Properties

Label 197.4.e.a.6.12
Level $197$
Weight $4$
Character 197.6
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 6.12
Character \(\chi\) \(=\) 197.6
Dual form 197.4.e.a.33.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.40114 + 0.776287i) q^{2} +(4.02676 + 0.919081i) q^{3} +(3.75735 - 1.80945i) q^{4} +(-4.50770 + 9.36034i) q^{5} -14.4090 q^{6} +(2.93112 - 12.8421i) q^{7} +(10.4454 - 8.32991i) q^{8} +(-8.95610 - 4.31303i) q^{9} +O(q^{10})\) \(q+(-3.40114 + 0.776287i) q^{2} +(4.02676 + 0.919081i) q^{3} +(3.75735 - 1.80945i) q^{4} +(-4.50770 + 9.36034i) q^{5} -14.4090 q^{6} +(2.93112 - 12.8421i) q^{7} +(10.4454 - 8.32991i) q^{8} +(-8.95610 - 4.31303i) q^{9} +(8.06500 - 35.3351i) q^{10} +(46.1917 - 10.5430i) q^{11} +(16.7930 - 3.83289i) q^{12} +(7.70773 + 6.14671i) q^{13} +45.9530i q^{14} +(-26.7543 + 33.5489i) q^{15} +(-49.8611 + 62.5238i) q^{16} +(26.4973 - 55.0223i) q^{17} +(33.8091 + 7.71670i) q^{18} +41.2373 q^{19} +43.3266i q^{20} +(23.6058 - 49.0180i) q^{21} +(-148.920 + 71.7160i) q^{22} +(12.7349 + 55.7952i) q^{23} +(49.7169 - 23.9424i) q^{24} +(10.6396 + 13.3416i) q^{25} +(-30.9866 - 14.9224i) q^{26} +(-119.289 - 95.1295i) q^{27} +(-12.2238 - 53.5559i) q^{28} +(-4.30689 - 18.8697i) q^{29} +(64.9516 - 134.873i) q^{30} +(74.0152 - 16.8935i) q^{31} +(74.6739 - 155.062i) q^{32} +195.693 q^{33} +(-47.4080 + 207.708i) q^{34} +(106.994 + 85.3245i) q^{35} -41.4554 q^{36} +(135.675 + 170.131i) q^{37} +(-140.254 + 32.0120i) q^{38} +(25.3878 + 31.8353i) q^{39} +(30.8862 + 135.321i) q^{40} +(462.474 + 222.716i) q^{41} +(-42.2346 + 185.042i) q^{42} +(105.649 + 462.877i) q^{43} +(154.482 - 123.195i) q^{44} +(80.7429 - 64.3903i) q^{45} +(-86.6262 - 179.881i) q^{46} +(-100.839 - 126.447i) q^{47} +(-258.243 + 205.942i) q^{48} +(152.705 + 73.5388i) q^{49} +(-46.5436 - 37.1173i) q^{50} +(157.268 - 197.208i) q^{51} +(40.0828 + 9.14863i) q^{52} +(224.909 - 108.311i) q^{53} +(479.565 + 230.946i) q^{54} +(-109.533 + 479.895i) q^{55} +(-76.3567 - 158.556i) q^{56} +(166.053 + 37.9004i) q^{57} +(29.2966 + 60.8351i) q^{58} +(-131.682 - 576.934i) q^{59} +(-39.8206 + 174.465i) q^{60} +(106.679 + 467.390i) q^{61} +(-238.622 + 114.914i) q^{62} +(-81.6397 + 102.373i) q^{63} +(8.75820 - 38.3722i) q^{64} +(-92.2794 + 44.4394i) q^{65} +(-665.577 + 151.914i) q^{66} +(285.067 - 227.333i) q^{67} -254.684i q^{68} +236.378i q^{69} +(-430.136 - 207.143i) q^{70} +(184.070 - 382.224i) q^{71} +(-129.477 + 29.5523i) q^{72} +(128.687 - 102.625i) q^{73} +(-593.520 - 473.316i) q^{74} +(30.5810 + 63.5021i) q^{75} +(154.943 - 74.6166i) q^{76} -624.100i q^{77} +(-111.061 - 88.5680i) q^{78} +(-347.890 - 722.400i) q^{79} +(-360.485 - 