Properties

Label 197.4.e.a.6.7
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.7
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.23718 + 0.967109i) q^{2} +(5.25614 + 1.19968i) q^{3} +(9.81066 - 4.72457i) q^{4} +(0.445098 - 0.924256i) q^{5} -23.4315 q^{6} +(3.51884 - 15.4170i) q^{7} +(-9.81675 + 7.82859i) q^{8} +(1.86164 + 0.896520i) q^{9} +O(q^{10})\) \(q+(-4.23718 + 0.967109i) q^{2} +(5.25614 + 1.19968i) q^{3} +(9.81066 - 4.72457i) q^{4} +(0.445098 - 0.924256i) q^{5} -23.4315 q^{6} +(3.51884 - 15.4170i) q^{7} +(-9.81675 + 7.82859i) q^{8} +(1.86164 + 0.896520i) q^{9} +(-0.992106 + 4.34670i) q^{10} +(-49.1168 + 11.2106i) q^{11} +(57.2342 - 13.0633i) q^{12} +(-30.2930 - 24.1579i) q^{13} +68.7279i q^{14} +(3.44831 - 4.32405i) q^{15} +(-20.2893 + 25.4419i) q^{16} +(-12.8671 + 26.7189i) q^{17} +(-8.75515 - 1.99831i) q^{18} -56.0862 q^{19} -11.1705i q^{20} +(36.9910 - 76.8127i) q^{21} +(197.275 - 95.0026i) q^{22} +(35.1545 + 154.022i) q^{23} +(-60.9900 + 29.3713i) q^{24} +(77.2801 + 96.9062i) q^{25} +(151.720 + 73.0646i) q^{26} +(-105.098 - 83.8130i) q^{27} +(-38.3167 - 167.876i) q^{28} +(40.3473 + 176.773i) q^{29} +(-10.4293 + 21.6567i) q^{30} +(-252.774 + 57.6940i) q^{31} +(104.947 - 217.925i) q^{32} -271.614 q^{33} +(28.6804 - 125.657i) q^{34} +(-12.6831 - 10.1144i) q^{35} +22.4996 q^{36} +(-249.400 - 312.737i) q^{37} +(237.647 - 54.2415i) q^{38} +(-130.243 - 163.319i) q^{39} +(2.86621 + 12.5577i) q^{40} +(-226.110 - 108.889i) q^{41} +(-82.4515 + 361.244i) q^{42} +(10.3636 + 45.4057i) q^{43} +(-428.903 + 342.039i) q^{44} +(1.65723 - 1.32159i) q^{45} +(-297.912 - 618.620i) q^{46} +(-170.531 - 213.840i) q^{47} +(-137.166 + 109.386i) q^{48} +(83.7295 + 40.3220i) q^{49} +(-421.169 - 335.871i) q^{50} +(-99.6857 + 125.002i) q^{51} +(-411.330 - 93.8833i) q^{52} +(-192.651 + 92.7757i) q^{53} +(526.376 + 253.489i) q^{54} +(-11.5003 + 50.3863i) q^{55} +(86.1502 + 178.893i) q^{56} +(-294.797 - 67.2855i) q^{57} +(-341.918 - 710.000i) q^{58} +(19.3182 + 84.6386i) q^{59} +(13.4010 - 58.7135i) q^{60} +(-11.4963 - 50.3687i) q^{61} +(1015.25 - 488.920i) q^{62} +(20.3725 - 25.5463i) q^{63} +(-175.994 + 771.080i) q^{64} +(-35.8114 + 17.2459i) q^{65} +(1150.88 - 262.680i) q^{66} +(448.017 - 357.281i) q^{67} +322.922i q^{68} +851.734i q^{69} +(63.5222 + 30.5907i) q^{70} +(-199.925 + 415.149i) q^{71} +(-25.2938 + 5.77314i) q^{72} +(450.541 - 359.294i) q^{73} +(1359.20 + 1083.93i) q^{74} +(289.939 + 602.064i) q^{75} +(-550.243 + 264.983i) q^{76} +796.684i q^{77} +(709.809 + 566.054i) q^{78} +(-518.431 - 1076.53i) q^{79} +(14.4842 + 30.0767i) q^{80} +(-486.646 - 610.235i) q^{81} +(1063.38 + 242.709i) q^{82} +1393.52 q^{83} -928.350i q^{84} +(18.9680 + 23.7851i) q^{85} +(-87.8246 - 182.370i) q^{86} +977.549i q^{87} +(394.404 - 494.567i) q^{88} +(438.775 + 100.147i) q^{89} +(-5.74385 + 7.20256i) q^{90} +(-479.039 + 382.021i) q^{91} +(1072.57 + 1344.97i) q^{92} -1397.83 q^{93} +(929.379 + 741.155i) q^{94} +(-24.9639 + 51.8380i) q^{95} +(813.059 - 1019.54i) q^{96} +(-994.857 - 479.098i) q^{97} +(-393.773 - 89.8761i) q^{98} +(-101.488 - 23.1641i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.23718 + 0.967109i −1.49807 + 0.341925i −0.891469 0.453082i \(-0.850325\pi\)
−0.606601 + 0.795006i \(0.707467\pi\)
\(3\) 5.25614 + 1.19968i 1.01155 + 0.230879i 0.696008 0.718035i \(-0.254958\pi\)
0.315538 + 0.948913i \(0.397815\pi\)
\(4\) 9.81066 4.72457i 1.22633 0.590571i
\(5\) 0.445098 0.924256i 0.0398108 0.0826680i −0.880115 0.474761i \(-0.842535\pi\)
0.919926 + 0.392093i \(0.128249\pi\)
\(6\) −23.4315 −1.59431
\(7\) 3.51884 15.4170i 0.189999 0.832442i −0.786615 0.617444i \(-0.788168\pi\)
0.976614 0.214998i \(-0.0689745\pi\)
\(8\) −9.81675 + 7.82859i −0.433843 + 0.345978i
\(9\) 1.86164 + 0.896520i 0.0689497 + 0.0332044i
\(10\) −0.992106 + 4.34670i −0.0313731 + 0.137455i
\(11\) −49.1168 + 11.2106i −1.34630 + 0.307284i −0.834114 0.551593i \(-0.814020\pi\)
−0.512183 + 0.858876i \(0.671163\pi\)
\(12\) 57.2342 13.0633i 1.37684 0.314255i
\(13\) −30.2930 24.1579i −0.646290 0.515399i 0.244597 0.969625i \(-0.421344\pi\)
−0.890886 + 0.454226i \(0.849916\pi\)
\(14\) 68.7279i 1.31202i
\(15\) 3.44831 4.32405i 0.0593567 0.0744309i
\(16\) −20.2893 + 25.4419i −0.317020 + 0.397530i
\(17\) −12.8671 + 26.7189i −0.183573 + 0.381193i −0.972365 0.233467i \(-0.924993\pi\)
0.788792 + 0.614661i \(0.210707\pi\)
\(18\) −8.75515 1.99831i −0.114645 0.0261670i
\(19\) −56.0862 −0.677213 −0.338607 0.940928i \(-0.609956\pi\)
−0.338607 + 0.940928i \(0.609956\pi\)
\(20\) 11.1705i 0.124890i
\(21\) 36.9910 76.8127i 0.384386 0.798186i
\(22\) 197.275 95.0026i 1.91178 0.920665i
\(23\) 35.1545 + 154.022i 0.318705 + 1.39634i 0.839827 + 0.542855i \(0.182657\pi\)
−0.521122 + 0.853482i \(0.674486\pi\)
\(24\) −60.9900 + 29.3713i −0.518731 + 0.249808i
\(25\) 77.2801 + 96.9062i 0.618241 + 0.775249i
\(26\) 151.720 + 73.0646i 1.14441 + 0.551121i
\(27\) −105.098 83.8130i −0.749117 0.597401i
\(28\) −38.3167 167.876i −0.258613 1.13306i
\(29\) 40.3473 + 176.773i 0.258356 + 1.13193i 0.923009 + 0.384778i \(0.125722\pi\)
−0.664654 + 0.747152i \(0.731421\pi\)
\(30\) −10.4293 + 21.6567i −0.0634707 + 0.131798i
\(31\) −252.774 + 57.6940i −1.46450 + 0.334263i −0.879161 0.476526i \(-0.841896\pi\)
−0.585340 + 0.810788i \(0.699039\pi\)
\(32\) 104.947 217.925i 0.579757 1.20388i
\(33\) −271.614 −1.43279
\(34\) 28.6804 125.657i 0.144666 0.633823i
\(35\) −12.6831 10.1144i −0.0612523 0.0488470i
\(36\) 22.4996 0.104165
\(37\) −249.400 312.737i −1.10814 1.38956i −0.912595 0.408864i \(-0.865925\pi\)
−0.195542 0.980695i \(-0.562647\pi\)
\(38\) 237.647 54.2415i 1.01451 0.231556i
\(39\) −130.243 163.319i −0.534756 0.670563i
\(40\) 2.86621 + 12.5577i 0.0113297 + 0.0496386i
\(41\) −226.110 108.889i −0.861279 0.414770i −0.0495270 0.998773i \(-0.515771\pi\)
−0.811752 + 0.584003i \(0.801486\pi\)
\(42\) −82.4515 + 361.244i −0.302918 + 1.32717i
