pi\)
−0.998506 + 0.0546373i \(0.982600\pi\)
\(258\) 825.389 + 3616.26i 0.199172 + 0.872631i
\(259\) −1255.33 + 604.536i −0.301168 + 0.145035i
\(260\) 99.6293 124.931i 0.0237644 0.0297996i
\(261\) 42.7098 187.124i 0.0101290 0.0443781i
\(262\) 3615.10 1740.94i 0.852450 0.410518i
\(263\) −3066.47 + 699.902i −0.718960 + 0.164098i −0.566322 0.824184i \(-0.691634\pi\)
−0.152638 + 0.988282i \(0.548777\pi\)
\(264\) 99.2557 79.1538i 0.0231393 0.0184530i
\(265\) 3605.24i 0.835728i
\(266\) 8311.00i 1.91571i
\(267\) 5263.27 + 2534.66i 1.20639 + 0.580969i
\(268\) 994.784 2065.69i 0.226739 0.470829i
\(269\) 5467.12 1247.83i 1.23917 0.282832i 0.447778 0.894145i \(-0.352215\pi\)
0.791389 + 0.611313i \(0.209358\pi\)
\(270\) −1324.06 + 1055.90i −0.298442 + 0.238000i
\(271\) −3032.81 2418.59i −0.679817 0.542136i 0.221573 0.975144i \(-0.428881\pi\)
−0.901390 + 0.433008i \(0.857452\pi\)
\(272\) 238.642 + 495.545i 0.0531977 + 0.110466i
\(273\) −549.523 + 264.636i −0.121827 + 0.0586686i
\(274\) 3571.02i 0.787347i
\(275\) 101.037 + 80.5745i 0.0221555 + 0.0176685i
\(276\) 194.317 + 403.504i 0.0423787 + 0.0880003i
\(277\) −967.872 2009.81i −0.209941 0.435948i 0.769233 0.638968i \(-0.220638\pi\)
−0.979174 + 0.203020i \(0.934924\pi\)
\(278\) 1440.29 + 1806.07i 0.310729 + 0.389642i
\(279\) 1239.20 + 282.839i 0.265910 + 0.0606922i
\(280\) −4415.66 −0.942450
\(281\) 855.546i 0.181628i 0.995868 + 0.0908142i \(0.0289470\pi\)
−0.995868 + 0.0908142i \(0.971053\pi\)
\(282\) 240.086 + 301.058i 0.0506983 + 0.0635736i
\(283\) −4023.17 8354.19i −0.845062 1.75479i −0.627284 0.778791i \(-0.715833\pi\)
−0.217778 0.975998i \(-0.569881\pi\)
\(284\) 35.2716i 0.00736966i
\(285\) 2122.63 2661.70i 0.441172 0.553212i
\(286\) −14.6316 3.33957i −0.00302512 0.000690464i
\(287\) 3236.92 4058.97i 0.665747 0.834820i
\(288\) 1883.63 1502.15i 0.385396 0.307343i
\(289\) −5178.70 6493.88i −1.05408 1.32178i
\(290\) 160.106 0.0324199
\(291\) 262.640 + 209.448i 0.0529080 + 0.0421927i
\(292\) −982.747 + 2040.70i −0.196955 + 0.408982i
\(293\) 3318.57 4161.35i 0.661682 0.829722i −0.331844 0.943334i \(-0.607671\pi\)
0.993525 + 0.113612i \(0.0362421\pi\)
\(294\) 3541.33 + 1705.42i 0.702499 + 0.338306i
\(295\) 978.816 + 223.408i 0.193183 + 0.0440927i
\(296\) 1027.86 + 234.601i 0.201834 + 0.0460673i
\(297\) −201.255 96.9192i −0.0393198 0.0189354i
\(298\) 801.262 1004.75i 0.155758 0.195314i
\(299\) 62.3000 129.367i 0.0120498 0.0250217i
\(300\) −1145.64 913.620i −0.220479 0.175826i
\(301\) 17017.0 3.25862
\(302\) 1998.96 + 2506.61i 0.380884 + 0.477614i
\(303\) −3752.21 + 2992.28i −0.711415 + 0.567334i
\(304\) 444.845 557.818i 0.0839263 0.105240i
\(305\) −4668.40 1065.53i −0.876433 0.200040i
\(306\) 1787.90 2241.96i 0.334011 0.418837i
\(307\) 6373.49i 1.18487i 0.805619 + 0.592433i \(0.201833\pi\)
−0.805619 + 0.592433i \(0.798167\pi\)
\(308\) −93.1778 193.486i −0.0172380 0.0357950i
\(309\) −734.478 921.006i −0.135220 0.169561i
\(310\) 1060.28i 0.194257i
\(311\) 457.326 0.0833844 0.0416922 0.999131i \(-0.486725\pi\)
0.0416922 + 0.999131i \(0.486725\pi\)
\(312\) 449.945 + 102.697i 0.0816446 + 0.0186348i
\(313\) 4027.94 + 5050.88i 0.727388 + 0.912116i 0.998731 0.0503667i \(-0.0160390\pi\)
−0.271342 + 0.962483i \(0.587468\pi\)
\(314\) −1112.48 2310.10i −0.199940 0.415179i
\(315\) 1133.25 + 2353.21i 0.202702 + 0.420916i
\(316\) −2393.06 1908.40i −0.426013 0.339734i
\(317\) 4778.63i 0.846670i 0.905973 + 0.423335i \(0.139141\pi\)
−0.905973 + 0.423335i \(0.860859\pi\)
\(318\) 3459.18 1665.85i 0.610003 0.293762i
\(319\) 9.16273 + 19.0266i 0.00160820 + 0.00333945i
\(320\) 1758.35 + 1402.24i 0.307171 + 0.244961i
