Properties

Label 197.4.e.a.6.19
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.19
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69384 + 0.386608i) q^{2} +(8.91279 + 2.03429i) q^{3} +(-4.48812 + 2.16137i) q^{4} +(8.48300 - 17.6151i) q^{5} -15.8833 q^{6} +(0.935927 - 4.10056i) q^{7} +(17.6334 - 14.0622i) q^{8} +(50.9733 + 24.5474i) q^{9} +O(q^{10})\) \(q+(-1.69384 + 0.386608i) q^{2} +(8.91279 + 2.03429i) q^{3} +(-4.48812 + 2.16137i) q^{4} +(8.48300 - 17.6151i) q^{5} -15.8833 q^{6} +(0.935927 - 4.10056i) q^{7} +(17.6334 - 14.0622i) q^{8} +(50.9733 + 24.5474i) q^{9} +(-7.55869 + 33.1168i) q^{10} +(-3.07930 + 0.702831i) q^{11} +(-44.3985 + 10.1337i) q^{12} +(-48.7737 - 38.8958i) q^{13} +7.30753i q^{14} +(111.441 - 139.743i) q^{15} +(0.415436 - 0.520940i) q^{16} +(45.9395 - 95.3943i) q^{17} +(-95.8308 - 21.8727i) q^{18} -72.3042 q^{19} +97.3938i q^{20} +(16.6834 - 34.6435i) q^{21} +(4.94413 - 2.38097i) q^{22} +(15.3178 + 67.1116i) q^{23} +(185.769 - 89.4617i) q^{24} +(-160.395 - 201.129i) q^{25} +(97.6523 + 47.0269i) q^{26} +(211.395 + 168.582i) q^{27} +(4.66226 + 20.4267i) q^{28} +(40.8656 + 179.044i) q^{29} +(-134.738 + 279.786i) q^{30} +(265.933 - 60.6974i) q^{31} +(-78.7886 + 163.606i) q^{32} -28.8749 q^{33} +(-40.9339 + 179.343i) q^{34} +(-64.2925 - 51.2715i) q^{35} -281.830 q^{36} +(-110.750 - 138.876i) q^{37} +(122.472 - 27.9534i) q^{38} +(-355.585 - 445.889i) q^{39} +(-98.1227 - 429.904i) q^{40} +(403.719 + 194.421i) q^{41} +(-14.8656 + 65.1305i) q^{42} +(79.8688 + 349.928i) q^{43} +(12.3012 - 9.80990i) q^{44} +(864.812 - 689.665i) q^{45} +(-51.8917 - 107.754i) q^{46} +(-82.9105 - 103.966i) q^{47} +(4.76243 - 3.79791i) q^{48} +(293.094 + 141.146i) q^{49} +(349.442 + 278.671i) q^{50} +(603.508 - 756.775i) q^{51} +(302.971 + 69.1511i) q^{52} +(52.0533 - 25.0675i) q^{53} +(-423.244 - 203.824i) q^{54} +(-13.7413 + 60.2045i) q^{55} +(-41.1592 - 85.4680i) q^{56} +(-644.432 - 147.087i) q^{57} +(-138.439 - 287.472i) q^{58} +(-93.2902 - 408.731i) q^{59} +(-198.127 + 868.050i) q^{60} +(40.3358 + 176.723i) q^{61} +(-426.981 + 205.623i) q^{62} +(148.366 - 186.044i) q^{63} +(69.0177 - 302.386i) q^{64} +(-1098.90 + 529.203i) q^{65} +(48.9095 - 11.1633i) q^{66} +(-516.652 + 412.017i) q^{67} +527.434i q^{68} +629.312i q^{69} +(128.723 + 61.9898i) q^{70} +(137.660 - 285.853i) q^{71} +(1244.02 - 283.940i) q^{72} +(-611.686 + 487.804i) q^{73} +(241.282 + 192.416i) q^{74} +(-1020.41 - 2118.91i) q^{75} +(324.510 - 156.276i) q^{76} +13.2847i q^{77} +(774.688 + 617.793i) q^{78} +(379.972 + 789.019i) q^{79} +(-5.65228 - 11.7371i) q^{80} +(588.759 + 738.281i) q^{81} +(-758.999 - 173.237i) q^{82} +746.624 q^{83} +191.543i q^{84} +(-1290.68 - 1618.46i) q^{85} +(-270.570 - 561.844i) q^{86} +1678.91i q^{87} +(-44.4153 + 55.6950i) q^{88} +(-713.957 - 162.956i) q^{89} +(-1198.22 + 1502.52i) q^{90} +(-205.143 + 163.596i) q^{91} +(-213.801 - 268.098i) q^{92} +2493.68 q^{93} +(180.631 + 144.049i) q^{94} +(-613.357 + 1273.65i) q^{95} +(-1035.05 + 1297.91i) q^{96} +(-1347.35 - 648.849i) q^{97} +(-551.022 - 125.767i) q^{98} +(-174.215 - 39.7634i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69384 + 0.386608i −0.598863 + 0.136686i −0.511197 0.859463i \(-0.670798\pi\)
−0.0876655 + 0.996150i \(0.527941\pi\)
\(3\) 8.91279 + 2.03429i 1.71527 + 0.391498i 0.963453 0.267878i \(-0.0863223\pi\)
0.751813 + 0.659376i \(0.229179\pi\)
\(4\) −4.48812 + 2.16137i −0.561016 + 0.270171i
\(5\) 8.48300 17.6151i 0.758742 1.57555i −0.0578465 0.998325i \(-0.518423\pi\)
0.816589 0.577220i \(-0.195862\pi\)
\(6\) −15.8833 −1.08072
\(7\) 0.935927 4.10056i 0.0505353 0.221410i −0.943355 0.331786i \(-0.892349\pi\)
0.993890 + 0.110377i \(0.0352058\pi\)
\(8\) 17.6334 14.0622i 0.779293 0.621466i
\(9\) 50.9733 + 24.5474i 1.88790 + 0.909164i
\(10\) −7.55869 + 33.1168i −0.239027 + 1.04724i
\(11\) −3.07930 + 0.702831i −0.0844041 + 0.0192647i −0.264514 0.964382i \(-0.585212\pi\)
0.180110 + 0.983646i \(0.442355\pi\)
\(12\) −44.3985 + 10.1337i −1.06806 + 0.243778i
\(13\) −48.7737 38.8958i −1.04057 0.829826i −0.0548959 0.998492i \(-0.517483\pi\)
−0.985673 + 0.168666i \(0.946054\pi\)
\(14\) 7.30753i 0.139501i
\(15\) 111.441 139.743i 1.91827 2.40543i
\(16\) 0.415436 0.520940i 0.00649118 0.00813969i
\(17\) 45.9395 95.3943i 0.655409 1.36097i −0.262790 0.964853i \(-0.584643\pi\)
0.918199 0.396118i \(-0.129643\pi\)
\(18\) −95.8308 21.8727i −1.25486 0.286414i
\(19\) −72.3042 −0.873038 −0.436519 0.899695i \(-0.643789\pi\)
−0.436519 + 0.899695i \(0.643789\pi\)
\(20\) 97.3938i 1.08890i
\(21\) 16.6834 34.6435i 0.173363 0.359992i
\(22\) 4.94413 2.38097i 0.0479132 0.0230738i
\(23\) 15.3178 + 67.1116i 0.138869 + 0.608423i 0.995685 + 0.0928010i \(0.0295820\pi\)
−0.856816 + 0.515622i \(0.827561\pi\)
\(24\) 185.769 89.4617i 1.58000 0.760887i
\(25\) −160.395 201.129i −1.28316 1.60903i
\(26\) 97.6523 + 47.0269i 0.736584 + 0.354720i
\(27\) 211.395 + 168.582i 1.50678 + 1.20161i
\(28\) 4.66226 + 20.4267i 0.0314673 + 0.137867i
\(29\) 40.8656 + 179.044i 0.261674 + 1.14647i 0.919435 + 0.393242i \(0.128646\pi\)
−0.657761 + 0.753227i \(0.728496\pi\)
\(30\) −134.738 + 279.786i −0.819989 + 1.70273i
\(31\) 265.933 60.6974i 1.54074 0.351664i 0.633993 0.773339i \(-0.281415\pi\)
0.906747 + 0.421675i \(0.138558\pi\)
\(32\) −78.7886 + 163.606i −0.435250 + 0.903806i
\(33\) −28.8749 −0.152318
\(34\) −40.9339 + 179.343i −0.206474 + 0.904621i
\(35\) −64.2925 51.2715i −0.310497 0.247613i
\(36\) −281.830 −1.30477
\(37\) −110.750 138.876i −0.492084 0.617054i 0.472339 0.881417i \(-0.343410\pi\)
−0.964423 + 0.264363i \(0.914838\pi\)
\(38\) 122.472 27.9534i 0.522830 0.119333i
\(39\) −355.585 445.889i −1.45998 1.83075i
\(40\) −98.1227 429.904i −0.387864 1.69934i
\(41\) 403.719 + 194.421i 1.53781 + 0.740571i 0.995056 0.0993192i \(-0.0316665\pi\)
0.542756 + 0.839890i \(0.317381\pi\)
\(42\) −14.8656 + 65.1305i −0.0546146 + 0.239282i