748.556i) q^{80} +(-225.574 - 282.860i) q^{81} +(-1745.83 - 398.474i) q^{82} -737.900 q^{83} -226.891i q^{84} +(395.585 + 496.048i) q^{85} +(-718.650 - 1492.29i) q^{86} -79.9421i q^{87} +(394.668 - 494.898i) q^{88} +(152.705 + 34.8540i) q^{89} +(-224.632 + 281.680i) q^{90} +(101.529 - 80.9665i) q^{91} +(148.808 + 186.599i) q^{92} +313.568 q^{93} +(441.125 + 351.785i) q^{94} +(-185.885 + 385.995i) q^{95} +(443.208 - 555.766i) q^{96} +(879.703 + 423.643i) q^{97} +(-576.457 - 131.573i) q^{98} +(-459.170 - 104.802i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.40114 + 0.776287i −1.20248 + 0.274459i −0.776409 0.630229i \(-0.782961\pi\)
−0.426074 + 0.904688i \(0.640104\pi\)
\(3\) 4.02676 + 0.919081i 0.774950 + 0.176877i 0.591666 0.806183i \(-0.298470\pi\)
0.183283 + 0.983060i \(0.441327\pi\)
\(4\) 3.75735 1.80945i 0.469669 0.226181i
\(5\) −4.50770 + 9.36034i −0.403181 + 0.837215i 0.596227 + 0.802816i \(0.296666\pi\)
−0.999408 + 0.0343986i \(0.989048\pi\)
\(6\) −14.4090 −0.980409
\(7\) 2.93112 12.8421i 0.158266 0.693407i −0.832065 0.554678i \(-0.812841\pi\)
0.990330 0.138728i \(-0.0443015\pi\)
\(8\) 10.4454 8.32991i 0.461625 0.368134i
\(9\) −8.95610 4.31303i −0.331707 0.159742i
\(10\) 8.06500 35.3351i 0.255038 1.11739i
\(11\) 46.1917 10.5430i 1.26612 0.288984i 0.463833 0.885922i \(-0.346474\pi\)
0.802287 + 0.596939i \(0.203616\pi\)
\(12\) 16.7930 3.83289i 0.403976 0.0922049i
\(13\) 7.70773 + 6.14671i 0.164441 + 0.131138i 0.702253 0.711927i \(-0.252177\pi\)
−0.537812 + 0.843065i \(0.680749\pi\)
\(14\) 45.9530i 0.877247i
\(15\) −26.7543 + 33.5489i −0.460529 + 0.577486i
\(16\) −49.8611 + 62.5238i −0.779080 + 0.976935i
\(17\) 26.4973 55.0223i 0.378032 0.784992i −0.621966 0.783044i \(-0.713666\pi\)
0.999998 0.00194770i \(-0.000619971\pi\)
\(18\) 33.8091 + 7.71670i 0.442715 + 0.101047i
\(19\) 41.2373 0.497920 0.248960 0.968514i \(-0.419911\pi\)
0.248960 + 0.968514i \(0.419911\pi\)
\(20\) 43.3266i 0.484406i
\(21\) 23.6058 49.0180i 0.245296 0.509362i
\(22\) −148.920 + 71.7160i −1.44317 + 0.694996i
\(23\) 12.7349 + 55.7952i 0.115453 + 0.505831i 0.999277 + 0.0380126i \(0.0121027\pi\)
−0.883825 + 0.467818i \(0.845040\pi\)
\(24\) 49.7169 23.9424i 0.422850 0.203634i
\(25\) 10.6396 + 13.3416i 0.0851167 + 0.106733i
\(26\) −30.9866 14.9224i −0.233730 0.112558i
\(27\) −119.289 95.1295i −0.850263 0.678062i
\(28\) −12.2238 53.5559i −0.0825028 0.361468i
\(29\) −4.30689 18.8697i −0.0275782 0.120828i 0.959265 0.282507i \(-0.0911662\pi\)
−0.986843 + 0.161679i \(0.948309\pi\)
\(30\) 64.9516 134.873i 0.395283 0.820813i
\(31\) 74.0152 16.8935i 0.428824 0.0978762i −0.00266111 0.999996i \(-0.500847\pi\)
0.431485 + 0.902120i \(0.357990\pi\)