\(43\) 10.3636 + 45.4057i 0.0367541 + 0.161030i 0.989975 0.141246i \(-0.0451107\pi\)
−0.953220 + 0.302276i \(0.902254\pi\)
\(44\) −428.903 + 342.039i −1.46954 + 1.17192i
\(45\) 1.65723 1.32159i 0.00548989 0.00437804i
\(46\) −297.912 618.620i −0.954884 1.98284i
\(47\) −170.531 213.840i −0.529246 0.663654i 0.443297 0.896375i \(-0.353809\pi\)
−0.972544 + 0.232721i \(0.925237\pi\)
\(48\) −137.166 + 109.386i −0.412461 + 0.328927i
\(49\) 83.7295 + 40.3220i 0.244109 + 0.117557i
\(50\) −421.169 335.871i −1.19124 0.949986i
\(51\) −99.6857 + 125.002i −0.273702 + 0.343211i
\(52\) −411.330 93.8833i −1.09695 0.250371i
\(53\) −192.651 + 92.7757i −0.499295 + 0.240448i −0.666542 0.745467i \(-0.732226\pi\)
0.167248 + 0.985915i \(0.446512\pi\)
\(54\) 526.376 + 253.489i 1.32650 + 0.638806i
\(55\) −11.5003 + 50.3863i −0.0281947 + 0.123529i
\(56\) 86.1502 + 178.893i 0.205577 + 0.426885i
\(57\) −294.797 67.2855i −0.685032 0.156354i
\(58\) −341.918 710.000i −0.774070 1.60737i
\(59\) 19.3182 + 84.6386i 0.0426274 + 0.186763i 0.991759 0.128116i \(-0.0408931\pi\)
−0.949132 + 0.314879i \(0.898036\pi\)
\(60\) 13.4010 58.7135i 0.0288343 0.126331i
\(61\) −11.4963 50.3687i −0.0241304 0.105722i 0.961429 0.275055i \(-0.0886960\pi\)
−0.985559 + 0.169333i \(0.945839\pi\)
\(62\) 1015.25 488.920i 2.07963 1.00150i
\(63\) 20.3725 25.5463i 0.0407412 0.0510878i
\(64\) −175.994 + 771.080i −0.343738 + 1.50602i
\(65\) −35.8114 + 17.2459i −0.0683363 + 0.0329090i
\(66\) 1150.88 262.680i 2.14641 0.489905i
\(67\) 448.017 357.281i 0.816925 0.651476i −0.123171 0.992385i \(-0.539306\pi\)
0.940096 + 0.340910i \(0.110735\pi\)
\(68\) 322.922i 0.575883i
\(69\) 851.734i 1.48604i
\(70\) 63.5222 + 30.5907i 0.108462 + 0.0522326i
\(71\) −199.925 + 415.149i −0.334180 + 0.693932i −0.998570 0.0534539i \(-0.982977\pi\)
0.664390 + 0.747386i \(0.268691\pi\)
\(72\) −25.2938 + 5.77314i −0.0414014 + 0.00944959i
\(73\) 450.541 359.294i 0.722354 0.576058i −0.191796 0.981435i \(-0.561431\pi\)
0.914150 + 0.405377i \(0.132860\pi\)
\(74\) 1359.20 + 1083.93i 2.13519 + 1.70276i
\(75\) 289.939 + 602.064i 0.446390 + 0.926938i
\(76\) −550.243 + 264.983i −0.830489 + 0.399942i
\(77\) 796.684i 1.17910i
\(78\) 709.809 + 566.054i 1.03039 + 0.821705i
\(79\) −518.431 1076.53i −0.738330 1.53316i −0.842558 0.538605i \(-0.818951\pi\)
0.104228 0.994553i \(-0.466763\pi\)
\(80\) 14.4842 + 30.0767i 0.0202422 + 0.0420334i
\(81\) −486.646 610.235i −0.667553 0.837085i
\(82\) 1063.38 + 242.709i 1.43208 + 0.326862i
\(83\) 1393.52 1.84287 0.921435 0.388533i \(-0.127018\pi\)
0.921435 + 0.388533i \(0.127018\pi\)
\(84\) 928.350i 1.20585i
\(85\) 18.9680 + 23.7851i 0.0242043 + 0.0303512i
\(86\) −87.8246 182.370i −0.110121 0.228668i
\(87\) 977.549i 1.20465i
\(88\) 394.404 494.567i 0.477768 0.599102i
\(89\) 438.775 + 100.147i 0.522585 + 0.119277i 0.475672 0.879622i \(-0.342205\pi\)
0.0469122 + 0.998899i \(0.485062\pi\)
\(90\) −5.74385 + 7.20256i −0.00672728 + 0.00843574i
\(91\) −479.039 + 382.021i −0.551834 + 0.440073i
\(92\) 1072.57 + 1344.97i 1.21547 + 1.52416i
\(93\) −1397.83 −1.55858
\(94\) 929.379 + 741.155i 1.01977 + 0.813238i
\(95\) −24.9639 + 51.8380i −0.0269604 + 0.0559838i
\(96\) 813.059 1019.54i 0.864400 1.08392i
\(97\) −994.857 479.098i −1.04137 0.501495i −0.166591 0.986026i \(-0.553276\pi\)
−0.874774 + 0.484531i \(0.838990\pi\)
\(98\) −393.773 89.8761i −0.405889 0.0926414i
\(99\) −101.488 23.1641i −0.103030 0.0235159i
\(100\) 1216.01 + 585.599i 1.21601 + 0.585599i
\(101\) 690.668 866.070i 0.680436 0.853239i −0.314959 0.949105i \(-0.601991\pi\)
0.995394 + 0.0958660i \(0.0305620\pi\)
\(102\) 301.496 626.063i 0.292672 0.607740i
\(103\) −404.585 322.646i −0.387039 0.308653i 0.410569 0.911829i \(-0.365330\pi\)
−0.797608 + 0.603176i \(0.793901\pi\)
\(104\) 486.501 0.458705
\(105\) −54.5299 68.3784i −0.0506817 0.0635528i
\(106\) 726.572 579.422i 0.665763 0.530929i
\(107\) −892.321 + 1118.93i −0.806205 + 1.01095i 0.193351 + 0.981130i \(0.438064\pi\)
−0.999555 + 0.0298189i \(0.990507\pi\)
\(108\) −1427.06 325.718i −1.27147 0.290206i
\(109\) −731.741 + 917.574i −0.643010 + 0.806309i −0.991376 0.131050i \(-0.958165\pi\)
0.348366 + 0.937359i \(0.386737\pi\)
\(110\) 224.618i 0.194695i
\(111\) −935.696 1942.99i −0.800111 1.66145i
\(112\) 320.845 + 402.327i 0.270687 + 0.339431i
\(113\) 1191.00i 0.991504i −0.868464 0.495752i \(-0.834892\pi\)
0.868464 0.495752i \(-0.165108\pi\)
\(114\) 1314.18 1.07969
\(115\) 158.003 + 36.0631i 0.128120 + 0.0292426i
\(116\) 1231.01 + 1543.64i 0.985315 + 1.23555i
\(117\) −34.7367 72.1315i −0.0274480 0.0569963i
\(118\) −163.710 339.947i −0.127718 0.265209i
\(119\) 366.649 + 292.393i 0.282443 + 0.225240i
\(120\) 69.4435i 0.0528275i
\(121\) 1087.59 523.757i 0.817124 0.393506i
\(122\) 97.4241 + 202.303i 0.0722981 + 0.150128i
\(123\) −1057.83 843.594i −0.775461 0.618409i
\(124\) −2207.30 + 1760.26i −1.59856 + 1.27481i
\(125\) 248.979 56.8279i 0.178155 0.0406627i
\(126\) −61.6159 + 127.947i −0.0435649 + 0.0904635i
\(127\) 816.093 + 393.010i 0.570209 + 0.274598i 0.696692 0.717371i \(-0.254655\pi\)
−0.126483 + 0.991969i \(0.540369\pi\)
\(128\) 1502.38i 1.03745i
\(129\) 251.092i 0.171375i
\(130\) 135.061 107.707i 0.0911201 0.0726659i
\(131\) 1085.35 247.725i 0.723876 0.165220i 0.155320 0.987864i \(-0.450359\pi\)
0.568557 + 0.822644i \(0.307502\pi\)
\(132\) −2664.71 + 1283.26i −1.75707 + 0.846161i
\(133\) −197.358 + 864.683i −0.128670 + 0.563740i
\(134\) −1552.80 + 1947.15i −1.00105 + 1.25528i
\(135\) −124.244 + 59.8326i −0.0792088 + 0.0381450i
\(136\) −82.8580 363.025i −0.0522427 0.228890i
\(137\) −658.729 + 2886.08i −0.410796 + 1.79981i 0.169638 + 0.985506i \(0.445740\pi\)
−0.580434 + 0.814308i \(0.697117\pi\)
\(138\) −823.720 3608.95i −0.508114 2.22619i
\(139\) −788.623 1637.59i −0.481224 0.999272i −0.990351 0.138581i \(-0.955746\pi\)
0.509127 0.860691i \(-0.329968\pi\)
\(140\) −172.215 39.3070i −0.103963 0.0237289i
\(141\) −639.799 1328.56i −0.382133 0.793507i