\(43\) 79.8688 + 349.928i 0.283253 + 1.24101i 0.893595 + 0.448874i \(0.148175\pi\)
−0.610342 + 0.792138i \(0.708968\pi\)
\(44\) 12.3012 9.80990i 0.0421473 0.0336113i
\(45\) 864.812 689.665i 2.86486 2.28465i
\(46\) −51.8917 107.754i −0.166326 0.345380i
\(47\) −82.9105 103.966i −0.257313 0.322661i 0.636348 0.771402i \(-0.280444\pi\)
−0.893662 + 0.448741i \(0.851873\pi\)
\(48\) 4.76243 3.79791i 0.0143208 0.0114204i
\(49\) 293.094 + 141.146i 0.854500 + 0.411506i
\(50\) 349.442 + 278.671i 0.988371 + 0.788200i
\(51\) 603.508 756.775i 1.65702 2.07784i
\(52\) 302.971 + 69.1511i 0.807970 + 0.184414i
\(53\) 52.0533 25.0675i 0.134907 0.0649678i −0.365213 0.930924i \(-0.619004\pi\)
0.500120 + 0.865956i \(0.333289\pi\)
\(54\) −423.244 203.824i −1.06660 0.513646i
\(55\) −13.7413 + 60.2045i −0.0336886 + 0.147599i
\(56\) −41.1592 85.4680i −0.0982166 0.203949i
\(57\) −644.432 147.087i −1.49749 0.341793i
\(58\) −138.439 287.472i −0.313414 0.650810i
\(59\) −93.2902 408.731i −0.205853 0.901903i −0.967292 0.253666i \(-0.918364\pi\)
0.761439 0.648237i \(-0.224493\pi\)
\(60\) −198.127 + 868.050i −0.426301 + 1.86775i
\(61\) 40.3358 + 176.723i 0.0846634 + 0.370934i 0.999456 0.0329901i \(-0.0105030\pi\)
−0.914792 + 0.403925i \(0.867646\pi\)
\(62\) −426.981 + 205.623i −0.874624 + 0.421197i
\(63\) 148.366 186.044i 0.296703 0.372054i
\(64\) 69.0177 302.386i 0.134800 0.590598i
\(65\) −1098.90 + 529.203i −2.09695 + 1.00984i
\(66\) 48.9095 11.1633i 0.0912173 0.0208198i
\(67\) −516.652 + 412.017i −0.942077 + 0.751281i −0.968666 0.248365i \(-0.920107\pi\)
0.0265897 + 0.999646i \(0.491535\pi\)
\(68\) 527.434i 0.940599i
\(69\) 629.312i 1.09797i
\(70\) 128.723 + 61.9898i 0.219791 + 0.105846i
\(71\) 137.660 285.853i 0.230101 0.477810i −0.753666 0.657257i \(-0.771717\pi\)
0.983768 + 0.179447i \(0.0574308\pi\)
\(72\) 1244.02 283.940i 2.03624 0.464759i
\(73\) −611.686 + 487.804i −0.980719 + 0.782097i −0.975973 0.217892i \(-0.930082\pi\)
−0.00474592 + 0.999989i \(0.501511\pi\)
\(74\) 241.282 + 192.416i 0.379034 + 0.302269i
\(75\) −1020.41 2118.91i −1.57103 3.26228i
\(76\) 324.510 156.276i 0.489788 0.235869i
\(77\) 13.2847i 0.0196614i
\(78\) 774.688 + 617.793i 1.12457 + 0.896811i
\(79\) 379.972 + 789.019i 0.541141 + 1.12369i 0.974896 + 0.222660i \(0.0714740\pi\)
−0.433755 + 0.901031i \(0.642812\pi\)
\(80\) −5.65228 11.7371i −0.00789931 0.0164031i
\(81\) 588.759 + 738.281i 0.807626 + 1.01273i
\(82\) −758.999 173.237i −1.02216 0.233302i
\(83\) 746.624 0.987382 0.493691 0.869638i \(-0.335647\pi\)
0.493691 + 0.869638i \(0.335647\pi\)
\(84\) 191.543i 0.248799i
\(85\) −1290.68 1618.46i −1.64699 2.06525i
\(86\) −270.570 561.844i −0.339259 0.704479i
\(87\) 1678.91i 2.06894i
\(88\) −44.4153 + 55.6950i −0.0538032 + 0.0674671i
\(89\) −713.957 162.956i −0.850329 0.194082i −0.224918 0.974378i \(-0.572212\pi\)
−0.625411 + 0.780295i \(0.715069\pi\)
\(90\) −1198.22 + 1502.52i −1.40338 + 1.75978i
\(91\) −205.143 + 163.596i −0.236317 + 0.188456i
\(92\) −213.801 268.098i −0.242286 0.303817i
\(93\) 2493.68 2.78046
\(94\) 180.631 + 144.049i 0.198199 + 0.158058i
\(95\) −613.357 + 1273.65i −0.662411 + 1.37551i
\(96\) −1035.05 + 1297.91i −1.10041 + 1.37987i
\(97\) −1347.35 648.849i −1.41034 0.679182i −0.435106 0.900379i \(-0.643289\pi\)
−0.975229 + 0.221198i \(0.929003\pi\)
\(98\) −551.022 125.767i −0.567976 0.129637i
\(99\) −174.215 39.7634i −0.176861 0.0403674i
\(100\) 1154.59 + 556.020i 1.15459 + 0.556020i
\(101\) −152.063 + 190.680i −0.149810 + 0.187856i −0.851074 0.525046i \(-0.824048\pi\)
0.701264 + 0.712902i \(0.252619\pi\)
\(102\) −729.670 + 1515.18i −0.708315 + 1.47083i
\(103\) 1058.30 + 843.963i 1.01240 + 0.807361i 0.981364 0.192158i \(-0.0615485\pi\)
0.0310342 + 0.999518i \(0.490120\pi\)
\(104\) −1407.00 −1.32662
\(105\) −468.724 587.761i −0.435646 0.546282i
\(106\) −78.4786 + 62.5846i −0.0719105 + 0.0573467i
\(107\) −481.310 + 603.544i −0.434860 + 0.545297i −0.950180 0.311701i \(-0.899101\pi\)
0.515321 + 0.856997i \(0.327673\pi\)
\(108\) −1313.13 299.714i −1.16997 0.267037i
\(109\) 409.097 512.991i 0.359490 0.450786i −0.568893 0.822412i \(-0.692628\pi\)
0.928383 + 0.371626i \(0.121200\pi\)
\(110\) 107.289i 0.0929966i
\(111\) −704.574 1463.06i −0.602480 1.25106i
\(112\) −1.74733 2.19108i −0.00147417 0.00184855i
\(113\) 888.192i 0.739416i 0.929148 + 0.369708i \(0.120542\pi\)
−0.929148 + 0.369708i \(0.879458\pi\)
\(114\) 1148.43 0.943511
\(115\) 1312.12 + 299.483i 1.06396 + 0.242843i
\(116\) −570.389 715.245i −0.456546 0.572490i
\(117\) −1531.37 3179.91i −1.21004 2.51268i
\(118\) 316.037 + 656.258i 0.246556 + 0.511978i
\(119\) −348.174 277.660i −0.268211 0.213891i
\(120\) 4031.25i 3.06668i
\(121\) −1190.20 + 573.171i −0.894216 + 0.430632i
\(122\) −136.645 283.745i −0.101403 0.210566i
\(123\) 3202.75 + 2554.11i 2.34782 + 1.87233i
\(124\) −1062.35 + 847.196i −0.769370 + 0.613552i
\(125\) −2520.91 + 575.381i −1.80382 + 0.411709i
\(126\) −179.381 + 372.489i −0.126830 + 0.263365i
\(127\) 1191.09 + 573.600i 0.832223 + 0.400778i 0.800949 0.598733i \(-0.204329\pi\)
0.0312748 + 0.999511i \(0.490043\pi\)
\(128\) 913.838i 0.631036i
\(129\) 3281.31i 2.23956i
\(130\) 1656.77 1321.23i 1.11776 0.891380i
\(131\) −988.597 + 225.641i −0.659344 + 0.150491i −0.539085 0.842251i \(-0.681230\pi\)
−0.120260 + 0.992742i \(0.538373\pi\)
\(132\) 129.594 62.4093i 0.0854526 0.0411518i
\(133\) −67.6714 + 296.488i −0.0441192 + 0.193299i
\(134\) 715.837 897.632i 0.461485 0.578683i
\(135\) 4762.85 2293.67i 3.03645 1.46228i
\(136\) −531.381 2328.13i −0.335041 1.46791i
\(137\) 185.758 813.859i 0.115842 0.507538i −0.883400 0.468619i \(-0.844752\pi\)
0.999242 0.0389183i \(-0.0123912\pi\)
\(138\) −243.297 1065.95i −0.150078 0.657536i
\(139\) −1144.40 2376.37i −0.698321 1.45008i −0.884009 0.467470i \(-0.845166\pi\)
0.185688 0.982609i \(-0.440549\pi\)
\(140\) 399.369 + 91.1534i 0.241092 + 0.0550276i
\(141\) −527.466 1095.29i −0.315040 0.654187i