\(32\) 74.6739 155.062i 0.412519 0.856605i
\(33\) 195.693 1.03229
\(34\) −47.4080 + 207.708i −0.239129 + 1.04769i
\(35\) 106.994 + 85.3245i 0.516721 + 0.412071i
\(36\) −41.4554 −0.191923
\(37\) 135.675 + 170.131i 0.602834 + 0.755929i 0.985817 0.167826i \(-0.0536747\pi\)
−0.382983 + 0.923755i \(0.625103\pi\)
\(38\) −140.254 + 32.0120i −0.598740 + 0.136659i
\(39\) 25.3878 + 31.8353i 0.104239 + 0.130711i
\(40\) 30.8862 + 135.321i 0.122088 + 0.534904i
\(41\) 462.474 + 222.716i 1.76162 + 0.848351i 0.972080 + 0.234650i \(0.0753946\pi\)
0.789539 + 0.613700i \(0.210320\pi\)
\(42\) −42.2346 + 185.042i −0.155165 + 0.679823i
\(43\) 105.649 + 462.877i 0.374680 + 1.64158i 0.713445 + 0.700711i \(0.247134\pi\)
−0.338765 + 0.940871i \(0.610009\pi\)
\(44\) 154.482 123.195i 0.529295 0.422099i
\(45\) 80.7429 64.3903i 0.267476 0.213305i
\(46\) −86.6262 179.881i −0.277660 0.576566i
\(47\) −100.839 126.447i −0.312953 0.392431i 0.600332 0.799751i \(-0.295035\pi\)
−0.913286 + 0.407320i \(0.866464\pi\)
\(48\) −258.243 + 205.942i −0.776545 + 0.619274i
\(49\) 152.705 + 73.5388i 0.445204 + 0.214399i
\(50\) −46.5436 37.1173i −0.131645 0.104984i
\(51\) 157.268 197.208i 0.431803 0.541464i
\(52\) 40.0828 + 9.14863i 0.106894 + 0.0243978i
\(53\) 224.909 108.311i 0.582899 0.280710i −0.119106 0.992882i \(-0.538003\pi\)
0.702005 + 0.712172i \(0.252288\pi\)
\(54\) 479.565 + 230.946i 1.20853 + 0.581996i
\(55\) −109.533 + 479.895i −0.268535 + 1.17653i
\(56\) −76.3567 158.556i −0.182207 0.378357i
\(57\) 166.053 + 37.9004i 0.385863 + 0.0880707i
\(58\) 29.2966 + 60.8351i 0.0663247 + 0.137725i
\(59\) −131.682 576.934i −0.290567 1.27306i −0.883738 0.467982i \(-0.844981\pi\)
0.593171 0.805077i \(-0.297876\pi\)
\(60\) −39.8206 + 174.465i −0.0856803 + 0.375390i
\(61\) 106.679 + 467.390i 0.223915 + 0.981036i 0.954499 + 0.298213i \(0.0963906\pi\)
−0.730584 + 0.682822i \(0.760752\pi\)
\(62\) −238.622 + 114.914i −0.488790 + 0.235389i
\(63\) −81.6397 + 102.373i −0.163264 + 0.204727i
\(64\) 8.75820 38.3722i 0.0171059 0.0749457i
\(65\) −92.2794 + 44.4394i −0.176090 + 0.0848005i
\(66\) −665.577 + 151.914i −1.24132 + 0.283322i
\(67\) 285.067 227.333i 0.519798 0.414525i −0.328133 0.944631i \(-0.606420\pi\)
0.847931 + 0.530107i \(0.177848\pi\)
\(68\) 254.684i 0.454190i
\(69\) 236.378i 0.412414i
\(70\) −430.136 207.143i −0.734444 0.353690i
\(71\) 184.070 382.224i 0.307677 0.638897i −0.688597 0.725144i \(-0.741773\pi\)
0.996274 + 0.0862470i \(0.0274874\pi\)
\(72\) −129.477 + 29.5523i −0.211931 + 0.0483718i
\(73\) 128.687 102.625i 0.206325 0.164538i −0.514876 0.857265i \(-0.672162\pi\)
0.721201 + 0.692726i \(0.243591\pi\)
\(74\) −593.520 473.316i −0.932369 0.743539i