\(321\) −5240.11 + 4178.85i −0.911135 + 0.726606i
\(322\) −1426.35 + 325.554i −0.246855 + 0.0563429i
\(323\) −7440.08 + 15449.5i −1.28166 + 2.66140i
\(324\) 727.766 + 350.473i 0.124788 + 0.0600949i
\(325\) 469.800i 0.0801840i
\(326\) 3857.02i 0.655277i
\(327\) 13.1629 10.4971i 0.00222603 0.00177520i
\(328\) −3829.89 + 874.147i −0.644726 + 0.147154i
\(329\) 1591.64 766.491i 0.266716 0.128444i
\(330\) 13.9387 61.0692i 0.00232514 0.0101871i
\(331\) 5443.98 6826.53i 0.904012 1.13360i −0.0865110 0.996251i \(-0.527572\pi\)
0.990523 0.137345i \(-0.0438568\pi\)
\(332\) −2308.34 + 1111.64i −0.381586 + 0.183762i
\(333\) −138.767 607.978i −0.0228360 0.100051i
\(334\) −632.599 + 2771.60i −0.103636 + 0.454057i
\(335\) −682.706 2991.13i −0.111344 0.487829i
\(336\) −231.480 480.673i −0.0375841 0.0780443i
\(337\) 6381.70 + 1456.58i 1.03155 + 0.235445i 0.704607 0.709598i \(-0.251123\pi\)
0.326946 + 0.945043i \(0.393981\pi\)
\(338\) 1715.12 + 3561.48i 0.276007 + 0.573134i
\(339\) 77.9434 341.492i 0.0124876 0.0547118i
\(340\) −3026.61 1457.54i −0.482768 0.232489i
\(341\) −126.001 + 60.6787i −0.0200097 + 0.00963618i
\(342\) −3626.54 827.734i −0.573394 0.130874i
\(343\) 4709.81 5905.91i 0.741416 0.929706i
\(344\) −10067.2 8028.31i −1.57787 1.25831i
\(345\) 539.952 + 260.027i 0.0842609 + 0.0405779i
\(346\) −4316.95 + 3442.65i −0.670754 + 0.534908i
\(347\) 4233.98 + 5309.24i 0.655020 + 0.821369i 0.992791 0.119860i \(-0.0382445\pi\)
−0.337771 + 0.941228i \(0.609673\pi\)
\(348\) −103.895 215.739i −0.0160038 0.0332323i
\(349\) −1541.65 + 1229.43i −0.236455 + 0.188567i −0.734547 0.678557i \(-0.762606\pi\)
0.498092 + 0.867124i \(0.334034\pi\)
\(350\) 3742.52 2984.56i 0.571560 0.455804i
\(351\) −180.697 791.687i −0.0274784 0.120391i
\(352\) −58.9859 + 258.434i −0.00893171 + 0.0391324i
\(353\) 1833.30 + 882.872i 0.276422 + 0.133118i 0.566959 0.823746i \(-0.308120\pi\)
−0.290537 + 0.956864i \(0.593834\pi\)
\(354\) 237.919 + 1042.39i 0.0357210 + 0.156504i
\(355\) −29.4281 36.9016i −0.00439966 0.00551700i
\(356\) −7289.98 + 1663.89i −1.08530 + 0.247713i
\(357\) 7994.56 + 10024.9i 1.18520 + 1.48620i
\(358\) 2614.76 0.386017
\(359\) −3722.25 2968.39i −0.547222 0.436395i 0.310452 0.950589i \(-0.399520\pi\)
−0.857674 + 0.514194i \(0.828091\pi\)
\(360\) 439.778 1926.79i 0.0643842 0.282086i
\(361\) 15384.9 2.24302
\(362\) 1425.35 2959.77i 0.206947 0.429729i
\(363\) −4729.05 + 1079.38i −0.683777 + 0.156068i
\(364\) 338.733 703.385i 0.0487759 0.101284i
\(365\) 674.445 + 2954.94i 0.0967180 + 0.423749i
\(366\) −1134.74 4971.62i −0.162060 0.710029i
\(367\) −6430.74 5128.34i −0.914664 0.729421i 0.0483613 0.998830i \(-0.484600\pi\)
−0.963026 + 0.269409i \(0.913172\pi\)
\(368\) 113.159 + 54.4944i 0.0160294 + 0.00771934i
\(369\) 1448.77 + 1816.70i 0.204390 + 0.256297i
\(370\) 468.680 225.705i 0.0658528 0.0317130i
\(371\) −3919.50 17172.4i −0.548491 2.40310i
\(372\) 1428.70 688.025i 0.199125 0.0958937i
\(373\) −2835.66 + 5888.31i −0.393633 + 0.817387i 0.606125 + 0.795369i \(0.292723\pi\)
−0.999758 + 0.0220172i \(0.992991\pi\)
\(374\) 315.507i 0.0436216i
\(375\) −4814.17 −0.662940
\(376\) −1303.22 297.451i −0.178746 0.0407975i
\(377\) −33.3096 + 69.1681i −0.00455048 + 0.00944917i
\(378\) −5158.80 + 6468.92i −0.701957 + 0.880226i
\(379\) 7480.86 9380.70i 1.01389 1.27138i 0.0518028 0.998657i \(-0.483503\pi\)
0.962092 0.272726i \(-0.0879253\pi\)
\(380\) 4357.66i 0.588272i
\(381\) −628.464 501.183i −0.0845070 0.0673921i
\(382\) −4332.77 + 988.927i −0.580325 + 0.132455i
\(383\) −10505.2 + 2397.74i −1.40154 + 0.319893i −0.855473 0.517847i \(-0.826733\pi\)