\(142\) −122.660 + 537.410i −0.0724889 + 0.317595i
\(143\) 177.526 + 85.4922i 0.103815 + 0.0499945i
\(144\) 33.9639 16.3561i 0.0196550 0.00946535i
\(145\) 3500.54 + 798.976i 2.00486 + 0.457595i
\(146\) 847.510 1062.74i 0.480414 0.602420i
\(147\) 2325.15 + 1854.24i 1.30459 + 1.04038i
\(148\) 797.219 + 383.920i 0.442777 + 0.213230i
\(149\) −641.804 + 511.822i −0.352877 + 0.281410i −0.783844 0.620958i \(-0.786744\pi\)
0.430967 + 0.902368i \(0.358172\pi\)
\(150\) 2547.61 + 3194.60i 1.38674 + 1.73892i
\(151\) 987.509 + 2050.58i 0.532201 + 1.10513i 0.977731 + 0.209860i \(0.0673007\pi\)
−0.445531 + 0.895267i \(0.646985\pi\)
\(152\) −1274.97 + 1016.75i −0.680353 + 0.542563i
\(153\) 4683.37 3734.86i 2.47469 1.97350i
\(154\) −5.13596 22.5021i −0.00268745 0.0117745i
\(155\) 1186.72 5199.34i 0.614963 2.69433i
\(156\) 2559.64 + 1232.66i 1.31369 + 0.632638i
\(157\) −184.139 806.765i −0.0936044 0.410108i 0.906318 0.422597i \(-0.138881\pi\)
−0.999922 + 0.0124896i \(0.996024\pi\)
\(158\) −948.652 1189.57i −0.477663 0.598970i
\(159\) 514.934 117.530i 0.256836 0.0586212i
\(160\) 2213.58 + 2775.74i 1.09374 + 1.37151i
\(161\) 289.532 0.141728
\(162\) −1282.69 1022.91i −0.622084 0.496095i
\(163\) 56.4854 247.479i 0.0271428 0.118920i −0.959542 0.281567i \(-0.909146\pi\)
0.986684 + 0.162646i \(0.0520030\pi\)
\(164\) −2232.15 −1.06282
\(165\) −244.946 + 508.636i −0.115570 + 0.239983i
\(166\) −1264.66 + 288.651i −0.591306 + 0.134962i
\(167\) −665.511 + 1381.95i −0.308376 + 0.640349i −0.996348 0.0853884i \(-0.972787\pi\)
0.687972 + 0.725737i \(0.258501\pi\)
\(168\) −192.977 845.487i −0.0886220 0.388278i
\(169\) 377.119 + 1652.27i 0.171652 + 0.752055i
\(170\) 2811.91 + 2242.42i 1.26861 + 1.01168i
\(171\) −3685.58 1774.88i −1.64821 0.793735i
\(172\) −1114.78 1397.90i −0.494195 0.619701i
\(173\) −2029.82 + 977.510i −0.892049 + 0.429588i −0.823011 0.568026i \(-0.807707\pi\)
−0.0690381 + 0.997614i \(0.521993\pi\)
\(174\) −649.080 2843.80i −0.282797 1.23901i
\(175\) −974.861 + 469.469i −0.421101 + 0.202791i
\(176\) −0.913120 + 1.89611i −0.000391074 + 0.000812074i
\(177\) 3832.71i 1.62759i
\(178\) 1272.33 0.535759
\(179\) −293.274 66.9379i −0.122460 0.0279507i 0.160852 0.986979i \(-0.448576\pi\)
−0.283312 + 0.959028i \(0.591433\pi\)
\(180\) −2390.77 + 4964.48i −0.989985 + 2.05572i
\(181\) 985.396 1235.65i 0.404663 0.507431i −0.537188 0.843462i \(-0.680513\pi\)
0.941851 + 0.336032i \(0.109085\pi\)
\(182\) 284.232 356.416i 0.115762 0.145161i
\(183\) 1657.14i 0.669397i
\(184\) 1213.84 + 968.004i 0.486333 + 0.387838i
\(185\) −3385.80 + 772.786i −1.34556 + 0.307116i
\(186\) −4223.89 + 964.076i −1.66511 + 0.380051i
\(187\) −74.4155 + 326.036i −0.0291006 + 0.127498i
\(188\) 596.822 + 287.414i 0.231530 + 0.111499i
\(189\) 889.130 709.058i 0.342194 0.272891i
\(190\) 546.525 2394.48i 0.208680 0.914285i
\(191\) 60.8549 0.0230540 0.0115270 0.999934i \(-0.496331\pi\)
0.0115270 + 0.999934i \(0.496331\pi\)
\(192\) 1230.28 2554.70i 0.462436 0.960259i
\(193\) 570.461 274.719i 0.212760 0.102460i −0.324469 0.945896i \(-0.605186\pi\)
0.537229 + 0.843437i \(0.319471\pi\)
\(194\) 2533.04 + 578.150i 0.937432 + 0.213963i
\(195\) −10870.8 + 2481.19i −3.99218 + 0.911190i
\(196\) −1620.51 −0.590565
\(197\) 2617.03 892.486i 0.946475 0.322777i
\(198\) 310.465 0.111433
\(199\) 2765.05 631.105i 0.984971 0.224813i 0.300443 0.953800i \(-0.402865\pi\)
0.684528 + 0.728987i \(0.260008\pi\)
\(200\) −5656.62 1291.09i −1.99992 0.456468i
\(201\) −5442.97 + 2621.20i −1.91004 + 0.919826i
\(202\) 183.851 381.771i 0.0640382 0.132977i
\(203\) 772.427 0.267063
\(204\) −1072.95 + 4700.90i −0.368243 + 1.61338i
\(205\) 6849.49 5462.29i 2.33361 1.86099i
\(206\) −2118.87 1020.39i −0.716643 0.345117i
\(207\) −866.620 + 3796.91i −0.290987 + 1.27490i
\(208\) −40.5247 + 9.24950i −0.0135091 + 0.00308335i
\(209\) 222.647 50.8177i 0.0736880 0.0168188i
\(210\) 1021.18 + 814.361i 0.335561 + 0.267601i
\(211\) 2559.52i 0.835094i 0.908655 + 0.417547i \(0.137110\pi\)
−0.908655 + 0.417547i \(0.862890\pi\)
\(212\) −179.442 + 225.013i −0.0581325 + 0.0728959i
\(213\) 1808.44 2267.71i 0.581747 0.729488i
\(214\) 581.927 1208.38i 0.185887 0.385997i
\(215\) 6841.56 + 1561.54i 2.17019 + 0.495331i
\(216\) 6098.23 1.92098
\(217\) 1147.28i 0.358906i
\(218\) −494.618 + 1027.09i −0.153669 + 0.319096i
\(219\) −6444.16 + 3103.34i −1.98838 + 0.957555i
\(220\) −68.4514 299.905i −0.0209772 0.0919072i
\(221\) −5951.07 + 2865.89i −1.81137 + 0.872309i
\(222\) 1759.07 + 2205.80i 0.531806 + 0.666864i
\(223\) 3767.89 + 1814.52i 1.13146 + 0.544884i 0.903416 0.428765i \(-0.141051\pi\)
0.228048 + 0.973650i \(0.426766\pi\)
\(224\) 597.137 + 476.201i 0.178116 + 0.142043i
\(225\) −3238.66 14189.5i −0.959604 4.20430i
\(226\) −343.382 1504.45i −0.101068 0.442809i
\(227\) −2119.83 + 4401.87i −0.619815 + 1.28706i 0.320659 + 0.947195i \(0.396096\pi\)
−0.940474 + 0.339865i \(0.889619\pi\)
\(228\) 3210.20 732.707i 0.932459 0.212828i
\(229\) 2414.75 5014.28i 0.696818 1.44696i −0.188549 0.982064i \(-0.560379\pi\)
0.885367 0.464893i \(-0.153907\pi\)
\(230\) −2338.30 −0.670361
\(231\) −27.0248 + 118.403i −0.00769741 + 0.0337246i
\(232\) 3238.34 + 2582.49i 0.916411 + 0.730814i
\(233\) −4153.10 −1.16772 −0.583859 0.811855i \(-0.698458\pi\)
−0.583859 + 0.811855i \(0.698458\pi\)
\(234\) 3823.27 + 4794.22i 1.06810 + 1.33935i
\(235\) −2534.71 + 578.531i −0.703601 + 0.160592i
\(236\) 1302.12 + 1632.80i 0.359155 + 0.450366i
\(237\) 1781.52 + 7805.33i 0.488278 + 2.13929i
\(238\) 697.097 + 335.704i 0.189857 + 0.0914305i
\(239\) 759.163 3326.11i 0.205465 0.900201i −0.762076 0.647488i \(-0.775820\pi\)
0.967541 0.252714i \(-0.0813231\pi\)
\(240\) −26.5010 116.108i −0.00712764 0.0312282i
\(241\) −2797.66 + 2231.06i −0.747772 + 0.596329i −0.921460 0.388472i \(-0.873003\pi\)
0.173688 + 0.984801i \(0.444432\pi\)
\(242\) 1794.42 1431.00i 0.476651 0.380116i
\(243\) 578.099 + 1200.43i 0.152613 + 0.316905i