\(75\) 30.5810 + 63.5021i 0.0470826 + 0.0977679i
\(76\) 154.943 74.6166i 0.233858 0.112620i
\(77\) 624.100i 0.923673i
\(78\) −111.061 88.5680i −0.161220 0.128569i
\(79\) −347.890 722.400i −0.495451 1.02881i −0.987408 0.158195i \(-0.949432\pi\)
0.491957 0.870620i \(-0.336282\pi\)
\(80\) −360.485 748.556i −0.503794 1.04614i
\(81\) −225.574 282.860i −0.309429 0.388011i
\(82\) −1745.83 398.474i −2.35115 0.536636i
\(83\) −737.900 −0.975844 −0.487922 0.872887i \(-0.662245\pi\)
−0.487922 + 0.872887i \(0.662245\pi\)
\(84\) 226.891i 0.294713i
\(85\) 395.585 + 496.048i 0.504791 + 0.632988i
\(86\) −718.650 1492.29i −0.901094 1.87114i
\(87\) 79.9421i 0.0985137i
\(88\) 394.668 494.898i 0.478088 0.599503i
\(89\) 152.705 + 34.8540i 0.181874 + 0.0415115i 0.312488 0.949922i \(-0.398838\pi\)
−0.130614 + 0.991433i \(0.541695\pi\)
\(90\) −224.632 + 281.680i −0.263092 + 0.329907i
\(91\) 101.529 80.9665i 0.116957 0.0932702i
\(92\) 148.808 + 186.599i 0.168634 + 0.211460i
\(93\) 313.568 0.349629
\(94\) 441.125 + 351.785i 0.484027 + 0.385999i
\(95\) −185.885 + 385.995i −0.200752 + 0.416866i
\(96\) 443.208 555.766i 0.471195 0.590860i
\(97\) 879.703 + 423.643i 0.920828 + 0.443448i 0.833367 0.552720i \(-0.186410\pi\)
0.0874616 + 0.996168i \(0.472124\pi\)
\(98\) −576.457 131.573i −0.594194 0.135621i
\(99\) −459.170 104.802i −0.466144 0.106394i
\(100\) 64.1176 + 30.8774i 0.0641176 + 0.0308774i
\(101\) −950.789 + 1192.25i −0.936703 + 1.17459i 0.0477351 + 0.998860i \(0.484800\pi\)
−0.984439 + 0.175729i \(0.943772\pi\)
\(102\) −381.801 + 792.817i −0.370626 + 0.769614i
\(103\) −762.557 608.119i −0.729486 0.581745i 0.186739 0.982409i \(-0.440208\pi\)
−0.916225 + 0.400664i \(0.868779\pi\)
\(104\) 131.712 0.124186
\(105\) 352.417 + 441.917i 0.327546 + 0.410730i
\(106\) −680.867 + 542.973i −0.623883 + 0.497530i
\(107\) 215.237 269.898i 0.194464 0.243851i −0.675034 0.737787i \(-0.735871\pi\)
0.869498 + 0.493936i \(0.164442\pi\)
\(108\) −620.341 141.589i −0.552707 0.126152i
\(109\) 51.1836 64.1822i 0.0449770 0.0563994i −0.758834 0.651284i \(-0.774231\pi\)
0.803811 + 0.594884i \(0.202802\pi\)
\(110\) 1717.22i 1.48846i
\(111\) 389.966 + 809.773i 0.333459 + 0.692435i
\(112\) 656.787 + 823.585i 0.554112 + 0.694834i
\(113\) 804.367i 0.669633i −0.942283 0.334816i \(-0.891326\pi\)
0.942283 0.334816i \(-0.108674\pi\)
\(114\) −594.189 −0.488166
\(115\) −579.668 132.305i −0.470037 0.107283i
\(116\) −50.3262 63.1071i −0.0402816 0.0505116i
\(117\) −42.5202 88.2942i −0.0335983 0.0697675i
\(118\) 895.733 + 1860.01i 0.698805 + 1.45108i
\(119\) −628.933 501.558i −0.484489 0.386367i
\(120\) 573.292i 0.436118i
\(121\) 823.330 396.495i 0.618580 0.297893i