−0.546069 + 0.837740i \(0.683876\pi\)
\(384\) 612.123 2681.89i 0.0813471 0.356405i
\(385\) −258.914 124.687i −0.0342740 0.0165055i
\(386\) −1186.81 + 946.450i −0.156495 + 0.124801i
\(387\) −1694.81 + 7425.46i −0.222616 + 0.975342i
\(388\) −429.987 −0.0562610
\(389\) 4813.24 9994.79i 0.627354 1.30271i −0.308801 0.951127i \(-0.599928\pi\)
0.936155 0.351588i \(-0.114358\pi\)
\(390\) 205.165 98.8024i 0.0266383 0.0128283i
\(391\) −2942.91 671.699i −0.380637 0.0868780i
\(392\) −13302.6 + 3036.23i −1.71399 + 0.391207i
\(393\) −8030.26 −1.03072
\(394\) −1623.67 4775.14i −0.207613 0.610578i
\(395\) −4095.88 −0.521737
\(396\) 93.7084 21.3883i 0.0118915 0.00271415i
\(397\) 8275.27 + 1888.78i 1.04616 + 0.238778i 0.710859 0.703334i \(-0.248306\pi\)
0.335297 + 0.942113i \(0.391163\pi\)
\(398\) 6570.67 3164.27i 0.827533 0.398519i
\(399\) 7216.81 14985.9i 0.905494 1.88028i
\(400\) −410.939 −0.0513673
\(401\) −626.310 + 2744.05i −0.0779961 + 0.341723i −0.998837 0.0482153i \(-0.984647\pi\)
0.920841 + 0.389939i \(0.127504\pi\)
\(402\) 2554.50 2037.14i 0.316932 0.252745i
\(403\) −458.055 220.587i −0.0566187 0.0272661i
\(404\) 1366.95 5988.99i 0.168337 0.737533i
\(405\) 1053.81 240.525i 0.129294 0.0295106i
\(406\) 762.617 174.062i 0.0932218 0.0212773i
\(407\) 53.6443 + 42.7799i 0.00653329 + 0.00521013i
\(408\) 9702.33i 1.17730i
\(409\) 6862.61 8605.44i 0.829668 1.04037i −0.168834 0.985645i \(-0.554000\pi\)
0.998501 0.0547257i \(-0.0174284\pi\)
\(410\) −1208.51 + 1515.42i −0.145571 + 0.182540i
\(411\) −3100.87 + 6439.03i −0.372153 + 0.772783i
\(412\) 1470.04 + 335.527i 0.175786 + 0.0401220i
\(413\) 4905.18 0.584426
\(414\) 654.816i 0.0777354i
\(415\) −1487.55 + 3088.92i −0.175954 + 0.365372i
\(416\) −868.224 + 418.115i −0.102327 + 0.0492783i
\(417\) −1028.75 4507.25i −0.120811 0.529307i
\(418\) 368.744 177.578i 0.0431480 0.0207790i
\(419\) −2024.65 2538.83i −0.236063 0.296014i 0.649663 0.760223i \(-0.274910\pi\)
−0.885726 + 0.464209i \(0.846339\pi\)
\(420\) 2935.78 + 1413.80i 0.341075 + 0.164253i
\(421\) −5532.41 4411.95i −0.640459 0.510749i 0.248562 0.968616i \(-0.420042\pi\)
−0.889021 + 0.457867i \(0.848613\pi\)
\(422\) −482.906 2115.75i −0.0557050 0.244059i
\(423\) 175.943 + 770.856i 0.0202237 + 0.0886059i
\(424\) −5782.87 + 12008.3i −0.662361 + 1.37541i
\(425\) 9628.85 2197.72i 1.09898 0.250836i
\(426\) 21.8090 45.2868i 0.00248039 0.00515059i
\(427\) −23394.9 −2.65143
\(428\) 1909.00 8363.87i 0.215596 0.944586i
\(429\) 23.4829 + 18.7270i 0.00264280 + 0.00210757i
\(430\) −6353.34 −0.712524
\(431\) 3202.44 + 4015.73i 0.357903 + 0.448796i 0.927888 0.372859i \(-0.121622\pi\)
−0.569985 + 0.821655i \(0.693051\pi\)
\(432\) 692.497 158.058i 0.0771244 0.0176032i
\(433\) 6457.56 + 8097.52i 0.716698 + 0.898711i 0.998146 0.0608654i \(-0.0193861\pi\)
−0.281448 + 0.959577i \(0.590815\pi\)
\(434\) 1152.70 + 5050.31i 0.127492 + 0.558577i
\(435\) −288.693 139.027i −0.0318202 0.0153238i
\(436\) −4.79532 + 21.0097i −0.000526729 + 0.00230775i
\(437\) 871.327 + 3817.53i 0.0953803 + 0.417889i
\(438\) −2523.59 + 2012.49i −0.275300 + 0.219545i
\(439\) −6211.44 + 4953.46i −0.675298 + 0.538532i −0.899997 0.435896i \(-0.856432\pi\)
0.224699 + 0.974428i \(0.427860\pi\)
\(440\) 94.3475 + 195.915i 0.0102224 + 0.0212270i
\(441\) 5032.11 + 6310.06i 0.543366 + 0.681359i
\(442\) −896.739 + 715.126i −0.0965012 + 0.0769572i
\(443\) 942.268 + 453.773i 0.101058 + 0.0486668i 0.483730 0.875217i \(-0.339282\pi\)
−0.382672 + 0.923884i \(0.624996\pi\)
\(444\) −608.263 485.074i −0.0650155 0.0518482i
\(445\) −6238.65 + 7823.01i −0.664585 + 0.833363i
\(446\) 41.5609 + 9.48600i 0.00441248 + 0.00100712i