\(142\) 445.626 1952.41i 0.263353 1.15382i
\(143\) 1758.72 + 846.954i 1.02847 + 0.495286i
\(144\) −60.5806 + 29.1741i −0.0350582 + 0.0168831i
\(145\) 181.342 + 41.3902i 0.103860 + 0.0237053i
\(146\) −1561.55 + 1958.12i −0.885168 + 1.10997i
\(147\) 391.721 + 312.387i 0.219786 + 0.175274i
\(148\) −3924.33 1889.86i −2.17958 1.04963i
\(149\) −692.160 + 551.979i −0.380563 + 0.303489i −0.795024 0.606578i \(-0.792542\pi\)
0.414460 + 0.910067i \(0.363970\pi\)
\(150\) −1810.79 2270.65i −0.985667 1.23599i
\(151\) −293.828 610.140i −0.158354 0.328825i 0.806664 0.591011i \(-0.201271\pi\)
−0.965017 + 0.262186i \(0.915557\pi\)
\(152\) 550.584 439.076i 0.293804 0.234301i
\(153\) −47.9081 + 38.2054i −0.0253146 + 0.0201877i
\(154\) −770.480 3375.69i −0.403163 1.76637i
\(155\) −59.1852 + 259.307i −0.0306701 + 0.134375i
\(156\) −2049.38 986.928i −1.05180 0.506522i
\(157\) 354.411 + 1552.78i 0.180160 + 0.789331i 0.981553 + 0.191193i \(0.0612356\pi\)
−0.801393 + 0.598138i \(0.795907\pi\)
\(158\) 3237.81 + 4060.09i 1.63030 + 2.04433i
\(159\) −1123.90 + 256.523i −0.560573 + 0.127947i
\(160\) −154.707 193.996i −0.0764416 0.0958547i
\(161\) 2498.26 1.22292
\(162\) 2652.17 + 2115.04i 1.28626 + 1.02576i
\(163\) −327.912 + 1436.68i −0.157571 + 0.690362i 0.832990 + 0.553288i \(0.186627\pi\)
−0.990561 + 0.137074i \(0.956230\pi\)
\(164\) −2732.74 −1.30117
\(165\) −120.895 + 251.041i −0.0570403 + 0.118445i
\(166\) −5904.58 + 1347.68i −2.76075 + 0.630123i
\(167\) 1260.59 2617.64i 0.584115 1.21293i −0.374235 0.927334i \(-0.622095\pi\)
0.958351 0.285594i \(-0.0921910\pi\)
\(168\) 238.204 + 1043.64i 0.109392 + 0.479276i
\(169\) −154.815 678.289i −0.0704666 0.308734i
\(170\) −103.374 82.4376i −0.0466376 0.0371922i
\(171\) −104.412 50.2824i −0.0466936 0.0224865i
\(172\) 316.196 + 396.497i 0.140173 + 0.175771i
\(173\) −1347.73 + 649.033i −0.592289 + 0.285231i −0.705920 0.708292i \(-0.749466\pi\)
0.113631 + 0.993523i \(0.463752\pi\)
\(174\) −945.397 4142.05i −0.411899 1.80465i
\(175\) 1765.94 850.433i 0.762815 0.367352i
\(176\) 711.325 1477.08i 0.304648 0.632609i
\(177\) 468.048i 0.198761i
\(178\) −1956.02 −0.823652
\(179\) −403.308 92.0524i −0.168406 0.0384375i 0.137486 0.990504i \(-0.456098\pi\)
−0.305892 + 0.952066i \(0.598955\pi\)
\(180\) 10.0145 20.7954i 0.00414689 0.00861110i
\(181\) 1271.85 1594.85i 0.522298 0.654941i −0.448797 0.893634i \(-0.648147\pi\)
0.971095 + 0.238693i \(0.0767189\pi\)
\(182\) 1660.32 2081.97i 0.676214 0.847946i
\(183\) 278.537i 0.112514i
\(184\) −1550.88 1236.78i −0.621370 0.495526i
\(185\) −400.057 + 91.3104i −0.158988 + 0.0362880i
\(186\) 5922.86 1351.85i 2.33487 0.532918i
\(187\) 332.458 1456.60i 0.130009 0.569609i
\(188\) −2683.33 1292.22i −1.04097 0.501303i
\(189\) −1661.97 + 1325.38i −0.639633 + 0.510090i
\(190\) 55.6434 243.790i 0.0212463 0.0930862i
\(191\) −2370.52 −0.898034 −0.449017 0.893523i \(-0.648226\pi\)
−0.449017 + 0.893523i \(0.648226\pi\)
\(192\) −1850.10 + 3841.77i −0.695413 + 1.44404i
\(193\) −402.075 + 193.629i −0.149959 + 0.0722162i −0.507358 0.861735i \(-0.669378\pi\)
0.357399 + 0.933952i \(0.383664\pi\)
\(194\) 4678.73 + 1067.89i 1.73151 + 0.395206i
\(195\) −208.919 + 47.6845i −0.0767232 + 0.0175116i
\(196\) 1011.95 0.368785
\(197\) −735.171 + 2665.50i −0.265882 + 0.964006i
\(198\) 452.427 0.162387
\(199\) 2858.80 652.502i 1.01837 0.232435i 0.319423 0.947612i \(-0.396511\pi\)
0.698943 + 0.715177i \(0.253654\pi\)
\(200\) −1517.28 346.309i −0.536439 0.122439i
\(201\) 2783.46 1340.45i 0.976768 0.470387i
\(202\) −2088.90 + 4337.65i −0.727597 + 1.51087i
\(203\) 2867.29 0.991353
\(204\) −387.403 + 1697.32i −0.132959 + 0.582532i
\(205\) −201.282 + 160.517i −0.0685764 + 0.0546878i
\(206\) 2026.34 + 975.832i 0.685347 + 0.330046i
\(207\) −72.6385 + 318.250i −0.0243900 + 0.106859i
\(208\) 1229.25 280.567i 0.409773 0.0935281i
\(209\) 2754.77 628.759i 0.911730 0.208096i
\(210\) 297.183 + 236.995i 0.0976550 + 0.0778773i
\(211\) 2632.60i 0.858937i 0.903082 + 0.429468i \(0.141299\pi\)
−0.903082 + 0.429468i \(0.858701\pi\)
\(212\) −1451.71 + 1820.38i −0.470300 + 0.589738i
\(213\) −1548.88 + 1942.24i −0.498252 + 0.624788i
\(214\) 2698.79 5604.10i 0.862083 1.79013i
\(215\) 46.5793 + 10.6314i 0.0147753 + 0.00337236i
\(216\) 1687.86 0.531687
\(217\) 4100.04i 1.28262i
\(218\) 2213.12 4595.60i 0.687577 1.42777i
\(219\) 2799.15 1348.00i 0.863693 0.415933i
\(220\) 125.227 + 548.657i 0.0383765 + 0.168138i
\(221\) 1035.26 498.553i 0.315108 0.151748i
\(222\) 5843.80 + 7327.89i 1.76671 + 2.21539i
\(223\) −3913.30 1884.55i −1.17513 0.565913i −0.258642 0.965973i \(-0.583275\pi\)
−0.916489 + 0.400060i \(0.868989\pi\)
\(224\) −2990.47 2384.82i −0.892005 0.711350i
\(225\) 56.9896 + 249.688i 0.0168858 + 0.0739815i
\(226\) 1151.83 + 5046.49i 0.339020 + 1.48534i
\(227\) −1766.26 + 3667.68i −0.516435 + 1.07239i 0.465827 + 0.884876i \(0.345757\pi\)
−0.982262 + 0.187513i \(0.939957\pi\)
\(228\) −3210.05 + 732.673i −0.932415 + 0.212818i
\(229\) 1249.01 2593.60i 0.360423 0.748427i −0.639367 0.768902i \(-0.720804\pi\)
0.999790 + 0.0204749i \(0.00651781\pi\)
\(230\) −704.363 −0.201932
\(231\) −955.765 + 4187.48i −0.272228 + 1.19271i
\(232\) −1779.97 1419.48i −0.503709 0.401694i
\(233\) 1463.97 0.411622 0.205811 0.978592i \(-0.434017\pi\)
0.205811 + 0.978592i \(0.434017\pi\)
\(234\) 216.945 + 272.040i 0.0606074 + 0.0759993i
\(235\) −273.546 + 62.4351i −0.0759326 + 0.0173311i
\(236\) 589.405 + 739.091i 0.162572 + 0.203859i
\(237\) −1433.45 6280.37i −0.392881 1.72132i
\(238\) −1836.33 884.332i −0.500134 0.240852i
\(239\) 566.141 2480.43i 0.153224 0.671320i −0.838711 0.544576i \(-0.816690\pi\)
0.991936 0.126743i \(-0.0404524\pi\)
\(240\) 40.0484 + 175.464i 0.0107713 + 0.0471922i
\(241\) 2137.04 1704.23i 0.571199 0.455516i −0.294802 0.955558i \(-0.595254\pi\)
0.866001 + 0.500042i \(0.166682\pi\)
\(242\) −4101.80 + 3271.07i −1.08956 + 0.868895i
\(243\) −251.017 521.243i −0.0662666 0.137604i