\(122\) −725.658 1506.84i −0.538508 1.11822i
\(123\) 1657.58 + 1321.87i 1.21511 + 0.969019i
\(124\) 247.533 197.401i 0.179267 0.142961i
\(125\) −1438.93 + 328.427i −1.02962 + 0.235003i
\(126\) 198.197 411.560i 0.140133 0.290989i
\(127\) −396.553 190.970i −0.277074 0.133432i 0.290187 0.956970i \(-0.406283\pi\)
−0.567261 + 0.823538i \(0.691997\pi\)
\(128\) 1514.15i 1.04558i
\(129\) 1960.99i 1.33842i
\(130\) 279.357 222.780i 0.188471 0.150301i
\(131\) 1482.78 338.434i 0.988937 0.225718i 0.302691 0.953089i \(-0.402115\pi\)
0.686245 + 0.727370i \(0.259258\pi\)
\(132\) 735.286 354.095i 0.484837 0.233485i
\(133\) 120.871 529.572i 0.0788036 0.345261i
\(134\) −793.075 + 994.484i −0.511278 + 0.641122i
\(135\) 1428.16 687.767i 0.910494 0.438471i
\(136\) −181.556 795.449i −0.114473 0.501538i
\(137\) 299.062 1310.27i 0.186500 0.817112i −0.791943 0.610595i \(-0.790930\pi\)
0.978443 0.206516i \(-0.0662126\pi\)
\(138\) −183.497 803.954i −0.113191 0.495921i
\(139\) 557.614 + 1157.90i 0.340260 + 0.706558i 0.998948 0.0458587i \(-0.0146024\pi\)
−0.658688 + 0.752417i \(0.728888\pi\)
\(140\) 556.403 + 126.995i 0.335890 + 0.0766647i
\(141\) −289.837 601.852i −0.173111 0.359469i
\(142\) −329.330 + 1442.89i −0.194625 + 0.852708i
\(143\) 420.838 + 202.665i 0.246099 + 0.118515i
\(144\) 716.228 344.917i 0.414484 0.199605i
\(145\) 196.041 + 44.7451i 0.112278 + 0.0256268i
\(146\) −358.016 + 448.938i −0.202943 + 0.254482i
\(147\) 547.317 + 436.471i 0.307088 + 0.244895i
\(148\) 817.622 + 393.746i 0.454109 + 0.218687i
\(149\) 2287.13 1823.93i 1.25751 1.00283i 0.258186 0.966095i \(-0.416875\pi\)
0.999325 0.0367361i \(-0.0116961\pi\)
\(150\) −153.306 192.240i −0.0834493 0.104642i
\(151\) −242.480 503.516i −0.130681 0.271361i 0.825354 0.564616i \(-0.190976\pi\)
−0.956034 + 0.293255i \(0.905261\pi\)
\(152\) 430.739 343.503i 0.229852 0.183301i
\(153\) −474.626 + 378.501i −0.250792 + 0.200000i
\(154\) 484.481 + 2122.65i 0.253510 + 1.11070i
\(155\) −175.510 + 768.959i −0.0909503 + 0.398479i
\(156\) 152.995 + 73.6786i 0.0785219 + 0.0378142i
\(157\) −251.419 1101.54i −0.127805 0.559951i −0.997765 0.0668276i \(-0.978712\pi\)
0.869959 0.493123i \(-0.164145\pi\)
\(158\) 1744.01 + 2186.92i 0.878139 + 1.10115i
\(159\) 1005.20 229.431i 0.501369 0.114434i
\(160\) 1114.83 + 1397.95i 0.550842 + 0.690734i
\(161\) 753.854 0.369019
\(162\) 986.787 + 786.937i 0.478576 + 0.381652i
\(163\) −857.873 + 3758.59i −0.412232 + 1.80610i 0.161281 + 0.986908i \(0.448437\pi\)
−0.573513 + 0.819196i \(0.694420\pi\)
\(164\) 2140.67 1.01926
\(165\) −882.124 + 1831.75i −0.416202 + 0.864252i
\(166\) 2509.70 572.822i 1.17344 0.267829i
\(167\) 1162.97 2414.94i 0.538884 1.11901i −0.436746 0.899585i \(-0.643869\pi\)