\(447\) −2317.25 + 1115.93i −0.245196 + 0.118080i
\(448\) 9899.83 + 4767.51i 1.04402 + 0.502776i
\(449\) −93.4208 + 409.303i −0.00981915 + 0.0430205i −0.979600 0.200957i \(-0.935595\pi\)
0.969781 + 0.243977i \(0.0784521\pi\)
\(450\) 929.589 + 1930.31i 0.0973806 + 0.202213i
\(451\) −249.251 56.8899i −0.0260239 0.00593978i
\(452\) 194.531 + 403.948i 0.0202433 + 0.0420357i
\(453\) −1427.79 6255.55i −0.148087 0.648811i
\(454\) −1270.83 + 5567.88i −0.131372 + 0.575581i
\(455\) −232.467 1018.51i −0.0239522 0.104941i
\(456\) −11339.5 + 5460.79i −1.16451 + 0.560801i
\(457\) −9884.62 + 12394.9i −1.01178 + 1.26873i −0.0488981 + 0.998804i \(0.515571\pi\)
−0.962881 + 0.269927i \(0.913000\pi\)
\(458\) 2585.74 11328.9i 0.263808 1.15582i
\(459\) −15380.8 + 7407.02i −1.56409 + 0.753225i
\(460\) −747.868 + 170.696i −0.0758034 + 0.0173016i
\(461\) 14274.5 11383.6i 1.44215 1.15008i 0.480097 0.877215i \(-0.340601\pi\)
0.962053 0.272861i \(-0.0879700\pi\)
\(462\) 306.038i 0.0308186i
\(463\) 756.377i 0.0759219i −0.999279 0.0379609i \(-0.987914\pi\)
0.999279 0.0379609i \(-0.0120862\pi\)
\(464\) −60.5020 29.1362i −0.00605331 0.00291512i
\(465\) 920.686 1911.82i 0.0918189 0.190664i
\(466\) 8352.52 1906.41i 0.830307 0.189512i
\(467\) −988.228 + 788.085i −0.0979223 + 0.0780904i −0.671227 0.741252i \(-0.734232\pi\)
0.573305 + 0.819342i \(0.305661\pi\)
\(468\) 273.189 + 217.861i 0.0269833 + 0.0215185i
\(469\) −6503.72 13505.1i −0.640328 1.32966i
\(470\) −594.240 + 286.171i −0.0583197 + 0.0280853i
\(471\) 5131.44i 0.502004i
\(472\) −2901.87 2314.17i −0.282986 0.225674i
\(473\) −363.596 755.015i −0.0353450 0.0733946i
\(474\) −1892.56 3929.95i −0.183393 0.380820i
\(475\) −7987.99 10016.6i −0.771609 0.967567i
\(476\) −16000.9 3652.11i −1.54076 0.351668i
\(477\) 7883.64 0.756744
\(478\) 8717.19i 0.834132i
\(479\) 4159.45 + 5215.78i 0.396764 + 0.497526i 0.939582 0.342324i \(-0.111214\pi\)
−0.542818 + 0.839850i \(0.682643\pi\)
\(480\) −1745.12 3623.79i −0.165945 0.344588i
\(481\) 249.434i 0.0236449i
\(482\) 4685.32 5875.21i 0.442761 0.555204i
\(483\) 2854.59 + 651.541i 0.268920 + 0.0613792i
\(484\) 3871.14 4854.25i 0.363555 0.455884i
\(485\) −449.858 + 358.750i −0.0421175 + 0.0335876i
\(486\) −3841.70 4817.34i −0.358566 0.449628i
\(487\) 13899.8 1.29335 0.646674 0.762767i \(-0.276160\pi\)
0.646674 + 0.762767i \(0.276160\pi\)
\(488\) 13840.3 + 11037.3i 1.28385 + 1.02384i
\(489\) 3349.22 6954.72i 0.309728 0.643156i
\(490\) −4197.60 + 5263.63i −0.386997 + 0.485278i
\(491\) 132.858 + 63.9812i 0.0122114 + 0.00588072i 0.439979 0.898008i \(-0.354986\pi\)
−0.427768 + 0.903889i \(0.640700\pi\)
\(492\) 2826.21 + 645.064i 0.258975 + 0.0591093i
\(493\) 1573.47 + 359.134i 0.143743 + 0.0328085i
\(494\) 1340.51 + 645.554i 0.122090 + 0.0587953i
\(495\) 80.1942 100.560i 0.00728174 0.00913101i
\(496\) 192.950 400.665i 0.0174672 0.0362709i
\(497\) −180.290 143.776i −0.0162718 0.0129764i
\(498\) −3651.12 −0.328536
\(499\) 1368.84 + 1716.47i 0.122801 + 0.153987i 0.839432 0.543465i \(-0.182888\pi\)
−0.716631 + 0.697453i \(0.754317\pi\)
\(500\) 4817.72 3842.01i 0.430910 0.343639i
\(501\) 3547.36 4448.25i 0.316336 0.396673i
\(502\) 795.463 + 181.559i 0.0707236 + 0.0161422i
\(503\) 4857.50 6091.11i 0.430587 0.539939i −0.518448 0.855109i \(-0.673490\pi\)
0.949035 + 0.315170i \(0.102062\pi\)
\(504\) 9655.80i 0.853380i
\(505\) −3566.66 7406.25i −0.314286 0.652621i
\(506\) 44.9204 + 56.3284i 0.00394655 + 0.00494882i
\(507\) 7911.15i 0.692991i
\(508\) 1028.90 0.0898626
\(509\) −12163.6 2776.27i −1.05922 0.241760i −0.342786 0.939414i \(-0.611370\pi\)
−0.716435 + 0.697653i \(0.754228\pi\)