\(244\) −562.994 705.972i −0.147713 0.185226i
\(245\) 4972.63 3965.54i 1.29669 1.03408i
\(246\) −6412.39 3088.04i −1.66195 0.800351i
\(247\) 3526.55 + 2812.33i 0.908457 + 0.724470i
\(248\) 3835.76 4809.89i 0.982141 1.23157i
\(249\) 6654.50 + 1518.85i 1.69362 + 0.386558i
\(250\) 4047.57 1949.21i 1.02396 0.493115i
\(251\) 1542.22 + 742.695i 0.387826 + 0.186767i 0.617628 0.786470i \(-0.288094\pi\)
−0.229802 + 0.973237i \(0.573808\pi\)
\(252\) −263.773 + 1155.66i −0.0659369 + 0.288889i
\(253\) −94.3362 195.891i −0.0234422 0.0486782i
\(254\) −2239.28 511.100i −0.553168 0.126257i
\(255\) −8211.13 17050.6i −2.01647 4.18725i
\(256\) 905.438 + 3966.98i 0.221054 + 0.968502i
\(257\) −767.507 + 3362.67i −0.186287 + 0.816177i 0.792265 + 0.610177i \(0.208902\pi\)
−0.978552 + 0.206000i \(0.933955\pi\)
\(258\) −1268.58 5558.01i −0.306118 1.34119i
\(259\) −673.121 + 324.158i −0.161489 + 0.0777691i
\(260\) 3788.20 4750.26i 0.903594 1.13307i
\(261\) −2312.01 + 10129.6i −0.548314 + 2.40232i
\(262\) 1587.29 764.399i 0.374287 0.180247i
\(263\) 1262.86 288.239i 0.296088 0.0675801i −0.0718965 0.997412i \(-0.522905\pi\)
0.367984 + 0.929832i \(0.380048\pi\)
\(264\) −509.163 + 406.044i −0.118700 + 0.0946602i
\(265\) 1129.57i 0.261846i
\(266\) 528.365i 0.121790i
\(267\) −6031.85 2904.79i −1.38256 0.665805i
\(268\) 1428.28 2965.86i 0.325545 0.676002i
\(269\) 5215.86 1190.49i 1.18222 0.269834i 0.414155 0.910207i \(-0.364077\pi\)
0.768064 + 0.640373i \(0.221220\pi\)
\(270\) −7180.75 + 5726.46i −1.61854 + 1.29075i
\(271\) 875.930 + 698.531i 0.196343 + 0.156578i 0.716727 0.697354i \(-0.245640\pi\)
−0.520384 + 0.853933i \(0.674211\pi\)
\(272\) −30.6098 63.5619i −0.00682350 0.0141691i
\(273\) −2161.20 + 1040.78i −0.479127 + 0.230735i
\(274\) 1450.36i 0.319779i
\(275\) 635.266 + 506.608i 0.139302 + 0.111089i
\(276\) −1360.17 2824.43i −0.296641 0.615981i
\(277\) 1110.68 + 2306.36i 0.240919 + 0.500274i 0.986009 0.166690i \(-0.0533079\pi\)
−0.745090 + 0.666964i \(0.767594\pi\)
\(278\) 2857.15 + 3582.75i 0.616405 + 0.772947i
\(279\) 15045.4 + 3434.02i 3.22848 + 0.736880i
\(280\) −1854.68 −0.395852
\(281\) 3917.49i 0.831666i −0.909441 0.415833i \(-0.863490\pi\)
0.909441 0.415833i \(-0.136510\pi\)
\(282\) 1316.89 + 1651.33i 0.278084 + 0.348707i
\(283\) 1085.33 + 2253.71i 0.227973 + 0.473390i 0.983308 0.181948i \(-0.0582403\pi\)
−0.755335 + 0.655338i \(0.772526\pi\)
\(284\) 1580.48i 0.330226i
\(285\) −8057.68 + 10104.0i −1.67472 + 2.10003i
\(286\) −333.753 76.1769i −0.0690043 0.0157498i
\(287\) 1175.09 1473.51i 0.241683 0.303061i
\(288\) −8032.23 + 6405.49i −1.64342 + 1.31058i
\(289\) −3926.43 4923.59i −0.799192 1.00216i
\(290\) −6238.24 −1.26318
\(291\) −10688.7 8523.94i −2.15320 1.71712i
\(292\) 1691.00 3511.40i 0.338899 0.703730i
\(293\) −4413.56 + 5534.43i −0.880010 + 1.10350i 0.113920 + 0.993490i \(0.463659\pi\)
−0.993931 + 0.110008i \(0.964912\pi\)
\(294\) −4655.29 2241.87i −0.923477 0.444723i
\(295\) −7991.23 1823.95i −1.57718 0.359981i
\(296\) −3905.78 891.469i −0.766956 0.175053i
\(297\) −769.433 370.540i −0.150327 0.0723936i
\(298\) 889.239 1115.07i 0.172860 0.216759i
\(299\) 1863.25 3869.08i 0.360383 0.748343i
\(300\) 9159.49 + 7304.45i 1.76275 + 1.40574i
\(301\) 1509.65 0.289086
\(302\) −2465.45 3091.58i −0.469771 0.589074i
\(303\) −1743.20 + 1390.16i −0.330509 + 0.263572i
\(304\) −30.0378 + 37.6662i −0.00566705 + 0.00710626i
\(305\) 3455.16 + 788.617i 0.648662 + 0.148053i
\(306\) −6488.95 + 8136.89i −1.21225 + 1.52011i
\(307\) 7140.76i 1.32751i −0.747951 0.663754i \(-0.768962\pi\)
0.747951 0.663754i \(-0.231038\pi\)
\(308\) −28.7131 59.6233i −0.00531194 0.0110304i
\(309\) 7715.50 + 9674.94i 1.42045 + 1.78119i
\(310\) 9265.64i 1.69759i
\(311\) 6048.41 1.10281 0.551405 0.834238i \(-0.314092\pi\)
0.551405 + 0.834238i \(0.314092\pi\)
\(312\) −12540.3 2862.25i −2.27550 0.519368i
\(313\) 3896.37 + 4885.89i 0.703629 + 0.882323i 0.997289 0.0735870i \(-0.0234447\pi\)
−0.293660 + 0.955910i \(0.594873\pi\)
\(314\) 623.804 + 1295.34i 0.112112 + 0.232804i
\(315\) −2018.61 4191.69i −0.361066 0.749762i
\(316\) −3410.72 2719.96i −0.607177 0.484208i
\(317\) 1775.70i 0.314615i 0.987550 + 0.157308i \(0.0502814\pi\)
−0.987550 + 0.157308i \(0.949719\pi\)
\(318\) −826.778 + 398.155i −0.145797 + 0.0702121i
\(319\) −251.675 522.609i −0.0441727 0.0917256i
\(320\) −4741.10 3780.90i −0.828235 0.660496i
\(321\) −5517.59 + 4400.13i −0.959383 + 0.765082i
\(322\) −490.420 + 111.935i −0.0848759 + 0.0193724i
\(323\) −3321.62 + 6897.41i −0.572197 + 1.18818i
\(324\) −4238.12 2040.97i −0.726701 0.349961i
\(325\) 16048.5i 2.73911i
\(326\) 441.027i 0.0749271i
\(327\) 4689.76 3739.96i 0.793103 0.632478i
\(328\) 9852.91 2248.86i 1.65865 0.378575i
\(329\) −503.919 + 242.675i −0.0844436 + 0.0406659i
\(330\) 218.257 956.245i 0.0364080 0.159514i
\(331\) 7095.75 8897.78i 1.17830 1.47754i 0.333264 0.942834i \(-0.391850\pi\)
0.845037 0.534709i \(-0.179579\pi\)
\(332\) −3350.94 + 1613.73i −0.553936 + 0.266762i
\(333\) −2236.23 9797.56i −0.368002 1.61232i
\(334\) 592.997 2598.09i 0.0971477 0.425632i
\(335\) 2874.96 + 12596.0i 0.468884 + 2.05431i
\(336\) −11.1163 23.0832i −0.00180489 0.00374789i
\(337\) −5385.17 1229.13i −0.870471 0.198679i −0.236119 0.971724i \(-0.575876\pi\)
−0.634351 + 0.773045i \(0.718733\pi\)
\(338\) −1277.56 2652.88i −0.205592 0.426915i
\(339\) −1806.84 + 7916.26i −0.289480 + 1.26830i
\(340\) 9290.81 + 4474.22i 1.48196 + 0.713672i
\(341\) −776.228 + 373.812i −0.123270 + 0.0593638i
\(342\) 6928.97 + 1581.49i 1.09554 + 0.250051i
\(343\) 1752.58 2197.67i 0.275890 0.345956i
\(344\) 6329.10 + 5047.29i 0.991984 + 0.791081i
\(345\) 11085.4 + 5338.45i 1.72991 + 0.833080i
\(346\) 3060.28 2440.49i 0.475496 0.379195i
\(347\) −1144.39 1435.02i −0.177043 0.222005i 0.685390 0.728176i \(-0.259632\pi\)
−0.862433 + 0.506171i \(0.831060\pi\)
\(348\) −3628.74 7535.16i −0.558968 1.16071i