\(244\) −350.757 439.835i −0.0920283 0.115400i
\(245\) 74.5357 59.4403i 0.0194364 0.0155000i
\(246\) 5298.08 + 2551.42i 1.37314 + 0.661271i
\(247\) 1699.02 + 1354.92i 0.437676 + 0.349035i
\(248\) 2029.75 2545.23i 0.519716 0.651703i
\(249\) 7324.52 + 1671.77i 1.86415 + 0.425479i
\(250\) −1000.01 + 481.580i −0.252985 + 0.121831i
\(251\) −4200.43 2022.82i −1.05629 0.508683i −0.176627 0.984278i \(-0.556518\pi\)
−0.879664 + 0.475595i \(0.842233\pi\)
\(252\) 79.1725 346.877i 0.0197913 0.0867112i
\(253\) −3453.35 7170.95i −0.858143 1.78195i
\(254\) −3838.02 876.003i −0.948105 0.216399i
\(255\) 71.1639 + 147.773i 0.0174763 + 0.0362899i
\(256\) 45.0151 + 197.224i 0.0109900 + 0.0481504i
\(257\) 78.4996 343.929i 0.0190532 0.0834775i −0.964507 0.264056i \(-0.914940\pi\)
0.983561 + 0.180578i \(0.0577969\pi\)
\(258\) −242.833 1063.92i −0.0585974 0.256732i
\(259\) −5699.08 + 2744.53i −1.36727 + 0.658444i
\(260\) −269.854 + 338.387i −0.0643679 + 0.0807148i
\(261\) −83.3684 + 365.261i −0.0197715 + 0.0866248i
\(262\) −4359.27 + 2099.31i −1.02792 + 0.495023i
\(263\) −6163.95 + 1406.88i −1.44519 + 0.329855i −0.871976 0.489549i \(-0.837161\pi\)
−0.573215 + 0.819405i \(0.694304\pi\)
\(264\) 2666.37 2126.36i 0.621604 0.495713i
\(265\) 219.353i 0.0508481i
\(266\) 3854.68i 0.888518i
\(267\) 2186.12 + 1052.78i 0.501080 + 0.241307i
\(268\) 2707.34 5621.85i 0.617079 1.28138i
\(269\) −2210.56 + 504.547i −0.501043 + 0.114360i −0.465570 0.885011i \(-0.654151\pi\)
−0.0354725 + 0.999371i \(0.511294\pi\)
\(270\) 468.578 373.679i 0.105618 0.0842273i
\(271\) 2904.97 + 2316.64i 0.651160 + 0.519283i 0.892436 0.451174i \(-0.148994\pi\)
−0.241276 + 0.970457i \(0.577566\pi\)
\(272\) −418.716 869.473i −0.0933397 0.193822i
\(273\) −2976.20 + 1433.26i −0.659808 + 0.317747i
\(274\) 12865.9i 2.83671i
\(275\) −4882.12 3893.36i −1.07056 0.853741i
\(276\) 4024.07 + 8356.08i 0.877612 + 1.82238i
\(277\) 1036.03 + 2151.34i 0.224726 + 0.466648i 0.982596 0.185758i \(-0.0594740\pi\)
−0.757870 + 0.652406i \(0.773760\pi\)
\(278\) 4925.27 + 6176.10i 1.06258 + 1.33244i
\(279\) −522.298 119.211i −0.112076 0.0255806i
\(280\) 203.688 0.0434739
\(281\) 1440.43i 0.305797i −0.988242 0.152898i \(-0.951139\pi\)
0.988242 0.152898i \(-0.0488607\pi\)
\(282\) 3995.80 + 5010.58i 0.843782 + 1.05807i
\(283\) 3752.62 + 7792.39i 0.788233 + 1.63678i 0.770920 + 0.636932i \(0.219797\pi\)
0.0173126 + 0.999850i \(0.494489\pi\)
\(284\) 5017.45i 1.04835i
\(285\) −193.403 + 242.519i −0.0401971 + 0.0504056i
\(286\) −8271.11 1887.83i −1.71007 0.390313i
\(287\) −2474.39 + 3102.78i −0.508914 + 0.638158i
\(288\) 390.749 311.612i 0.0799482 0.0637566i
\(289\) 2514.87 + 3153.55i 0.511880 + 0.641878i
\(290\) −808.409 −0.163695
\(291\) −4654.35 3711.72i −0.937604 0.747714i
\(292\) 2722.60 5653.53i 0.545643 1.13304i
\(293\) 2511.42 3149.22i 0.500746 0.627916i −0.465651 0.884968i \(-0.654180\pi\)
0.966397 + 0.257052i \(0.0827513\pi\)
\(294\) −1961.90 944.804i −0.389186 0.187422i
\(295\) 86.8263 + 19.8175i 0.0171363 + 0.00391126i
\(296\) 4896.59 + 1117.61i 0.961515 + 0.219460i
\(297\) 6101.68 + 2938.41i 1.19210 + 0.574087i
\(298\) 2398.98 3008.23i 0.466340 0.584772i
\(299\) 2655.90 5515.03i 0.513695 1.06670i
\(300\) 5688.98 + 4536.81i 1.09485 + 0.873110i
\(301\) 736.489 0.141032
\(302\) 1835.08 + 2301.11i 0.349658 + 0.438457i
\(303\) 4669.26 3723.61i 0.885286 0.705992i
\(304\) 1137.95 1426.94i 0.214690 0.269213i
\(305\) −51.6706 11.7935i −0.00970049 0.00221407i
\(306\) 166.046 208.216i 0.0310204 0.0388983i
\(307\) 3168.79i 0.589096i 0.955637 + 0.294548i \(0.0951691\pi\)
−0.955637 + 0.294548i \(0.904831\pi\)
\(308\) 3763.98 + 7815.99i 0.696341 + 1.44597i
\(309\) −1739.49 2181.25i −0.320246 0.401575i
\(310\) 1155.97i 0.211789i
\(311\) −5137.06 −0.936642 −0.468321 0.883558i \(-0.655141\pi\)
−0.468321 + 0.883558i \(0.655141\pi\)
\(312\) 2557.12 + 583.645i 0.464001 + 0.105905i
\(313\) 1349.15 + 1691.78i 0.243637 + 0.305511i 0.888582 0.458718i \(-0.151691\pi\)
−0.644945 + 0.764229i \(0.723120\pi\)
\(314\) −3003.41 6236.64i −0.539784 1.12087i
\(315\) −14.5436 30.2000i −0.00260139 0.00540184i
\(316\) −10172.3 8112.15i −1.81088 1.44413i
\(317\) 1101.16i 0.195102i 0.995231 + 0.0975509i \(0.0311009\pi\)
−0.995231 + 0.0975509i \(0.968899\pi\)
\(318\) 4514.09 2173.87i 0.796030 0.383348i
\(319\) −3963.46 8230.21i −0.695647 1.44453i
\(320\) 634.341 + 505.870i 0.110815 + 0.0883718i
\(321\) −6032.53 + 4810.78i −1.04892 + 0.836485i
\(322\) −10585.6 + 2416.09i −1.83202 + 0.418148i
\(323\) 721.669 1498.56i 0.124318 0.258149i
\(324\) −7657.42 3687.62i −1.31300 0.632308i
\(325\) 4802.50i 0.819676i
\(326\) 6404.58i 1.08809i
\(327\) −4946.93 + 3945.04i −0.836593 + 0.667160i
\(328\) 3072.11 701.189i 0.517161 0.118039i
\(329\) −3896.85 + 1876.62i −0.653010 + 0.314473i
\(330\) 269.470 1180.62i 0.0449510 0.196943i
\(331\) −4985.19 + 6251.23i −0.827827 + 1.03806i 0.170780 + 0.985309i \(0.445371\pi\)
−0.998608 + 0.0527536i \(0.983200\pi\)
\(332\) 13671.3 6583.76i 2.25997 1.08835i
\(333\) −183.918 805.797i −0.0302662 0.132605i
\(334\) −2809.80 + 12310.5i −0.460316 + 2.01678i
\(335\) −130.808 573.108i −0.0213338 0.0934693i
\(336\) 1203.74 + 2499.60i 0.195445 + 0.405846i
\(337\) −52.5997 12.0055i −0.00850234 0.00194060i 0.218268 0.975889i \(-0.429959\pi\)
−0.226770 + 0.973948i \(0.572817\pi\)
\(338\) 1311.96 + 2724.31i 0.211128 + 0.438411i
\(339\) 1428.82 6260.07i 0.228917 1.00295i
\(340\) 298.463 + 143.732i 0.0476071 + 0.0229264i
\(341\) 11768.7 5667.48i 1.86894 0.900034i
\(342\) 491.043 + 112.077i 0.0776390 + 0.0177206i
\(343\) 4298.11 5389.66i 0.676606 0.848438i
\(344\) −457.199 364.604i −0.0716585 0.0571458i
\(345\) 787.221 + 379.105i 0.122848 + 0.0591604i
\(346\) 5082.89 4053.47i 0.789763 0.629815i
\(347\) −3373.29 4229.97i −0.521866 0.654400i 0.449138 0.893462i \(-0.351731\pi\)
−0.971004 + 0.239063i \(0.923160\pi\)
\(348\) 4618.50 + 9590.41i 0.711429 + 1.47730i