\(510\) −2984.79 3742.80i −0.259154 0.324969i
\(511\) 6425.02 + 13341.7i 0.556216 + 1.15499i
\(512\) −749.570 1556.50i −0.0647005 0.134352i
\(513\) 17313.7 + 13807.2i 1.49009 + 1.18831i
\(514\) 4140.25i 0.355289i
\(515\) 1817.92 875.463i 0.155548 0.0749078i
\(516\) 4122.75 + 8560.98i 0.351733 + 0.730380i
\(517\) −68.0157 54.2407i −0.00578593 0.00461412i
\(518\) 1987.04 1584.61i 0.168543 0.134409i
\(519\) 10773.5 2458.97i 0.911180 0.207971i
\(520\) −342.985 + 712.215i −0.0289248 + 0.0600629i
\(521\) −19005.2 9152.41i −1.59814 0.769625i −0.598635 0.801022i \(-0.704290\pi\)
−0.999507 + 0.0313973i \(0.990004\pi\)
\(522\) 350.107i 0.0293559i
\(523\) 12159.4i 1.01662i 0.861175 + 0.508309i \(0.169729\pi\)
−0.861175 + 0.508309i \(0.830271\pi\)
\(524\) 8036.19 6408.65i 0.669967 0.534281i
\(525\) −9339.89 + 2131.77i −0.776431 + 0.177215i
\(526\) 5169.16 2489.34i 0.428491 0.206350i
\(527\) −2378.31 + 10420.0i −0.196586 + 0.861298i
\(528\) −16.3807 + 20.5407i −0.00135015 + 0.00169303i
\(529\) 10341.0 4979.99i 0.849926 0.409303i
\(530\) 1463.35 + 6411.36i 0.119932 + 0.525456i
\(531\) −488.531 + 2140.40i −0.0399255 + 0.174925i
\(532\) 4737.51 + 20756.4i 0.386085 + 1.69155i
\(533\) −403.257 837.372i −0.0327711 0.0680499i
\(534\) −10388.7 2371.16i −0.841882 0.192154i
\(535\) −4980.98 10343.1i −0.402517 0.835836i
\(536\) −2523.89 + 11057.9i −0.203387 + 0.891096i
\(537\) −4714.76 2270.51i −0.378877 0.182457i
\(538\) −9215.95 + 4438.17i −0.738527 + 0.355656i
\(539\) −865.741 197.600i −0.0691839 0.0157908i
\(540\) −2704.88 + 3391.82i −0.215555 + 0.270297i
\(541\) 13524.1 + 10785.1i 1.07477 + 0.857097i 0.990247 0.139325i \(-0.0444934\pi\)
0.0845184 + 0.996422i \(0.473065\pi\)
\(542\) 6375.09 + 3070.08i 0.505228 + 0.243305i
\(543\) −5140.19 + 4099.17i −0.406237 + 0.323963i
\(544\) 12631.1 + 15838.9i 0.995503 + 1.24832i
\(545\) 12.5120 + 25.9814i 0.000983404 + 0.00204206i
\(546\) 869.828 693.665i 0.0681780 0.0543702i
\(547\) −7202.12 + 5743.50i −0.562963 + 0.448948i −0.863161 0.504929i \(-0.831519\pi\)
0.300198 + 0.953877i \(0.402947\pi\)
\(548\) −2035.58 8918.48i −0.158679 0.695216i
\(549\) 2330.02 10208.5i 0.181134 0.793602i
\(550\) −212.384 102.279i −0.0164656 0.00792943i
\(551\) −465.868 2041.10i −0.0360193 0.157811i
\(552\) −1381.37 1732.19i −0.106513 0.133563i
\(553\) −19509.5 + 4452.91i −1.50023 + 0.342418i
\(554\) 2536.99 + 3181.28i 0.194560 + 0.243970i
\(555\) −1041.08 −0.0796244
\(556\) 4626.57 + 3689.57i 0.352897 + 0.281426i
\(557\) 4843.51 21220.8i 0.368449 1.61428i −0.362592 0.931948i \(-0.618108\pi\)
0.731041 0.682334i \(-0.239035\pi\)
\(558\) −2318.53 −0.175898
\(559\) 1321.79 2744.73i 0.100011 0.207674i
\(560\) 890.897 203.341i 0.0672273 0.0153442i
\(561\) 273.969 568.901i 0.0206185 0.0428147i
\(562\) −347.263 1521.46i −0.0260648 0.114197i
\(563\) 2921.72 + 12800.9i 0.218714 + 0.958247i 0.958430 + 0.285328i \(0.0921025\pi\)
−0.739716 + 0.672919i \(0.765040\pi\)
\(564\) 771.217 + 615.025i 0.0575782 + 0.0459171i
\(565\) 540.546 + 260.313i 0.0402495 + 0.0193831i
\(566\) 10545.5 + 13223.7i 0.783148 + 0.982036i
\(567\) 4758.00 2291.33i 0.352412 0.169712i
\(568\) 38.8275 + 170.115i 0.00286825 + 0.0125666i
\(569\) 19815.2 9542.52i 1.45993 0.703063i 0.475639 0.879640i \(-0.342217\pi\)
0.984287 + 0.176577i \(0.0565024\pi\)
\(570\) −2694.41 + 5595.00i −0.197994 + 0.411138i
\(571\) 9875.06i 0.723745i 0.932228 + 0.361872i \(0.117862\pi\)
−0.932228 + 0.361872i \(0.882138\pi\)
\(572\) −38.4455 −0.00281029
\(573\) 8671.31 + 1979.17i 0.632197 + 0.144295i
\(574\) −4108.85 + 8532.11i −0.298781 + 0.620424i
\(575\) 1406.17 1763.28i 0.101985 0.127885i