\(349\) 9087.15 7246.76i 1.39376 1.11149i 0.414240 0.910168i \(-0.364047\pi\)
0.979525 0.201323i \(-0.0645239\pi\)
\(350\) 1469.76 1172.09i 0.224463 0.179003i
\(351\) −3753.40 16444.7i −0.570774 2.50072i
\(352\) 127.627 559.169i 0.0193253 0.0846699i
\(353\) 6027.41 + 2902.65i 0.908801 + 0.437655i 0.829060 0.559160i \(-0.188876\pi\)
0.0797412 + 0.996816i \(0.474591\pi\)
\(354\) 1481.76 + 6492.00i 0.222470 + 0.974706i
\(355\) −3867.57 4849.78i −0.578224 0.725070i
\(356\) 3556.54 811.756i 0.529483 0.120851i
\(357\) −2538.36 3183.01i −0.376315 0.471884i
\(358\) 522.638 0.0771572
\(359\) −657.206 524.105i −0.0966185 0.0770506i 0.573989 0.818863i \(-0.305395\pi\)
−0.670608 + 0.741812i \(0.733967\pi\)
\(360\) 5551.40 24322.3i 0.812734 3.56082i
\(361\) −1631.10 −0.237804
\(362\) −1191.39 + 2473.95i −0.172978 + 0.359193i
\(363\) −11774.0 + 2687.34i −1.70241 + 0.388564i
\(364\) 567.116 1177.63i 0.0816620 0.169573i
\(365\) 3403.79 + 14913.0i 0.488116 + 2.13858i
\(366\) −640.665 2806.94i −0.0914975 0.400877i
\(367\) −9714.69 7747.21i −1.38175 1.10191i −0.982746 0.184962i \(-0.940784\pi\)
−0.399006 0.916948i \(-0.630645\pi\)
\(368\) 41.3247 + 19.9009i 0.00585380 + 0.00281904i
\(369\) 15806.3 + 19820.5i 2.22993 + 2.79625i
\(370\) 5436.23 2617.95i 0.763828 0.367840i
\(371\) −54.0730 236.909i −0.00756693 0.0331529i
\(372\) −11191.9 + 5389.75i −1.55988 + 0.751198i
\(373\) −3725.40 + 7735.87i −0.517141 + 1.07386i 0.464930 + 0.885347i \(0.346079\pi\)
−0.982072 + 0.188508i \(0.939635\pi\)
\(374\) 581.022i 0.0803314i
\(375\) −23638.8 −3.25521
\(376\) −2923.98 667.380i −0.401045 0.0915360i
\(377\) 4970.87 10322.1i 0.679080 1.41012i
\(378\) −1231.92 + 1544.77i −0.167627 + 0.210197i
\(379\) 179.075 224.554i 0.0242704 0.0304341i −0.769548 0.638589i \(-0.779519\pi\)
0.793819 + 0.608155i \(0.208090\pi\)
\(380\) 7041.98i 0.950647i
\(381\) 9449.08 + 7535.39i 1.27058 + 1.01325i
\(382\) −103.078 + 23.5270i −0.0138062 + 0.00315116i
\(383\) 4954.53 1130.84i 0.661004 0.150870i 0.121158 0.992633i \(-0.461339\pi\)
0.539847 + 0.841763i \(0.318482\pi\)
\(384\) 1859.01 8144.84i 0.247050 1.08239i
\(385\) 234.011 + 112.694i 0.0309775 + 0.0149180i
\(386\) −860.060 + 685.875i −0.113409 + 0.0904407i
\(387\) −4518.66 + 19797.6i −0.593531 + 2.60043i
\(388\) 7449.47 0.974715
\(389\) −176.814 + 367.158i −0.0230458 + 0.0478551i −0.912174 0.409803i \(-0.865597\pi\)
0.889128 + 0.457658i \(0.151312\pi\)
\(390\) 17454.2 8405.49i 2.26622 1.09135i
\(391\) 7105.75 + 1621.84i 0.919062 + 0.209770i
\(392\) 7153.06 1632.64i 0.921643 0.210359i
\(393\) −9270.17 −1.18987
\(394\) −4087.78 + 2523.49i −0.522689 + 0.322669i
\(395\) 17122.0 2.18101
\(396\) 867.841 198.079i 0.110128 0.0251360i
\(397\) −15148.9 3457.64i −1.91512 0.437113i −0.999375 0.0353428i \(-0.988748\pi\)
−0.915741 0.401770i \(-0.868395\pi\)
\(398\) −4439.56 + 2137.98i −0.559133 + 0.269265i
\(399\) −1206.28 + 2504.87i −0.151352 + 0.314287i
\(400\) −171.410 −0.0214263
\(401\) −965.107 + 4228.41i −0.120187 + 0.526576i 0.878610 + 0.477541i \(0.158472\pi\)
−0.998797 + 0.0490349i \(0.984385\pi\)
\(402\) 8206.14 6544.18i 1.01812 0.811926i
\(403\) −15331.4 7383.22i −1.89507 0.912616i
\(404\) 270.345 1184.46i 0.0332925 0.145864i
\(405\) 17999.4 4108.24i 2.20838 0.504049i
\(406\) −1308.37 + 298.626i −0.159934 + 0.0365039i
\(407\) 438.638 + 349.802i 0.0534213 + 0.0426020i
\(408\) 21831.1i 2.64902i
\(409\) −7404.80 + 9285.33i −0.895217 + 1.12257i 0.0966534 + 0.995318i \(0.469186\pi\)
−0.991871 + 0.127249i \(0.959385\pi\)
\(410\) −9490.18 + 11900.3i −1.14314 + 1.43345i
\(411\) 3311.24 6875.86i 0.397400 0.825210i
\(412\) −6573.88 1500.44i −0.786096 0.179421i
\(413\) −1763.34 −0.210093
\(414\) 6766.40i 0.803261i
\(415\) 6333.61 13151.9i 0.749168 1.55566i
\(416\) 10206.4 4915.15i 1.20291 0.579290i
\(417\) −5365.57 23508.1i −0.630103 2.76066i
\(418\) −357.481 + 172.154i −0.0418301 + 0.0201443i
\(419\) −1811.53 2271.59i −0.211215 0.264855i 0.664927 0.746908i \(-0.268463\pi\)
−0.876142 + 0.482053i \(0.839891\pi\)
\(420\) 3374.06 + 1624.86i 0.391993 + 0.188774i
\(421\) 7714.84 + 6152.38i 0.893107 + 0.712229i 0.958337 0.285641i \(-0.0922064\pi\)
−0.0652293 + 0.997870i \(0.520778\pi\)
\(422\) −989.532 4335.42i −0.114146 0.500107i
\(423\) −1674.11 7334.75i −0.192430 0.843091i
\(424\) 565.372 1174.01i 0.0647569 0.134469i
\(425\) −26555.1 + 6061.02i −3.03085 + 0.691771i
\(426\) −2186.49 + 4540.29i −0.248675 + 0.516380i
\(427\) 762.413 0.0864069
\(428\) 855.700 3749.07i 0.0966397 0.423406i
\(429\) 1408.34 + 1123.11i 0.158497 + 0.126397i
\(430\) −12192.2 −1.36735
\(431\) −8394.83 10526.8i −0.938201 1.17647i −0.984117 0.177522i \(-0.943192\pi\)
0.0459155 0.998945i \(-0.485380\pi\)
\(432\) 175.642 40.0891i 0.0195615 0.00446479i
\(433\) −6996.90 8773.83i −0.776558 0.973773i 0.223442 0.974717i \(-0.428271\pi\)
−1.00000 0.000944634i \(0.999699\pi\)
\(434\) 443.548 + 1943.31i 0.0490576 + 0.214935i
\(435\) 29574.2 + 14242.2i 3.25971 + 1.56980i
\(436\) −727.316 + 3186.58i −0.0798901 + 0.350022i
\(437\) −1107.54 4852.45i −0.121238 0.531177i
\(438\) 9715.60 7747.93i 1.05988 0.845229i
\(439\) −2466.46 + 1966.93i −0.268149 + 0.213842i −0.748328 0.663329i \(-0.769143\pi\)
0.480179 + 0.877171i \(0.340572\pi\)
\(440\) 604.299 + 1254.84i 0.0654747 + 0.135960i
\(441\) 11475.2 + 14389.4i 1.23908 + 1.55376i
\(442\) 8972.19 7155.08i 0.965528 0.769983i
\(443\) 8560.03 + 4122.29i 0.918057 + 0.442113i 0.832377 0.554210i \(-0.186979\pi\)
0.0856802 + 0.996323i \(0.472694\pi\)
\(444\) 6324.44 + 5043.57i 0.676001 + 0.539093i
\(445\) −8926.99 + 11194.1i −0.950966 + 1.19247i
\(446\) −7083.71 1616.81i −0.752070 0.171655i
\(447\) −6761.46 + 3256.15i −0.715449 + 0.344542i
\(448\) −1175.36 566.023i −0.123952 0.0596921i
\(449\) 2314.54 10140.7i 0.243274 1.06585i −0.694742 0.719259i \(-0.744481\pi\)
0.938016 0.346593i \(-0.112661\pi\)
\(450\) 10971.5 + 22782.7i 1.14934 + 2.38663i
\(451\) −1379.82 314.934i −0.144065 0.0328818i