\(349\) 4573.71 3647.41i 0.701504 0.559431i −0.206472 0.978453i \(-0.566198\pi\)
0.907976 + 0.419021i \(0.137627\pi\)
\(350\) −6660.16 + 5311.30i −1.01714 + 0.811145i
\(351\) 1159.00 + 5077.89i 0.176247 + 0.772187i
\(352\) −2711.60 + 11880.3i −0.410594 + 1.79893i
\(353\) −1904.83 917.319i −0.287207 0.138312i 0.284734 0.958607i \(-0.408095\pi\)
−0.571940 + 0.820295i \(0.693809\pi\)
\(354\) −452.654 1983.21i −0.0679613 0.297758i
\(355\) 294.718 + 369.565i 0.0440620 + 0.0552520i
\(356\) 4777.83 1090.51i 0.711304 0.162350i
\(357\) 1576.38 + 1976.72i 0.233700 + 0.293051i
\(358\) 1797.91 0.265427
\(359\) 8314.38 + 6630.50i 1.22233 + 0.974775i 1.00000 0.000196514i \(-6.25524e-5\pi\)
0.222329 + 0.974972i \(0.428634\pi\)
\(360\) −5.92235 + 25.9475i −0.000867043 + 0.00379876i
\(361\) −3713.34 −0.541382
\(362\) −3846.67 + 7987.69i −0.558499 + 1.15973i
\(363\) 6344.88 1448.18i 0.917410 0.209393i
\(364\) −2894.81 + 6011.13i −0.416838 + 0.865573i
\(365\) −131.545 576.337i −0.0188641 0.0826489i
\(366\) 269.376 + 1180.21i 0.0384713 + 0.168554i
\(367\) 9864.97 + 7867.05i 1.40313 + 1.11896i 0.976743 + 0.214413i \(0.0687837\pi\)
0.426383 + 0.904543i \(0.359788\pi\)
\(368\) −4631.87 2230.59i −0.656122 0.315972i
\(369\) −323.315 405.424i −0.0456127 0.0571965i
\(370\) 1606.81 773.797i 0.225767 0.108724i
\(371\) 752.420 + 3296.57i 0.105293 + 0.461319i
\(372\) −13713.6 + 6604.14i −1.91134 + 0.920453i
\(373\) 2778.11 5768.80i 0.385643 0.800797i −0.614288 0.789082i \(-0.710557\pi\)
0.999931 0.0117148i \(-0.00372902\pi\)
\(374\) 6493.38i 0.897767i
\(375\) 1376.85 0.189600
\(376\) 3348.13 + 764.189i 0.459220 + 0.104814i
\(377\) 3048.22 6329.69i 0.416423 0.864710i
\(378\) 5760.29 7223.18i 0.783802 0.982857i
\(379\) −4941.82 + 6196.85i −0.669774 + 0.839870i −0.994368 0.105984i \(-0.966201\pi\)
0.324594 + 0.945853i \(0.394772\pi\)
\(380\) 626.509i 0.0845769i
\(381\) 3818.02 + 3044.77i 0.513393 + 0.409418i
\(382\) 10044.3 2292.55i 1.34532 0.307060i
\(383\) −8189.99 + 1869.31i −1.09266 + 0.249392i −0.730630 0.682774i \(-0.760773\pi\)
−0.362030 + 0.932166i \(0.617916\pi\)
\(384\) 1802.38 7896.73i 0.239524 1.04942i
\(385\) 736.340 + 354.602i 0.0974736 + 0.0469408i
\(386\) 1516.40 1209.29i 0.199956 0.159460i
\(387\) −21.4139 + 93.8203i −0.00281274 + 0.0123234i
\(388\) −12023.7 −1.57323
\(389\) 5899.51 12250.5i 0.768939 1.59672i −0.0331050 0.999452i \(-0.510540\pi\)
0.802044 0.597266i \(-0.203746\pi\)
\(390\) 839.113 404.096i 0.108949 0.0524671i
\(391\) −4567.63 1042.53i −0.590780 0.134842i
\(392\) −1137.62 + 259.654i −0.146577 + 0.0334553i
\(393\) 6001.97 0.770379
\(394\) 537.223 12005.2i 0.0686926 1.53506i
\(395\) −1225.75 −0.156137
\(396\) −1105.11 + 252.234i −0.140237 + 0.0320081i
\(397\) 6933.50 + 1582.53i 0.876530 + 0.200062i 0.637034 0.770835i \(-0.280161\pi\)
0.239495 + 0.970898i \(0.423018\pi\)
\(398\) −11482.2 + 5529.54i −1.44611 + 0.696409i
\(399\) −2074.69 + 4308.13i −0.260311 + 0.540542i
\(400\) −4033.44 −0.504180
\(401\) −82.1972 + 360.130i −0.0102362 + 0.0448479i −0.979788 0.200038i \(-0.935893\pi\)
0.969552 + 0.244886i \(0.0787505\pi\)
\(402\) −10497.7 + 8371.62i −1.30243 + 1.03865i
\(403\) 9051.04 + 4358.75i 1.11877 + 0.538771i
\(404\) 2684.10 11759.8i 0.330542 1.44820i
\(405\) −780.619 + 178.171i −0.0957759 + 0.0218602i
\(406\) −12149.3 + 2772.99i −1.48512 + 0.338968i
\(407\) 15755.7 + 12564.7i 1.91887 + 1.53025i
\(408\) 2007.51i 0.243595i
\(409\) −3161.38 + 3964.24i −0.382201 + 0.479265i −0.935303 0.353849i \(-0.884873\pi\)
0.553102 + 0.833114i \(0.313444\pi\)
\(410\) 697.632 874.803i 0.0840331 0.105374i
\(411\) −6924.75 + 14379.4i −0.831077 + 1.72575i
\(412\) −5493.61 1253.88i −0.656920 0.149938i
\(413\) 1372.85 0.163568
\(414\) 1418.73i 0.168422i
\(415\) 620.251 1287.97i 0.0733661 0.152346i
\(416\) −8443.77 + 4066.31i −0.995169 + 0.479248i
\(417\) −2180.53 9553.52i −0.256069 1.12191i
\(418\) −11064.4 + 5328.33i −1.29468 + 0.623486i
\(419\) −9872.17 12379.3i −1.15104 1.44336i −0.876248 0.481860i \(-0.839962\pi\)
−0.274795 0.961503i \(-0.588610\pi\)
\(420\) −858.033 413.207i −0.0996851 0.0480058i
\(421\) −7304.82 5825.40i −0.845642 0.674377i 0.101625 0.994823i \(-0.467596\pi\)
−0.947267 + 0.320446i \(0.896167\pi\)
\(422\) −2546.01 11154.8i −0.293692 1.28675i
\(423\) −125.757 550.978i −0.0144551 0.0633321i
\(424\) 1164.90 2418.94i 0.133426 0.277062i
\(425\) −3583.60 + 817.934i −0.409012 + 0.0933544i
\(426\) 4684.54 9727.55i 0.532786 1.10634i
\(427\) −816.990 −0.0925923
\(428\) −3467.78 + 15193.3i −0.391639 + 1.71588i
\(429\) 8228.00 + 6561.61i 0.925994 + 0.738456i
\(430\) −207.647 −0.0232875
\(431\) 664.734 + 833.550i 0.0742903 + 0.0931571i 0.817588 0.575804i \(-0.195311\pi\)
−0.743298 + 0.668961i \(0.766739\pi\)
\(432\) 4264.73 973.397i 0.474970 0.108409i
\(433\) −9539.22 11961.8i −1.05872 1.32759i −0.942440 0.334376i \(-0.891475\pi\)
−0.116280 0.993217i \(-0.537097\pi\)
\(434\) −3965.18 17372.6i −0.438560 1.92146i
\(435\) 903.506 + 435.105i 0.0995857 + 0.0479580i
\(436\) −2843.72 + 12459.2i −0.312362 + 1.36855i
\(437\) −1971.68 8638.49i −0.215831 0.945618i
\(438\) −10556.8 + 8418.79i −1.15166 + 0.918414i
\(439\) −2605.16 + 2077.54i −0.283228 + 0.225867i −0.754791 0.655966i \(-0.772262\pi\)
0.471562 + 0.881833i \(0.343690\pi\)
\(440\) −281.558 584.661i −0.0305063 0.0633469i
\(441\) 119.725 + 150.130i 0.0129279 + 0.0162110i
\(442\) −3904.41 + 3113.67i −0.420167 + 0.335072i
\(443\) −5022.05 2418.49i −0.538612 0.259382i 0.144742 0.989469i \(-0.453765\pi\)
−0.683353 + 0.730088i \(0.739479\pi\)
\(444\) −18359.6 14641.3i −1.96240 1.56497i
\(445\) 287.860 360.965i 0.0306649 0.0384525i
\(446\) 18403.9 + 4200.58i 1.95393 + 0.445971i
\(447\) −4300.29 + 2070.91i −0.455026 + 0.219129i
\(448\) 11268.5 + 5426.61i 1.18836 + 0.572284i
\(449\) 1579.70 6921.13i 0.166037 0.727457i −0.821518 0.570183i \(-0.806872\pi\)
0.987555 0.157274i \(-0.0502706\pi\)