\(576\) −3066.30 + 3845.01i −0.221810 + 0.278141i
\(577\) 5663.40i 0.408614i −0.978907 0.204307i \(-0.934506\pi\)
0.978907 0.204307i \(-0.0654941\pi\)
\(578\) 11845.4 + 9446.37i 0.852427 + 0.679788i
\(579\) 2961.83 676.017i 0.212589 0.0485221i
\(580\) 399.859 91.2652i 0.0286263 0.00653376i
\(581\) −3727.30 + 16330.4i −0.266152 + 1.16609i
\(582\) −552.080 265.867i −0.0393203 0.0189357i
\(583\) −678.164 + 540.818i −0.0481761 + 0.0384192i
\(584\) 2493.35 10924.1i 0.176670 0.774044i
\(585\) 467.582 0.0330464
\(586\) −4212.49 + 8747.32i −0.296956 + 0.616636i
\(587\) −16438.7 + 7916.48i −1.15588 + 0.556641i −0.910794 0.412861i \(-0.864529\pi\)
−0.245083 + 0.969502i \(0.578815\pi\)
\(588\) 9816.48 + 2240.55i 0.688478 + 0.157141i
\(589\) 13516.9 3085.13i 0.945590 0.215825i
\(590\) −1831.36 −0.127789
\(591\) −1218.76 + 10020.1i −0.0848277 + 0.697416i
\(592\) −218.182 −0.0151473
\(593\) 10834.4 2472.88i 0.750278 0.171246i 0.169751 0.985487i \(-0.445704\pi\)
0.580527 + 0.814241i \(0.302847\pi\)
\(594\) 397.240 + 90.6675i 0.0274393 + 0.00626285i
\(595\) −19787.5 + 9529.14i −1.36337 + 0.656566i
\(596\) 1428.38 2966.07i 0.0981693 0.203851i
\(597\) −14595.5 −1.00059
\(598\) −58.2813 + 255.347i −0.00398545 + 0.0174614i
\(599\) −1286.50 + 1025.95i −0.0877542 + 0.0699816i −0.666384 0.745608i \(-0.732159\pi\)
0.578630 + 0.815590i \(0.303588\pi\)
\(600\) 6531.15 + 3145.24i 0.444389 + 0.214006i
\(601\) 952.024 4171.09i 0.0646154 0.283099i −0.932290 0.361712i \(-0.882192\pi\)
0.996905 + 0.0786137i \(0.0250494\pi\)
\(602\) −30262.2 + 6907.15i −2.04883 + 0.467632i
\(603\) 6540.76 1492.89i 0.441725 0.100821i
\(604\) 6421.16 + 5120.70i 0.432572 + 0.344964i
\(605\) 8308.38i 0.558320i
\(606\) 5458.17 6844.33i 0.365880 0.458799i
\(607\) 18101.2 22698.2i 1.21039 1.51778i 0.417192 0.908818i \(-0.363014\pi\)
0.793198 0.608963i \(-0.208414\pi\)
\(608\) 11402.3 23677.0i 0.760564 1.57933i
\(609\) −1526.25 348.356i −0.101554 0.0231792i
\(610\) 8734.54 0.579756
\(611\) 316.257i 0.0209401i
\(612\) 3187.23 6618.35i 0.210517 0.437142i
\(613\) −10412.9 + 5014.59i −0.686091 + 0.330404i −0.744248 0.667904i \(-0.767192\pi\)
0.0581572 + 0.998307i \(0.481478\pi\)
\(614\) −2586.97 11334.3i −0.170036 0.744974i
\(615\) 3495.02 1683.11i 0.229159 0.110357i
\(616\) 662.388 + 830.608i 0.0433253 + 0.0543282i
\(617\) 15325.4 + 7380.32i 0.999963 + 0.481557i 0.860926 0.508730i \(-0.169885\pi\)
0.139037 + 0.990287i \(0.455599\pi\)
\(618\) 1679.99 + 1339.75i 0.109351 + 0.0872048i
\(619\) 1797.68 + 7876.15i 0.116728 + 0.511421i 0.999160 + 0.0409798i \(0.0130479\pi\)
−0.882432 + 0.470441i \(0.844095\pi\)
\(620\) 604.389 + 2648.00i 0.0391498 + 0.171526i
\(621\) −1691.41 + 3512.25i −0.109298 + 0.226959i
\(622\) −813.284 + 185.627i −0.0524272 + 0.0119662i
\(623\) −21211.0 + 44045.0i −1.36404 + 2.83246i
\(624\) −95.5095 −0.00612731
\(625\) −554.497 + 2429.41i −0.0354878 + 0.155482i
\(626\) −9213.21 7347.29i −0.588233 0.469100i
\(627\) −819.094 −0.0521714
\(628\) −4095.21 5135.23i −0.260217 0.326302i
\(629\) 5112.31 1166.85i 0.324072 0.0739672i
\(630\) −2970.47 3724.85i −0.187851 0.235558i
\(631\) 2714.03 + 11890.9i 0.171226 + 0.750191i 0.985495 + 0.169703i \(0.0542809\pi\)
−0.814269 + 0.580488i \(0.802862\pi\)
\(632\) 13642.5 + 6569.88i 0.858654 + 0.413506i
\(633\) −966.454 + 4234.31i −0.0606842 + 0.265875i
\(634\) −1939.63 8498.06i −0.121502 0.532336i
\(635\) 1076.45 858.442i 0.0672720 0.0536476i
\(636\) 7689.58 6132.23i 0.479421 0.382325i
\(637\) −1400.66 2908.50i −0.0871212 0.180909i
\(638\) −24.0174 30.1168i −0.00149037 0.00186887i
\(639\) 80.6935 64.3509i 0.00499559 0.00398385i