\(452\) −1919.71 3986.32i −0.199769 0.414824i
\(453\) 4629.98 + 20285.3i 0.480211 + 2.10394i
\(454\) 1888.85 8275.61i 0.195260 0.855492i
\(455\) 1141.54 + 5001.41i 0.117618 + 0.515318i
\(456\) −13431.9 + 6468.46i −1.37940 + 0.664283i
\(457\) −2026.03 + 2540.56i −0.207382 + 0.260049i −0.874635 0.484782i \(-0.838899\pi\)
0.667253 + 0.744832i \(0.267470\pi\)
\(458\) −2151.64 + 9426.95i −0.219519 + 0.961774i
\(459\) 25793.1 12421.3i 2.62292 1.26313i
\(460\) −6536.25 + 1491.86i −0.662509 + 0.151213i
\(461\) 2850.51 2273.20i 0.287985 0.229661i −0.468831 0.883288i \(-0.655325\pi\)
0.756817 + 0.653627i \(0.226753\pi\)
\(462\) 211.005i 0.0212485i
\(463\) 9477.68i 0.951328i −0.879627 0.475664i \(-0.842208\pi\)
0.879627 0.475664i \(-0.157792\pi\)
\(464\) 110.248 + 53.0927i 0.0110305 + 0.00531199i
\(465\) 21153.9 43926.5i 2.10965 4.38073i
\(466\) 7034.68 1605.62i 0.699303 0.159611i
\(467\) −11726.8 + 9351.82i −1.16200 + 0.926661i −0.998208 0.0598348i \(-0.980943\pi\)
−0.163788 + 0.986496i \(0.552371\pi\)
\(468\) 13745.9 + 10962.0i 1.35770 + 1.08273i
\(469\) 1205.95 + 2504.18i 0.118733 + 0.246551i
\(470\) 4069.73 1959.88i 0.399410 0.192346i
\(471\) 7565.12i 0.740090i
\(472\) −7392.66 5895.45i −0.720922 0.574916i
\(473\) −491.881 1021.40i −0.0478154 0.0992898i
\(474\) −6035.20 12532.2i −0.584823 1.21440i
\(475\) 11597.3 + 14542.5i 1.12025 + 1.40475i
\(476\) 2162.77 + 493.639i 0.208258 + 0.0475334i
\(477\) 3268.67 0.313757
\(478\) 5927.39i 0.567181i
\(479\) −1502.72 1884.35i −0.143342 0.179745i 0.704978 0.709229i \(-0.250957\pi\)
−0.848320 + 0.529484i \(0.822386\pi\)
\(480\) 14082.5 + 29242.7i 1.33912 + 2.78071i
\(481\) 11081.2i 1.05043i
\(482\) 3876.24 4860.65i 0.366303 0.459329i
\(483\) 2580.53 + 588.990i 0.243102 + 0.0554865i
\(484\) 4102.94 5144.92i 0.385325 0.483182i
\(485\) −22859.1 + 18229.5i −2.14016 + 1.70672i
\(486\) −1443.30 1809.85i −0.134711 0.168922i
\(487\) −16372.9 −1.52346 −0.761731 0.647894i \(-0.775650\pi\)
−0.761731 + 0.647894i \(0.775650\pi\)
\(488\) 3196.36 + 2549.01i 0.296501 + 0.236451i
\(489\) 1006.88 2090.82i 0.0931143 0.193354i
\(490\) −6889.72 + 8639.44i −0.635196 + 0.796510i
\(491\) −15095.4 7269.56i −1.38747 0.668169i −0.416889 0.908957i \(-0.636880\pi\)
−0.970578 + 0.240789i \(0.922594\pi\)
\(492\) −19894.7 4540.84i −1.82301 0.416091i
\(493\) 18957.1 + 4326.83i 1.73181 + 0.395275i
\(494\) −7060.67 3400.24i −0.643066 0.309684i
\(495\) −2178.30 + 2731.50i −0.197793 + 0.248024i
\(496\) 78.8583 163.751i 0.00713879 0.0148239i
\(497\) −1043.32 832.020i −0.0941635 0.0750929i
\(498\) −11858.9 −1.06708
\(499\) 8874.56 + 11128.4i 0.796152 + 0.998344i 0.999814 + 0.0193022i \(0.00614446\pi\)
−0.203661 + 0.979041i \(0.565284\pi\)
\(500\) 10070.6 8031.00i 0.900737 0.718314i
\(501\) −8742.83 + 10963.2i −0.779642 + 0.977640i
\(502\) −2899.41 661.771i −0.257783 0.0588373i
\(503\) −6316.58 + 7920.74i −0.559925 + 0.702124i −0.978544 0.206038i \(-0.933943\pi\)
0.418619 + 0.908162i \(0.362514\pi\)
\(504\) 5366.93i 0.474330i
\(505\) 2068.91 + 4296.14i 0.182308 + 0.378566i
\(506\) 235.523 + 295.337i 0.0206923 + 0.0259473i
\(507\) 15493.5i 1.35718i
\(508\) −6585.53 −0.575169
\(509\) −12213.1 2787.57i −1.06353 0.242744i −0.345261 0.938507i \(-0.612210\pi\)
−0.718272 + 0.695762i \(0.755067\pi\)
\(510\) 20500.2 + 25706.5i 1.77993 + 2.23196i
\(511\) 1427.78 + 2964.81i 0.123603 + 0.256664i
\(512\) 104.660 + 217.329i 0.00903393 + 0.0187591i
\(513\) −15284.7 12189.2i −1.31547 1.04905i
\(514\) 5992.54i 0.514241i
\(515\) 23844.0 11482.7i 2.04018 0.982500i
\(516\) −7092.11 14726.9i −0.605064 1.25643i
\(517\) 328.377 + 261.872i 0.0279343 + 0.0222768i
\(518\) 1014.84 809.306i 0.0860799 0.0686464i
\(519\) −20079.9 + 4583.10i −1.69828 + 0.387622i
\(520\) −11935.6 + 24784.6i −1.00656 + 2.09014i
\(521\) 10403.1 + 5009.86i 0.874793 + 0.421278i 0.816720 0.577034i \(-0.195790\pi\)
0.0580732 + 0.998312i \(0.481504\pi\)
\(522\) 18051.7i 1.51361i
\(523\) 7320.62i 0.612062i −0.952022 0.306031i \(-0.900999\pi\)
0.952022 0.306031i \(-0.0990010\pi\)
\(524\) 3949.25 3149.42i 0.329244 0.262563i
\(525\) −9643.76 + 2201.13i −0.801692 + 0.182981i
\(526\) −2027.64 + 976.461i −0.168079 + 0.0809424i
\(527\) 6426.63 28156.9i 0.531211 2.32739i
\(528\) −11.9957 + 15.0421i −0.000988722 + 0.00123982i
\(529\) 6692.76 3223.06i 0.550075 0.264902i
\(530\) 436.702 + 1913.32i 0.0357908 + 0.156810i
\(531\) 5277.99 23124.4i 0.431347 1.88986i
\(532\) −337.101 1476.94i −0.0274722 0.120363i
\(533\) −12128.7 25185.6i −0.985654 2.04673i
\(534\) 11340.0 + 2588.28i 0.918969 + 0.209749i
\(535\) 6548.55 + 13598.2i 0.529193 + 1.09888i
\(536\) −3316.49 + 14530.5i −0.267259 + 1.17094i
\(537\) −2477.72 1193.21i −0.199109 0.0958858i
\(538\) −8374.58 + 4032.99i −0.671104 + 0.323187i
\(539\) −1001.73 228.638i −0.0800509 0.0182711i
\(540\) −16418.8 + 20588.5i −1.30843 + 1.64072i
\(541\) −3244.46 2587.37i −0.257838 0.205619i 0.486036 0.873939i \(-0.338442\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(542\) −1753.74 844.558i −0.138985 0.0669315i
\(543\) 11296.3 9008.49i 0.892763 0.711954i
\(544\) 11987.6 + 15032.0i 0.944787 + 1.18473i
\(545\) −5566.04 11558.0i −0.437473 0.908423i
\(546\) 3258.35 2598.45i 0.255393 0.203669i
\(547\) −7073.37 + 5640.82i −0.552898 + 0.440922i −0.859661 0.510864i \(-0.829325\pi\)
0.306763 + 0.951786i \(0.400754\pi\)
\(548\) 925.342 + 4054.19i 0.0721326 + 0.316034i
\(549\) −2282.04 + 9998.26i −0.177404 + 0.777260i
\(550\) −1271.90 612.513i −0.0986070 0.0474866i
\(551\) −2954.75 12945.6i −0.228451 1.00091i
\(552\) 8849.48 + 11096.9i 0.682353 + 0.855644i
\(553\) 3591.05 819.633i 0.276143 0.0630278i
\(554\) −2772.98 3477.21i −0.212658 0.266665i
\(555\) −31749.0 −2.42823
\(556\) 10272.4 + 8191.97i 0.783538 + 0.624851i
\(557\) −3910.95 + 17135.0i −0.297508 + 1.30347i 0.576316 + 0.817227i \(0.304490\pi\)
−0.873824 + 0.486242i \(0.838367\pi\)
\(558\) −26812.2 −2.03414