\(450\) −482.951 1002.86i −0.0505922 0.105056i
\(451\) 12326.5 + 2813.44i 1.28699 + 0.293747i
\(452\) −5626.97 11684.5i −0.585554 1.21591i
\(453\) −812.429 3559.48i −0.0842632 0.369181i
\(454\) 3936.92 17248.8i 0.406980 1.78310i
\(455\) 139.866 + 612.791i 0.0144110 + 0.0631387i
\(456\) 3420.70 1647.32i 0.351291 0.169173i
\(457\) 9878.06 12386.7i 1.01111 1.26789i 0.0479783 0.998848i \(-0.484722\pi\)
0.963129 0.269040i \(-0.0867064\pi\)
\(458\) −2783.99 + 12197.5i −0.284034 + 1.24443i
\(459\) 3591.71 1729.67i 0.365243 0.175892i
\(460\) 1720.49 392.692i 0.174388 0.0398029i
\(461\) −8926.36 + 7118.53i −0.901826 + 0.719182i −0.960259 0.279109i \(-0.909961\pi\)
0.0584333 + 0.998291i \(0.481389\pi\)
\(462\) 18667.5i 1.87985i
\(463\) 12666.3i 1.27139i −0.771939 0.635696i \(-0.780713\pi\)
0.771939 0.635696i \(-0.219287\pi\)
\(464\) −5316.07 2560.09i −0.531880 0.256140i
\(465\) −622.171 + 1291.95i −0.0620484 + 0.128845i
\(466\) −6203.11 + 1415.82i −0.616638 + 0.140744i
\(467\) −11190.1 + 8923.83i −1.10882 + 0.884252i −0.994027 0.109138i \(-0.965191\pi\)
−0.114790 + 0.993390i \(0.536619\pi\)
\(468\) −681.580 543.542i −0.0673207 0.0536864i
\(469\) −3931.72 8164.31i −0.387100 0.803822i
\(470\) 1098.68 529.098i 0.107826 0.0519265i
\(471\) 8586.79i 0.840039i
\(472\) −852.244 679.642i −0.0831095 0.0662776i
\(473\) −1018.05 2114.00i −0.0989640 0.205501i
\(474\) 12147.6 + 25224.8i 1.17713 + 2.44433i
\(475\) −4334.34 5435.10i −0.418681 0.525009i
\(476\) 4978.50 + 1136.31i 0.479389 + 0.109417i
\(477\) −441.822 −0.0424101
\(478\) 11057.5i 1.05808i
\(479\) −9993.62 12531.6i −0.953278 1.19537i −0.980654 0.195748i \(-0.937287\pi\)
0.0273760 0.999625i \(-0.491285\pi\)
\(480\) −580.428 1205.27i −0.0551933 0.114610i
\(481\) 15498.7i 1.46919i
\(482\) −7406.86 + 9287.91i −0.699944 + 0.877703i
\(483\) 13131.2 + 2997.11i 1.23704 + 0.282347i
\(484\) 8195.47 10276.8i 0.769673 0.965139i
\(485\) −885.619 + 706.257i −0.0829152 + 0.0661227i
\(486\) 1567.71 + 1965.84i 0.146322 + 0.183482i
\(487\) −6297.32 −0.585953 −0.292976 0.956120i \(-0.594646\pi\)
−0.292976 + 0.956120i \(0.594646\pi\)
\(488\) 507.173 + 404.457i 0.0470464 + 0.0375182i
\(489\) −3447.10 + 7157.98i −0.318780 + 0.661953i
\(490\) −258.336 + 323.943i −0.0238172 + 0.0298659i
\(491\) −6549.13 3153.89i −0.601951 0.289884i 0.107983 0.994153i \(-0.465561\pi\)
−0.709934 + 0.704268i \(0.751275\pi\)
\(492\) −14363.7 3278.41i −1.31619 0.300411i
\(493\) −5242.34 1196.53i −0.478911 0.109308i
\(494\) −8509.41 4097.91i −0.775013 0.373226i
\(495\) −66.5818 + 83.4910i −0.00604572 + 0.00758109i
\(496\) 3660.75 7601.63i 0.331396 0.688151i
\(497\) 5696.87 + 4543.10i 0.514164 + 0.410032i
\(498\) −32652.1 −2.93810
\(499\) 2709.14 + 3397.16i 0.243042 + 0.304765i 0.888359 0.459150i \(-0.151846\pi\)
−0.645317 + 0.763915i \(0.723275\pi\)
\(500\) 2174.16 1733.84i 0.194463 0.155079i
\(501\) 9766.16 12246.4i 0.870898 1.09207i
\(502\) 19754.3 + 4508.79i 1.75633 + 0.400871i
\(503\) −6907.37 + 8661.56i −0.612295 + 0.767793i −0.987238 0.159255i \(-0.949091\pi\)
0.374943 + 0.927048i \(0.377662\pi\)
\(504\) 410.270i 0.0362596i
\(505\) −493.055 1023.84i −0.0434469 0.0902184i
\(506\) 21567.6 + 27044.9i 1.89485 + 2.37607i
\(507\) 3750.91i 0.328568i
\(508\) 9863.22 0.861436
\(509\) 7836.30 + 1788.58i 0.682393 + 0.155752i 0.549645 0.835398i \(-0.314763\pi\)
0.132748 + 0.991150i \(0.457620\pi\)
\(510\) −444.447 557.319i −0.0385891 0.0483892i
\(511\) −3953.88 8210.31i −0.342288 0.710768i
\(512\) 4833.40 + 10036.7i 0.417203 + 0.866331i
\(513\) 5894.55 + 4700.75i 0.507312 + 0.404568i
\(514\) 1533.21i 0.131570i
\(515\) −478.288 + 230.331i −0.0409240 + 0.0197080i
\(516\) 1186.30 + 2463.38i 0.101209 + 0.210163i
\(517\) 10773.2 + 8591.36i 0.916453 + 0.730847i
\(518\) 21493.8 17140.7i 1.82313 1.45390i
\(519\) −7862.49 + 1794.56i −0.664981 + 0.151778i
\(520\) 216.541 449.651i 0.0182614 0.0379202i
\(521\) 8893.89 + 4283.07i 0.747885 + 0.360163i 0.768690 0.639621i \(-0.220909\pi\)
−0.0208051 + 0.999784i \(0.506623\pi\)
\(522\) 1628.30i 0.136530i
\(523\) 17737.2i 1.48297i 0.670968 + 0.741486i \(0.265879\pi\)
−0.670968 + 0.741486i \(0.734121\pi\)
\(524\) 9477.65 7558.17i 0.790139 0.630115i
\(525\) 10302.3 2351.43i 0.856436 0.195476i
\(526\) 24757.2 11922.4i 2.05221 0.988293i
\(527\) 1710.96 7496.20i 0.141424 0.619619i
\(528\) 5510.85 6910.39i 0.454222 0.569576i
\(529\) −11524.8 + 5550.03i −0.947215 + 0.456155i
\(530\) −212.138 929.439i −0.0173862 0.0761740i
\(531\) −39.9166 + 174.886i −0.00326221 + 0.0142927i
\(532\) 2149.04 + 9415.54i 0.175136 + 0.767322i
\(533\) 4219.02 + 8760.89i 0.342863 + 0.711963i
\(534\) −10281.1 2346.60i −0.833161 0.190164i
\(535\) 637.012 + 1322.77i 0.0514774 + 0.106894i
\(536\) −1601.06 + 7014.68i −0.129021 + 0.565276i
\(537\) −2009.41 967.681i −0.161476 0.0777626i
\(538\) 8878.61 4275.71i 0.711495 0.342638i
\(539\) −4564.56 1041.83i −0.364767 0.0832557i
\(540\) −936.230 + 1174.00i −0.0746091 + 0.0935569i
\(541\) 16460.7 + 13127.0i 1.30814 + 1.04320i 0.995640 + 0.0932842i \(0.0297365\pi\)
0.312496 + 0.949919i \(0.398835\pi\)
\(542\) −14549.3 7006.59i −1.15304 0.555275i
\(543\) 8598.34 6856.95i 0.679540 0.541915i
\(544\) 4472.35 + 5608.15i 0.352483 + 0.441999i
\(545\) 522.377 + 1084.73i 0.0410572 + 0.0852561i
\(546\) 11224.6 8951.30i 0.879794 0.701612i
\(547\) −7130.10 + 5686.07i −0.557333 + 0.444458i −0.861207 0.508254i \(-0.830291\pi\)
0.303874 + 0.952712i \(0.401720\pi\)
\(548\) 7172.91 + 31426.6i 0.559145 + 2.44978i
\(549\) 23.7545 104.075i 0.00184666 0.00809075i
\(550\) 24451.8 + 11775.3i 1.89568 + 0.912914i
\(551\) −2262.93 9914.53i −0.174962 0.766558i
\(552\) −6667.88 8361.26i −0.514137 0.644708i
\(553\) −18421.2 + 4204.53i −1.41655 + 0.323318i
\(554\) −6470.44 8113.67i −0.496214 0.622233i
\(555\) −2212.30 −0.169202
\(556\) −15473.8 12340.0i −1.18028 0.941244i
\(557\) −2650.98 + 11614.7i −0.201662 + 0.883537i 0.768263 + 0.640134i \(0.221121\pi\)
−0.969925 + 0.243404i \(0.921736\pi\)