\(640\) 4245.15 + 2044.35i 0.262194 + 0.126266i
\(641\) −21301.6 16987.5i −1.31258 1.04675i −0.995140 0.0984666i \(-0.968606\pi\)
−0.317437 0.948279i \(-0.602822\pi\)
\(642\) 7622.55 9558.38i 0.468595 0.587600i
\(643\) 10050.5 + 2293.96i 0.616411 + 0.140692i 0.519314 0.854583i \(-0.326187\pi\)
0.0970964 + 0.995275i \(0.469044\pi\)
\(644\) −3376.67 + 1626.12i −0.206614 + 0.0995000i
\(645\) 11455.9 + 5516.89i 0.699344 + 0.336787i
\(646\) 6960.17 30494.5i 0.423907 1.85726i
\(647\) 6898.48 + 14324.8i 0.419176 + 0.870429i 0.998469 + 0.0553092i \(0.0176144\pi\)
−0.579293 + 0.815119i \(0.696671\pi\)
\(648\) −3895.81 889.194i −0.236176 0.0539056i
\(649\) −104.807 217.634i −0.00633903 0.0131631i
\(650\) −190.690 835.467i −0.0115069 0.0504150i
\(651\) 2306.93 10107.3i 0.138888 0.608506i
\(652\) 2198.61 + 9632.75i 0.132062 + 0.578600i
\(653\) −4302.63 + 2072.04i −0.257848 + 0.124173i −0.558343 0.829610i \(-0.688563\pi\)
0.300495 + 0.953784i \(0.402848\pi\)
\(654\) −19.1475 + 24.0102i −0.00114484 + 0.00143559i
\(655\) 3060.66 13409.6i 0.182580 0.799936i
\(656\) 732.458 352.733i 0.0435940 0.0209938i
\(657\) −6461.61 + 1474.82i −0.383701 + 0.0875772i
\(658\) −2519.37 + 2009.13i −0.149263 + 0.119033i
\(659\) 17762.0i 1.04994i 0.851121 + 0.524970i \(0.175923\pi\)
−0.851121 + 0.524970i \(0.824077\pi\)
\(660\) 160.463i 0.00946368i
\(661\) 10005.2 + 4818.26i 0.588741 + 0.283523i 0.704442 0.709761i \(-0.251197\pi\)
−0.115701 + 0.993284i \(0.536911\pi\)
\(662\) −6910.42 + 14349.6i −0.405712 + 0.842469i
\(663\) 2237.92 510.790i 0.131091 0.0299207i
\(664\) 9909.39 7902.48i 0.579155 0.461861i
\(665\) 22274.1 + 17763.0i 1.29887 + 1.03582i
\(666\) 493.552 + 1024.87i 0.0287159 + 0.0596291i
\(667\) 332.048 159.906i 0.0192758 0.00928273i
\(668\) 7282.56i 0.421812i
\(669\) −66.7028 53.1937i −0.00385483 0.00307412i
\(670\) 2428.18 + 5042.16i 0.140013 + 0.290740i
\(671\) 499.870 + 1037.99i 0.0287590 + 0.0597186i
\(672\) −12252.0 15363.6i −0.703322 0.881938i
\(673\) 1811.94 + 413.564i 0.103782 + 0.0236875i 0.274096 0.961702i \(-0.411621\pi\)
−0.170315 + 0.985390i \(0.554478\pi\)
\(674\) −11940.1 −0.682367
\(675\) 12754.8i 0.727308i
\(676\) 6313.59 + 7917.00i 0.359217 + 0.450444i
\(677\) 246.699 + 512.275i 0.0140050 + 0.0290817i 0.907854 0.419286i \(-0.137720\pi\)
−0.893849 + 0.448368i \(0.852005\pi\)
\(678\) 638.929i 0.0361916i
\(679\) −1752.74 + 2197.87i −0.0990633 + 0.124222i
\(680\) 16201.8 + 3697.96i 0.913693 + 0.208544i
\(681\) 7126.32 8936.12i 0.401000 0.502838i
\(682\) 199.444 159.051i 0.0111981 0.00893018i
\(683\) 1856.71 + 2328.24i 0.104019 + 0.130436i 0.831116 0.556099i \(-0.187702\pi\)
−0.727097 + 0.686535i \(0.759131\pi\)
\(684\) −9528.98 −0.532675
\(685\) −9570.59 7632.29i −0.533830 0.425715i
\(686\) −5978.49 + 12414.5i −0.332740 + 0.690942i
\(687\) −14499.8 + 18182.2i −0.805244 + 1.00974i
\(688\) 2400.85 + 1156.19i 0.133040 + 0.0640686i
\(689\) −3074.24 701.676i −0.169985 0.0387979i
\(690\) −1065.77 243.254i −0.0588015 0.0134211i
\(691\) −16362.4 7879.70i −0.900801 0.433803i −0.0746227 0.997212i \(-0.523775\pi\)
−0.826178 + 0.563409i \(0.809490\pi\)
\(692\) −8819.01 + 11058.7i −0.484463 + 0.607497i
\(693\) 272.654 566.173i 0.0149456 0.0310348i
\(694\) −9684.48 7723.12i −0.529709 0.422429i
\(695\) 7918.70 0.432192
\(696\) 738.572 + 926.140i 0.0402234 + 0.0504386i
\(697\) −15276.1 + 12182.3i −0.830161 + 0.662031i
\(698\) 2242.58 2812.10i 0.121609 0.152492i
\(699\) −16716.1 3815.35i −0.904525 0.206452i
\(700\) 7645.51 9587.16i 0.412818 0.517658i
\(701\) 21293.0i 1.14726i −0.819115 0.573629i \(-0.805535\pi\)
0.819115 0.573629i \(-0.194465\pi\)