\(559\) 9715.22 20173.9i 0.735080 1.52641i
\(560\) −53.4188 + 12.1925i −0.00403099 + 0.000920048i
\(561\) −1326.50 + 2754.50i −0.0998304 + 0.207300i
\(562\) 1514.53 + 6635.61i 0.113678 + 0.498054i
\(563\) −839.460 3677.91i −0.0628401 0.275321i 0.933740 0.357952i \(-0.116525\pi\)
−0.996580 + 0.0826312i \(0.973668\pi\)
\(564\) 4734.66 + 3775.77i 0.353485 + 0.281895i
\(565\) 15645.6 + 7534.53i 1.16498 + 0.561027i
\(566\) −2709.68 3397.83i −0.201230 0.252335i
\(567\) 3578.40 1723.27i 0.265042 0.127637i
\(568\) −1592.31 6976.35i −0.117626 0.515354i
\(569\) 9576.36 4611.73i 0.705557 0.339778i −0.0464619 0.998920i \(-0.514795\pi\)
0.752019 + 0.659142i \(0.229080\pi\)
\(570\) 9742.13 20229.7i 0.715882 1.48654i
\(571\) 11578.9i 0.848620i −0.905517 0.424310i \(-0.860517\pi\)
0.905517 0.424310i \(-0.139483\pi\)
\(572\) −981.540 −0.0717487
\(573\) 542.387 + 123.796i 0.0395437 + 0.00902558i
\(574\) −1420.74 + 2950.19i −0.103311 + 0.214527i
\(575\) 11041.2 13845.2i 0.800783 1.00415i
\(576\) 10940.9 13719.4i 0.791440 0.992434i
\(577\) 16369.1i 1.18103i 0.807025 + 0.590517i \(0.201076\pi\)
−0.807025 + 0.590517i \(0.798924\pi\)
\(578\) 8554.24 + 6821.78i 0.615588 + 0.490915i
\(579\) 5643.25 1288.03i 0.405053 0.0924506i
\(580\) −17437.7 + 3980.05i −1.24838 + 0.284936i
\(581\) 698.786 3061.58i 0.0498976 0.218616i
\(582\) 21400.3 + 10305.9i 1.52418 + 0.734006i
\(583\) −142.670 + 113.775i −0.0101351 + 0.00808249i
\(584\) −3926.53 + 17203.3i −0.278221 + 1.21897i
\(585\) −69005.2 −4.87694
\(586\) 5336.21 11080.8i 0.376172 0.781129i
\(587\) 1873.65 902.301i 0.131744 0.0634446i −0.366851 0.930280i \(-0.619564\pi\)
0.498595 + 0.866835i \(0.333850\pi\)
\(588\) −14443.3 3296.58i −1.01298 0.231205i
\(589\) −19228.1 + 4388.68i −1.34513 + 0.307016i
\(590\) 14241.0 0.993717
\(591\) 25140.6 2630.76i 1.74982 0.183105i
\(592\) −118.355 −0.00821683
\(593\) −16524.5 + 3771.60i −1.14431 + 0.261182i −0.752328 0.658789i \(-0.771069\pi\)
−0.391986 + 0.919971i \(0.628212\pi\)
\(594\) 1446.55 + 330.166i 0.0999203 + 0.0228062i
\(595\) −7844.57 + 3777.75i −0.540498 + 0.260290i
\(596\) 1774.26 3684.30i 0.121941 0.253212i
\(597\) 25928.2 1.77750
\(598\) −1660.23 + 7273.95i −0.113532 + 0.497414i
\(599\) −10975.8 + 8752.91i −0.748680 + 0.597052i −0.921717 0.387863i \(-0.873213\pi\)
0.173037 + 0.984915i \(0.444642\pi\)
\(600\) −47789.8 23014.4i −3.25169 1.56593i
\(601\) 3765.23 16496.5i 0.255552 1.11965i −0.670398 0.742002i \(-0.733877\pi\)
0.925950 0.377645i \(-0.123266\pi\)
\(602\) −2557.11 + 583.644i −0.173123 + 0.0395142i
\(603\) −36449.4 + 8319.34i −2.46158 + 0.561840i
\(604\) −8864.12 7068.90i −0.597146 0.476208i
\(605\) 25827.8i 1.73562i
\(606\) 2415.26 3028.63i 0.161903 0.203020i
\(607\) −1323.50 + 1659.61i −0.0884994 + 0.110975i −0.824110 0.566430i \(-0.808324\pi\)
0.735610 + 0.677405i \(0.236895\pi\)
\(608\) 5696.75 11829.4i 0.379990 0.789057i
\(609\) 6884.48 + 1571.34i 0.458084 + 0.104555i
\(610\) −6157.37 −0.408696
\(611\) 8295.70i 0.549276i
\(612\) −12947.1 + 26885.0i −0.855159 + 1.77576i
\(613\) 25672.2 12363.1i 1.69150 0.814583i 0.696187 0.717860i \(-0.254878\pi\)
0.995311 0.0967222i \(-0.0308358\pi\)
\(614\) 2760.68 + 12095.3i 0.181452 + 0.794995i
\(615\) 72159.9 34750.4i 4.73133 2.27849i
\(616\) 186.811 + 234.254i 0.0122189 + 0.0153220i
\(617\) 18141.1 + 8736.31i 1.18369 + 0.570033i 0.918983 0.394297i \(-0.129012\pi\)
0.264703 + 0.964330i \(0.414726\pi\)
\(618\) −16809.2 13404.9i −1.09412 0.872532i
\(619\) 261.232 + 1144.53i 0.0169625 + 0.0743176i 0.982701 0.185200i \(-0.0592934\pi\)
−0.965738 + 0.259518i \(0.916436\pi\)
\(620\) 5911.55 + 25900.2i 0.382925 + 1.67771i
\(621\) −8075.69 + 16769.3i −0.521846 + 1.08362i
\(622\) −10245.0 + 2338.36i −0.660432 + 0.150739i
\(623\) −1336.42 + 2775.11i −0.0859433 + 0.178463i
\(624\) −380.004 −0.0243787
\(625\) −4093.91 + 17936.6i −0.262011 + 1.14794i
\(626\) −8488.75 6769.55i −0.541979 0.432214i
\(627\) 2087.78 0.132979
\(628\) 2570.15 + 3222.87i 0.163313 + 0.204788i
\(629\) −18335.7 + 4185.01i −1.16231 + 0.265290i
\(630\) 5039.75 + 6319.64i 0.318712 + 0.399652i
\(631\) 1056.22 + 4627.60i 0.0666361 + 0.291952i 0.997256 0.0740364i \(-0.0235881\pi\)
−0.930619 + 0.365988i \(0.880731\pi\)
\(632\) 17795.5 + 8569.86i 1.12004 + 0.539384i
\(633\) −5206.80 + 22812.5i −0.326938 + 1.43241i
\(634\) −686.498 3007.74i −0.0430037 0.188411i
\(635\) 20208.1 16115.4i 1.26289 1.00712i
\(636\) −2057.06 + 1640.45i −0.128251 + 0.102277i
\(637\) −8805.27 18284.3i −0.547689 1.13729i
\(638\) 628.342 + 787.915i 0.0389910 + 0.0488932i
\(639\) 14033.9 11191.7i 0.868816 0.692858i
\(640\) −16097.4 7752.08i −0.994226 0.478794i
\(641\) 11619.9 + 9266.59i 0.716006 + 0.570996i 0.912287 0.409552i \(-0.134315\pi\)
−0.196281 + 0.980548i \(0.562886\pi\)
\(642\) 7644.79 9586.26i 0.469962 0.589314i
\(643\) 19066.4 + 4351.78i 1.16937 + 0.266901i 0.762748 0.646695i \(-0.223850\pi\)
0.406622 + 0.913597i \(0.366707\pi\)
\(644\) −1299.45 + 625.784i −0.0795119 + 0.0382909i
\(645\) 57800.7 + 27835.3i 3.52853 + 1.69925i
\(646\) 2959.69 12967.3i 0.180259 0.789768i
\(647\) 5371.41 + 11153.8i 0.326386 + 0.677748i 0.998004 0.0631499i \(-0.0201146\pi\)
−0.671618 + 0.740898i \(0.734400\pi\)
\(648\) 20763.6 + 4739.17i 1.25875 + 0.287303i
\(649\) 574.538 + 1193.04i 0.0347497 + 0.0721586i
\(650\) −6204.48 27183.6i −0.374400 1.64035i
\(651\) 2333.90 10225.5i 0.140511 0.615620i
\(652\) 281.379 + 1232.80i 0.0169013 + 0.0740494i
\(653\) −23687.6 + 11407.4i −1.41955 + 0.683621i −0.977023 0.213133i \(-0.931633\pi\)
−0.442530 + 0.896754i \(0.645919\pi\)
\(654\) −6497.81 + 8148.00i −0.388508 + 0.487174i
\(655\) −4411.58 + 19328.4i −0.263167 + 1.15301i
\(656\) 269.001 129.544i 0.0160102 0.00771012i
\(657\) −43154.0 + 9849.61i −2.56255 + 0.584886i
\(658\) 759.738 605.871i 0.0450116 0.0358956i
\(659\) 14147.1i 0.836256i −0.908388 0.418128i \(-0.862686\pi\)
0.908388 0.418128i \(-0.137314\pi\)