\(558\) 2328.36 0.176644
\(559\) 782.961 1625.84i 0.0592410 0.123015i
\(560\) 514.660 117.468i 0.0388364 0.00886415i
\(561\) 3494.90 7257.23i 0.263021 0.546168i
\(562\) 1393.05 + 6103.37i 0.104559 + 0.458105i
\(563\) −4089.82 17918.7i −0.306155 1.34135i −0.860663 0.509175i \(-0.829951\pi\)
0.554508 0.832178i \(-0.312906\pi\)
\(564\) −12553.7 10011.2i −0.937245 0.747428i
\(565\) −1100.79 530.113i −0.0819657 0.0394726i
\(566\) −23436.6 29388.6i −1.74048 2.18250i
\(567\) −11120.4 + 5355.32i −0.823659 + 0.396653i
\(568\) −1287.42 5640.55i −0.0951037 0.416677i
\(569\) 14361.3 6916.01i 1.05809 0.509551i 0.177842 0.984059i \(-0.443088\pi\)
0.880251 + 0.474508i \(0.157374\pi\)
\(570\) 584.940 1214.64i 0.0429832 0.0892555i
\(571\) 14852.0i 1.08851i 0.838921 + 0.544253i \(0.183187\pi\)
−0.838921 + 0.544253i \(0.816813\pi\)
\(572\) 21255.7 1.55375
\(573\) −12459.8 2843.86i −0.908402 0.207337i
\(574\) 7483.70 15540.1i 0.544187 1.13002i
\(575\) −12208.9 + 15309.5i −0.885473 + 1.11035i
\(576\) −1018.93 + 1277.69i −0.0737070 + 0.0924257i
\(577\) 13124.6i 0.946939i 0.880810 + 0.473469i \(0.156999\pi\)
−0.880810 + 0.473469i \(0.843001\pi\)
\(578\) −13705.8 10930.0i −0.986307 0.786553i
\(579\) −2345.66 + 535.381i −0.168363 + 0.0384278i
\(580\) 1974.64 450.698i 0.141366 0.0322659i
\(581\) 4903.55 21483.9i 0.350144 1.53408i
\(582\) 23311.0 + 11226.0i 1.66026 + 0.799538i
\(583\) 8422.32 6716.57i 0.598313 0.477139i
\(584\) −1610.08 + 7054.21i −0.114085 + 0.499838i
\(585\) −82.1293 −0.00580449
\(586\) −7595.70 + 15772.6i −0.535453 + 1.11188i
\(587\) −6414.65 + 3089.13i −0.451041 + 0.217210i −0.645592 0.763683i \(-0.723389\pi\)
0.194551 + 0.980892i \(0.437675\pi\)
\(588\) 5318.93 + 1214.01i 0.373043 + 0.0851446i
\(589\) 14177.1 3235.83i 0.991779 0.226367i
\(590\) −387.065 −0.0270088
\(591\) −7061.91 + 13128.3i −0.491520 + 0.913749i
\(592\) 13016.8 0.903694
\(593\) 15790.1 3604.00i 1.09346 0.249576i 0.362494 0.931986i \(-0.381925\pi\)
0.730969 + 0.682411i \(0.239068\pi\)
\(594\) −28695.7 6549.60i −1.98215 0.452413i
\(595\) 433.441 208.734i 0.0298644 0.0143820i
\(596\) −4182.69 + 8685.44i −0.287466 + 0.596928i
\(597\) 15809.0 1.08379
\(598\) −5919.89 + 25936.8i −0.404820 + 1.77363i
\(599\) −7669.77 + 6116.44i −0.523169 + 0.417213i −0.849141 0.528166i \(-0.822880\pi\)
0.325972 + 0.945379i \(0.394308\pi\)
\(600\) −7559.57 3640.50i −0.514364 0.247704i
\(601\) 2730.04 11961.1i 0.185292 0.811819i −0.793763 0.608227i \(-0.791881\pi\)
0.979056 0.203592i \(-0.0652617\pi\)
\(602\) −3120.64 + 712.266i −0.211275 + 0.0482222i
\(603\) 1154.36 263.474i 0.0779586 0.0177935i
\(604\) −5765.30 4597.67i −0.388388 0.309729i
\(605\) 1238.34i 0.0832158i
\(606\) −16183.4 + 20293.3i −1.08482 + 1.36033i
\(607\) 2893.50 3628.33i 0.193482 0.242618i −0.675622 0.737248i \(-0.736125\pi\)
0.869104 + 0.494630i \(0.164696\pi\)
\(608\) −5886.09 + 12222.6i −0.392619 + 0.815282i
\(609\) 15070.9 + 3439.84i 1.00280 + 0.228882i
\(610\) 230.343 0.0152891
\(611\) 10597.5i 0.701685i
\(612\) −289.506 + 601.165i −0.0191219 + 0.0397070i
\(613\) −2651.49 + 1276.89i −0.174703 + 0.0841324i −0.519191 0.854658i \(-0.673767\pi\)
0.344488 + 0.938791i \(0.388052\pi\)
\(614\) −3064.57 13426.8i −0.201427 0.882507i
\(615\) −1250.54 + 602.227i −0.0819944 + 0.0394864i
\(616\) −6236.91 7820.84i −0.407942 0.511543i
\(617\) −4776.47 2300.23i −0.311659 0.150087i 0.271515 0.962434i \(-0.412475\pi\)
−0.583174 + 0.812347i \(0.698190\pi\)
\(618\) 9480.02 + 7560.07i 0.617059 + 0.492088i
\(619\) −303.178 1328.31i −0.0196862 0.0862507i 0.964131 0.265428i \(-0.0855134\pi\)
−0.983817 + 0.179178i \(0.942656\pi\)
\(620\) 644.468 + 2823.60i 0.0417459 + 0.182901i
\(621\) 9214.35 19133.8i 0.595425 1.23641i
\(622\) 21766.6 4968.09i 1.40316 0.320261i
\(623\) 3087.95 6412.20i 0.198582 0.412359i
\(624\) 6797.68 0.436098
\(625\) −3389.32 + 14849.6i −0.216917 + 0.950374i
\(626\) −7352.73 5863.60i −0.469447 0.374372i
\(627\) 15233.8 0.970301
\(628\) 10813.2 + 13559.3i 0.687092 + 0.861586i
\(629\) 11565.1 2639.65i 0.733115 0.167329i
\(630\) 90.8304 + 113.898i 0.00574408 + 0.00720285i
\(631\) −2509.77 10996.0i −0.158340 0.693732i −0.990306 0.138905i \(-0.955642\pi\)
0.831966 0.554827i \(-0.187215\pi\)
\(632\) 13517.1 + 6509.47i 0.850759 + 0.409704i
\(633\) −3158.28 + 13837.3i −0.198310 + 0.868853i
\(634\) −1064.94 4665.81i −0.0667101 0.292276i
\(635\) 726.483 579.351i 0.0454010 0.0362061i
\(636\) −9814.25 + 7826.61i −0.611888 + 0.487964i
\(637\) −1562.32 3244.20i −0.0971767 0.201789i
\(638\) 24753.4 + 31039.8i 1.53605 + 1.92614i
\(639\) −744.379 + 593.623i −0.0460832 + 0.0367501i
\(640\) −1388.59 668.707i −0.0857635 0.0413015i
\(641\) 12277.5 + 9790.94i 0.756521 + 0.603306i 0.923921 0.382583i \(-0.124966\pi\)
−0.167400 + 0.985889i \(0.553537\pi\)
\(642\) 20908.4 26218.3i 1.28534 1.61176i
\(643\) −7933.98 1810.88i −0.486603 0.111064i −0.0278212 0.999613i \(-0.508857\pi\)
−0.458782 + 0.888549i \(0.651714\pi\)
\(644\) 24509.6 11803.2i 1.49971 0.722223i
\(645\) 232.073 + 111.761i 0.0141672 + 0.00682259i
\(646\) −1608.57 + 7047.61i −0.0979696 + 0.429233i
\(647\) −640.574 1330.17i −0.0389236 0.0808257i 0.880600 0.473860i \(-0.157140\pi\)
−0.919524 + 0.393034i \(0.871425\pi\)
\(648\) 9554.56 + 2180.77i 0.579226 + 0.132205i
\(649\) −1897.70 3940.61i −0.114778 0.238340i
\(650\) 4644.54 + 20349.1i 0.280268 + 1.22793i
\(651\) −4918.73 + 21550.4i −0.296130 + 1.29743i
\(652\) 3570.64 + 15644.0i 0.214474 + 0.939671i
\(653\) 13913.5 6700.40i 0.833811 0.401542i 0.0322680 0.999479i \(-0.489727\pi\)
0.801543 + 0.597937i \(0.204013\pi\)
\(654\) 17145.8 21500.1i 1.02516 1.28550i
\(655\) 254.128 1113.41i 0.0151597 0.0664190i
\(656\) 7357.95 3543.40i 0.437926 0.210894i
\(657\) 1160.86 264.959i 0.0689338 0.0157337i
\(658\) 14696.8 11720.3i 0.870728 0.694383i
\(659\) 20817.0i 1.23052i 0.788323 + 0.615261i \(0.210950\pi\)
−0.788323 + 0.615261i \(0.789050\pi\)