\(702\) 642.686 + 1334.55i 0.0345536 + 0.0717512i
\(703\) −4241.11 5318.19i −0.227534 0.285319i
\(704\) 541.103i 0.0289681i
\(705\) 1319.99 0.0705159
\(706\) −3618.60 825.923i −0.192901 0.0440284i
\(707\) −25040.5 31399.8i −1.33203 1.67031i
\(708\) 1188.39 + 2467.71i 0.0630823 + 0.130992i
\(709\) −5211.48 10821.7i −0.276052 0.573228i 0.716138 0.697958i \(-0.245908\pi\)
−0.992191 + 0.124730i \(0.960194\pi\)
\(710\) 67.3116 + 53.6792i 0.00355797 + 0.00283739i
\(711\) 8956.54i 0.472428i
\(712\) 33327.9 16049.9i 1.75423 0.844794i
\(713\) 1058.95 + 2198.93i 0.0556213 + 0.115499i
\(714\) −18286.2 14582.7i −0.958463 0.764349i
\(715\) −40.2222 + 32.0761i −0.00210381 + 0.00167773i
\(716\) 6530.25 1490.49i 0.340848 0.0777962i
\(717\) −7569.52 + 15718.3i −0.394266 + 0.818702i
\(718\) 7824.31 + 3767.99i 0.406686 + 0.195850i
\(719\) 13572.9i 0.704011i −0.935998 0.352005i \(-0.885500\pi\)
0.935998 0.352005i \(-0.114500\pi\)
\(720\) 408.999i 0.0211701i
\(721\) 7707.32 6146.38i 0.398108 0.317480i
\(722\) −27359.7 + 6244.67i −1.41028 + 0.321887i
\(723\) −13550.0 + 6525.32i −0.696997 + 0.335656i
\(724\) 1872.60 8204.39i 0.0961251 0.421152i
\(725\) −751.828 + 942.763i −0.0385134 + 0.0482943i
\(726\) 7971.79 3839.01i 0.407522 0.196252i
\(727\) −4219.47 18486.7i −0.215256 0.943100i −0.960931 0.276789i \(-0.910730\pi\)
0.745674 0.666311i \(-0.232127\pi\)
\(728\) −859.406 + 3765.30i −0.0437523 + 0.191692i
\(729\) 3782.59 + 16572.6i 0.192176 + 0.841976i
\(730\) −2398.80 4981.15i −0.121621 0.252549i
\(731\) −62438.5 14251.2i −3.15919 0.721065i
\(732\) −5667.93 11769.6i −0.286192 0.594285i
\(733\) 560.625 2456.26i 0.0282499 0.123771i −0.958837 0.283958i \(-0.908353\pi\)
0.987087 + 0.160187i \(0.0512097\pi\)
\(734\) 13517.7 + 6509.77i 0.679763 + 0.327357i
\(735\) 12139.5 5846.07i 0.609213 0.293382i
\(736\) 4510.14 + 1029.41i 0.225877 + 0.0515551i
\(737\) −460.235 + 577.117i −0.0230027 + 0.0288445i
\(738\) −3313.80 2642.67i −0.165288 0.131813i
\(739\) 25197.3 + 12134.4i 1.25426 + 0.604020i 0.938651 0.344870i \(-0.112077\pi\)
0.315609 + 0.948889i \(0.397791\pi\)
\(740\) 1041.85 830.850i 0.0517558 0.0412739i
\(741\) −1856.55 2328.04i −0.0920407 0.115415i
\(742\) 13940.5 + 28947.7i 0.689718 + 1.43221i
\(743\) 16580.2 13222.2i 0.818664 0.652862i −0.121876 0.992545i \(-0.538891\pi\)
0.940540 + 0.339683i \(0.110320\pi\)
\(744\) −6133.21 + 4891.07i −0.302224 + 0.241015i
\(745\) −980.279 4294.88i −0.0482076 0.211211i
\(746\) 2652.75 11622.5i 0.130193 0.570413i
\(747\) −6754.60 3252.85i −0.330841 0.159324i
\(748\) 179.848 + 787.966i 0.00879130 + 0.0385172i
\(749\) −34970.1 43851.1i −1.70598 2.13923i
\(750\) 8561.26 1954.05i 0.416817 0.0951358i
\(751\) −22728.6 28500.8i −1.10437 1.38483i −0.915255 0.402875i \(-0.868011\pi\)
−0.189111 0.981956i \(-0.560561\pi\)
\(752\) 276.633 0.0134146
\(753\) −1276.67 1018.11i −0.0617855 0.0492723i
\(754\) 31.1610 136.525i 0.00150506 0.00659410i
\(755\) 10990.2 0.529770
\(756\) −9196.41 + 19096.5i −0.442421 + 0.918697i
\(757\) −32640.3 + 7449.94i −1.56715 + 0.357692i −0.915975 0.401235i \(-0.868581\pi\)
−0.651175 + 0.758927i \(0.725724\pi\)
\(758\) −9495.98 + 19718.6i −0.455026 + 0.944871i
\(759\) −32.0851 140.574i −0.00153441 0.00672268i
\(760\) −4796.98 21017.0i −0.228954 1.00311i
\(761\) 18511.9 + 14762.7i 0.881808 + 0.703218i 0.955793 0.294041i \(-0.0950003\pi\)
−0.0739851 + 0.997259i \(0.523572\pi\)
\(762\) 1321.06 + 636.187i 0.0628042 + 0.0302449i
\(763\) 87.8433 + 110.152i 0.00416794 + 0.00522644i
\(764\) −10257.2 + 4939.61i −0.485724 + 0.233912i
\(765\) −2187.35 9583.40i −0.103377 0.452926i
\(766\) 17708.7 8528.04i 0.835300 0.402259i