\(660\) 2812.24i 0.165858i
\(661\) −2226.97 1072.45i −0.131043 0.0631068i 0.367214 0.930137i \(-0.380312\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(662\) −8579.10 + 17814.7i −0.503680 + 1.04590i
\(663\) −58870.7 + 13436.8i −3.44849 + 0.787095i
\(664\) 13165.5 10499.2i 0.769460 0.613624i
\(665\) 4648.62 + 3707.15i 0.271076 + 0.216176i
\(666\) 7575.62 + 15730.9i 0.440765 + 0.915258i
\(667\) −11389.9 + 5485.11i −0.661200 + 0.318417i
\(668\) 7640.76i 0.442560i
\(669\) 29891.1 + 23837.4i 1.72744 + 1.37759i
\(670\) −9739.45 20224.2i −0.561594 1.16616i
\(671\) −248.412 515.833i −0.0142919 0.0296774i
\(672\) 4353.43 + 5459.03i 0.249906 + 0.313373i
\(673\) 2810.80 + 641.547i 0.160993 + 0.0367457i 0.302258 0.953226i \(-0.402260\pi\)
−0.141265 + 0.989972i \(0.545117\pi\)
\(674\) 9596.80 0.548449
\(675\) 69557.4i 3.96632i
\(676\) −5263.71 6600.48i −0.299483 0.375539i
\(677\) 1947.45 + 4043.93i 0.110556 + 0.229573i 0.948905 0.315562i \(-0.102193\pi\)
−0.838349 + 0.545134i \(0.816479\pi\)
\(678\) 14107.4i 0.799103i
\(679\) −3921.66 + 4917.61i −0.221649 + 0.277939i
\(680\) −45518.1 10389.2i −2.56697 0.585894i
\(681\) −27848.2 + 34920.6i −1.56703 + 1.96499i
\(682\) 1170.29 933.273i 0.0657077 0.0524001i
\(683\) −16143.0 20242.7i −0.904385 1.13406i −0.990464 0.137774i \(-0.956005\pi\)
0.0860788 0.996288i \(-0.472566\pi\)
\(684\) 20377.5 1.13911
\(685\) −12760.4 10176.1i −0.711754 0.567605i
\(686\) −2118.95 + 4400.05i −0.117933 + 0.244890i
\(687\) 31722.6 39778.9i 1.76171 2.20911i
\(688\) 215.472 + 103.766i 0.0119401 + 0.00575005i
\(689\) −3513.86 802.014i −0.194292 0.0443459i
\(690\) −20840.8 4756.77i −1.14985 0.262445i
\(691\) 746.602 + 359.545i 0.0411029 + 0.0197941i 0.454322 0.890837i \(-0.349881\pi\)
−0.413219 + 0.910631i \(0.635596\pi\)
\(692\) 6997.33 8774.38i 0.384391 0.482011i
\(693\) −326.105 + 677.163i −0.0178755 + 0.0371188i
\(694\) 2493.20 + 1988.26i 0.136370 + 0.108751i
\(695\) −51568.0 −2.81451
\(696\) 23609.1 + 29604.9i 1.28578 + 1.61231i
\(697\) 37093.3 29580.9i 2.01579 1.60754i
\(698\) −12590.5 + 15788.0i −0.682748 + 0.856139i
\(699\) −37015.7 8448.58i −2.00295 0.457160i
\(700\) 3360.61 4214.07i 0.181456 0.227538i
\(701\) 16732.2i 0.901519i −0.892645 0.450760i \(-0.851153\pi\)
0.892645 0.450760i \(-0.148847\pi\)
\(702\) 12715.3 + 26403.6i 0.683631 + 1.41957i
\(703\) 8007.66 + 10041.3i 0.429608 + 0.538712i
\(704\) 979.647i 0.0524458i
\(705\) −23768.2 −1.26974
\(706\) −11331.7 2586.38i −0.604068 0.137875i
\(707\) 639.578 + 802.005i 0.0340223 + 0.0426627i
\(708\) 8283.89 + 17201.7i 0.439729 + 0.913106i
\(709\) 756.212 + 1570.29i 0.0400566 + 0.0831784i 0.920037 0.391832i \(-0.128159\pi\)
−0.879980 + 0.475010i \(0.842444\pi\)
\(710\) 8426.01 + 6719.52i 0.445384 + 0.355182i
\(711\) 49546.2i 2.61340i
\(712\) −14881.0 + 7166.31i −0.783271 + 0.377204i
\(713\) 8147.00 + 16917.4i 0.427921 + 0.888587i
\(714\) 5530.16 + 4410.15i 0.289861 + 0.231157i
\(715\) 3011.91 2401.92i 0.157537 0.125632i
\(716\) 1460.93 333.447i 0.0762534 0.0174043i
\(717\) 13532.5 28100.5i 0.704855 1.46365i
\(718\) 1315.82 + 633.668i 0.0683930 + 0.0329363i
\(719\) 16715.9i 0.867034i 0.901145 + 0.433517i \(0.142728\pi\)
−0.901145 + 0.433517i \(0.857272\pi\)
\(720\) 737.027i 0.0381491i
\(721\) 4451.21 3549.72i 0.229919 0.183354i
\(722\) 2762.82 630.596i 0.142412 0.0325046i
\(723\) −29473.6 + 14193.7i −1.51609 + 0.730111i
\(724\) −1751.89 + 7675.55i −0.0899290 + 0.394005i
\(725\) 29456.3 36937.0i 1.50894 1.89215i
\(726\) 18904.3 9103.84i 0.966398 0.465393i
\(727\) −3039.54 13317.1i −0.155062 0.679373i −0.991368 0.131109i \(-0.958146\pi\)
0.836306 0.548264i \(-0.184711\pi\)
\(728\) −1316.85 + 5769.51i −0.0670410 + 0.293726i
\(729\) −2962.95 12981.5i −0.150533 0.659530i
\(730\) −11530.9 23944.3i −0.584629 1.21400i
\(731\) 37050.3 + 8456.48i 1.87463 + 0.427872i
\(732\) −3581.70 7437.47i −0.180852 0.375542i
\(733\) 1900.50 8326.65i 0.0957664 0.419580i −0.904205 0.427098i \(-0.859536\pi\)
0.999972 + 0.00751810i \(0.00239311\pi\)
\(734\) 19450.3 + 9366.75i 0.978096 + 0.471026i
\(735\) 52387.0 25228.2i 2.62901 1.26606i
\(736\) −12186.7 2781.54i −0.610339 0.139306i
\(737\) 1301.35 1631.84i 0.0650420 0.0815600i
\(738\) −34436.2 27461.9i −1.71763 1.36977i
\(739\) 14718.1 + 7087.88i 0.732632 + 0.352817i 0.762719 0.646730i \(-0.223864\pi\)
−0.0300865 + 0.999547i \(0.509578\pi\)
\(740\) 13525.6 10786.3i 0.671907 0.535828i
\(741\) 25710.3 + 32239.7i 1.27462 + 1.59832i
\(742\) 183.182 + 380.381i 0.00906310 + 0.0188197i
\(743\) 14060.1 11212.6i 0.694233 0.553632i −0.211554 0.977366i \(-0.567852\pi\)
0.905787 + 0.423734i \(0.139281\pi\)
\(744\) 43972.0 35066.5i 2.16679 1.72796i
\(745\) 3571.38 + 15647.3i 0.175631 + 0.769491i
\(746\) 3319.48 14543.6i 0.162915 0.713778i
\(747\) 38057.9 + 18327.7i 1.86408 + 0.897692i
\(748\) −370.697 1624.13i −0.0181203 0.0793904i
\(749\) 2024.40 + 2538.51i 0.0987582 + 0.123839i
\(750\) 40040.4 9138.95i 1.94942 0.444943i
\(751\) −6301.97 7902.42i −0.306208 0.383973i 0.604789 0.796386i \(-0.293257\pi\)
−0.910997 + 0.412413i \(0.864686\pi\)
\(752\) −88.6042 −0.00429663
\(753\) 12234.6 + 9756.81i 0.592105 + 0.472188i
\(754\) −4429.25 + 19405.8i −0.213931 + 0.937291i
\(755\) 44498.3 2.14498
\(756\) −2457.99 + 5104.07i −0.118249 + 0.245547i
\(757\) 17646.5 4027.69i 0.847255 0.193380i 0.223212 0.974770i \(-0.428346\pi\)
0.624044 + 0.781390i \(0.285489\pi\)
\(758\) −216.511 + 449.590i −0.0103747 + 0.0215433i
\(759\) −442.300 1937.84i −0.0211521 0.0926736i
\(760\) 7094.69 + 31083.9i 0.338620 + 1.48359i
\(761\) 7513.17 + 5991.56i 0.357887 + 0.285406i 0.785883 0.618375i \(-0.212209\pi\)
−0.427996 + 0.903781i \(0.640780\pi\)
\(762\) −18918.5 9110.66i −0.899402 0.433129i
\(763\) −1720.67 2157.65i −0.0816414 0.102375i
\(764\) −273.124 + 131.530i −0.0129336 + 0.00622851i
\(765\) −26061.1 114181.i −1.23169 5.39637i
\(766\) −7954.99 + 3830.92i −0.375229 + 0.180701i
\(767\) −11347.8 +