\(660\) 3034.05i 0.178940i
\(661\) −5677.84 2734.31i −0.334104 0.160896i 0.259309 0.965795i \(-0.416505\pi\)
−0.593412 + 0.804899i \(0.702220\pi\)
\(662\) 15077.5 31308.8i 0.885204 1.83815i
\(663\) 6039.56 1378.49i 0.353781 0.0807483i
\(664\) −13679.8 + 10909.3i −0.799516 + 0.637593i
\(665\) 711.344 + 567.278i 0.0414808 + 0.0330799i
\(666\) 1558.59 + 3236.44i 0.0906817 + 0.188303i
\(667\) −25808.5 + 12428.7i −1.49822 + 0.721503i
\(668\) 31636.5i 1.83242i
\(669\) −18308.0 14600.2i −1.05804 0.843759i
\(670\) 1108.52 + 2301.86i 0.0639189 + 0.132729i
\(671\) 1129.33 + 2345.07i 0.0649734 + 0.134919i
\(672\) −12857.3 16122.6i −0.738068 0.925508i
\(673\) 21987.0 + 5018.39i 1.25934 + 0.287437i 0.799555 0.600593i \(-0.205069\pi\)
0.459787 + 0.888029i \(0.347926\pi\)
\(674\) 234.485 0.0134006
\(675\) 16661.7i 0.950090i
\(676\) −4723.46 5923.03i −0.268745 0.336996i
\(677\) −11784.7 24471.2i −0.669016 1.38923i −0.908318 0.418281i \(-0.862633\pi\)
0.239302 0.970945i \(-0.423081\pi\)
\(678\) 27906.9i 1.58076i
\(679\) −10887.0 + 13651.9i −0.615324 + 0.771592i
\(680\) −372.408 84.9996i −0.0210017 0.00479351i
\(681\) −13683.8 + 17158.9i −0.769989 + 0.965536i
\(682\) −44384.9 + 35395.7i −2.49206 + 1.98735i
\(683\) 77.1707 + 96.7690i 0.00432336 + 0.00542132i 0.783988 0.620775i \(-0.213182\pi\)
−0.779665 + 0.626197i \(0.784611\pi\)
\(684\) −1261.92 −0.0705418
\(685\) 2374.28 + 1893.42i 0.132433 + 0.105612i
\(686\) −12999.5 + 26993.7i −0.723502 + 1.50237i
\(687\) 9676.47 12133.9i 0.537380 0.673853i
\(688\) −1365.48 657.580i −0.0756663 0.0364390i
\(689\) 8077.23 + 1843.58i 0.446615 + 0.101937i
\(690\) −3702.23 845.011i −0.204263 0.0466217i
\(691\) −21084.1 10153.6i −1.16075 0.558986i −0.248501 0.968632i \(-0.579938\pi\)
−0.912245 + 0.409646i \(0.865652\pi\)
\(692\) −10155.7 + 12734.9i −0.557894 + 0.699577i
\(693\) −714.242 + 1483.14i −0.0391513 + 0.0812984i
\(694\) 18384.1 + 14660.8i 1.00555 + 0.801897i
\(695\) −1864.57 −0.101766
\(696\) −7652.84 9596.35i −0.416782 0.522628i
\(697\) 5818.78 4640.32i 0.316215 0.252173i
\(698\) −15852.2 + 19878.0i −0.859620 + 1.07793i
\(699\) 7694.83 + 1756.30i 0.416374 + 0.0950346i
\(700\) 13307.1 16686.6i 0.718518 0.900993i
\(701\) 13730.2i 0.739775i −0.929077 0.369887i \(-0.879396\pi\)
0.929077 0.369887i \(-0.120604\pi\)
\(702\) −9821.75 20395.1i −0.528060 1.09653i
\(703\) 13987.9 + 17540.2i 0.750445 + 0.941028i
\(704\) 39846.0i 2.13317i
\(705\) −1512.70 −0.0808107
\(706\) 8958.28 + 2044.67i 0.477548 + 0.108997i
\(707\) −10921.9 13695.6i −0.580990 0.728538i
\(708\) 2211.33 + 4591.87i 0.117382 + 0.243747i
\(709\) −9685.83 20112.8i −0.513059 1.06538i −0.983157 0.182764i \(-0.941496\pi\)
0.470097 0.882615i \(-0.344219\pi\)
\(710\) −1606.18 1280.89i −0.0849000 0.0677055i
\(711\) 2468.90i 0.130227i
\(712\) −5091.36 + 2451.87i −0.267987 + 0.129056i
\(713\) −17772.2 36904.5i −0.933487 1.93840i
\(714\) −8591.12 6851.19i −0.450301 0.359103i
\(715\) 1565.60 1248.53i 0.0818885 0.0653039i
\(716\) −4391.63 + 1002.36i −0.229222 + 0.0523184i
\(717\) 5951.44 12358.3i 0.309987 0.643694i
\(718\) −41642.0 20053.7i −2.16443 1.04234i
\(719\) 22758.1i 1.18044i 0.807244 + 0.590218i \(0.200958\pi\)
−0.807244 + 0.590218i \(0.799042\pi\)
\(720\) 68.9773i 0.00357032i
\(721\) −6397.92 + 5102.17i −0.330473 + 0.263543i
\(722\) 15734.1 3591.21i 0.811029 0.185112i
\(723\) 13277.1 6393.93i 0.682963 0.328898i
\(724\) 4942.72 21655.5i 0.253722 1.11163i
\(725\) −14012.4 + 17571.0i −0.717802 + 0.900095i
\(726\) −25483.9 + 12272.4i −1.30275 + 0.627370i
\(727\) 2536.35 + 11112.5i 0.129392 + 0.566903i 0.997509 + 0.0705430i \(0.0224732\pi\)
−0.868117 + 0.496360i \(0.834670\pi\)
\(728\) 1711.92 7500.40i 0.0871537 0.381845i
\(729\) 3995.36 + 17504.8i 0.202985 + 0.889336i
\(730\) 1114.76 + 2314.83i 0.0565194 + 0.117364i
\(731\) −1346.54 307.339i −0.0681308 0.0155504i
\(732\) −1315.97 2732.63i −0.0664475 0.137980i
\(733\) 5450.96 23882.2i 0.274674 1.20342i −0.629753 0.776795i \(-0.716844\pi\)
0.904427 0.426629i \(-0.140299\pi\)
\(734\) −49408.0 23793.6i −2.48458 1.19651i
\(735\) 463.080 223.007i 0.0232394 0.0111915i
\(736\) 37254.6 + 8503.12i 1.86579 + 0.425855i
\(737\) −17999.8 + 22571.0i −0.899636 + 1.12811i
\(738\) 1762.03 + 1405.17i 0.0878880 + 0.0700883i
\(739\) −14543.1 7003.60i −0.723921 0.348622i 0.0353690 0.999374i \(-0.488739\pi\)
−0.759290 + 0.650752i \(0.774454\pi\)
\(740\) −3493.42 + 2785.91i −0.173542 + 0.138395i
\(741\) 7304.81 + 9159.94i 0.362144 + 0.454114i
\(742\) −6376.28 13240.5i −0.315473 0.655085i
\(743\) −10900.3 + 8692.66i −0.538212 + 0.429210i −0.854498 0.519454i \(-0.826135\pi\)
0.316286 + 0.948664i \(0.397564\pi\)
\(744\) 13722.1 10943.0i 0.676180 0.539236i
\(745\) 202.091 + 885.418i 0.00993830 + 0.0435426i
\(746\) −6192.29 + 27130.2i −0.303909 + 1.33151i
\(747\) 2594.23 + 1249.31i 0.127065 + 0.0611914i
\(748\) −3620.14 15860.9i −0.176959 0.775310i
\(749\) 14110.7 + 17694.3i 0.688377 + 0.863198i
\(750\) −5833.95 + 1331.56i −0.284034 + 0.0648289i
\(751\) −12611.1 15813.8i −0.612762 0.768379i 0.374544 0.927209i \(-0.377799\pi\)
−0.987306 + 0.158830i \(0.949228\pi\)
\(752\) 8900.46 0.431604
\(753\) −19651.3 15671.4i −0.951042 0.758431i
\(754\) −6794.36 + 29768.0i −0.328164 + 1.43778i
\(755\) −694.708 −0.0334875
\(756\) −10043.2 + 20854.9i −0.483158 + 1.00329i
\(757\) −15979.2 + 3647.16i −0.767207 + 0.175110i −0.588175 0.808733i \(-0.700153\pi\)
−0.179031 + 0.983843i \(0.557296\pi\)
\(758\) 14946.4 31036.4i 0.716196 1.48720i
\(759\) −9548.44 41834.4i −0.456636 2.00065i
\(760\) −160.755 704.312i −0.00767261 0.0336159i
\(761\) −27941.3 22282.5i −1.33098 1.06142i −0.992730 0.120360i \(-0.961595\pi\)
−0.338245 0.941058i \(-0.609833\pi\)
\(762\) −19122.3 9208.79i −0.909089 0.437794i
\(763\) 11571.4 + 14510.1i 0.549033 + 0.688466i
\(764\) −23256.3 + 11199.7i −1.10129 + 0.530353i
\(765\) 13.9878 + 61.2845i 0.000661084 + 0.00289640i
\(766\) 32894.6 15841.2i 1.55161 0.747215i