0.975630 0.219420i \(-0.0704166\pi\)
\(168\) −161.744 708.645i −0.0742786 0.325436i
\(169\) −467.251 2047.16i −0.212677 0.931799i
\(170\) −1730.52 1380.04i −0.780732 0.622613i
\(171\) −369.325 177.858i −0.165164 0.0795387i
\(172\) 1234.51 + 1548.03i 0.547270 + 0.686255i
\(173\) −591.531 + 284.866i −0.259961 + 0.125191i −0.559325 0.828948i \(-0.688940\pi\)
0.299364 + 0.954139i \(0.403225\pi\)
\(174\) 62.0580 + 271.894i 0.0270380 + 0.118461i
\(175\) 202.520 97.5285i 0.0874804 0.0421284i
\(176\) −1643.98 + 3413.77i −0.704090 + 1.46206i
\(177\) 2444.20i 1.03795i
\(178\) −546.429 −0.230093
\(179\) −1253.33 286.065i −0.523344 0.119450i −0.0473161 0.998880i \(-0.515067\pi\)
−0.476028 + 0.879430i \(0.657924\pi\)
\(180\) 186.869 388.037i 0.0773798 0.160681i
\(181\) −2398.88 + 3008.09i −0.985121 + 1.23530i −0.0132206 + 0.999913i \(0.504208\pi\)
−0.971901 + 0.235391i \(0.924363\pi\)
\(182\) −282.460 + 354.193i −0.115040 + 0.144256i
\(183\) 1980.11i 0.799859i
\(184\) 597.790 + 476.722i 0.239509 + 0.191002i
\(185\) −2204.07 + 503.064i −0.875926 + 0.199924i
\(186\) −1066.49 + 243.419i −0.420423 + 0.0959587i
\(187\) 643.860 2820.93i 0.251784 1.10314i
\(188\) −607.686 292.646i −0.235745 0.113529i
\(189\) −1571.31 + 1253.08i −0.604740 + 0.482264i
\(190\) 332.579 1457.12i 0.126988 0.556372i
\(191\) −1433.22 −0.542954 −0.271477 0.962445i \(-0.587512\pi\)
−0.271477 + 0.962445i \(0.587512\pi\)
\(192\) 70.5343 146.466i 0.0265124 0.0550535i
\(193\) 1717.81 827.252i 0.640676 0.308533i −0.0851950 0.996364i \(-0.527151\pi\)
0.725871 + 0.687831i \(0.241437\pi\)
\(194\) −3320.86 757.965i −1.22899 0.280509i
\(195\) −412.430 + 94.1345i −0.151460 + 0.0345698i
\(196\) 706.831 0.257591
\(197\) −71.6615 2764.10i −0.0259171 0.999664i
\(198\) 1643.06 0.589732
\(199\) 435.447 99.3880i 0.155116 0.0354042i −0.144258 0.989540i \(-0.546079\pi\)
0.299374 + 0.954136i \(0.403222\pi\)
\(200\) 222.269 + 50.7315i 0.0785840 + 0.0179363i
\(201\) 1356.83 653.416i 0.476137 0.229295i
\(202\) 2308.23 4793.10i 0.803994 1.66951i
\(203\) −254.950 −0.0881478
\(204\) 234.075 1025.55i 0.0803359 0.351974i
\(205\) −4169.40 + 3324.98i −1.42050 + 1.13281i
\(206\) 3065.64 + 1476.33i 1.03686 + 0.499325i
\(207\) 126.592 554.634i 0.0425059 0.186230i
\(208\) −768.631 + 175.435i −0.256226 + 0.0584819i
\(209\) 1904.82 434.763i 0.630427 0.143891i
\(210\) −1541.67 1229.44i −0.506598 0.403998i
\(211\) 1282.53i 0.418450i 0.977868 + 0.209225i \(0.0670941\pi\)
−0.977868 + 0.209225i \(0.932906\pi\)
\(212\) 649.081 813.922i 0.210279 0.263681i
\(213\) 1092.50 1369.95i 0.351440 0.440692i
\(214\) −522.530 + 1085.05i −0.166913 + 0.346599i
\(215\) −4808.92 1097.60i −1.52542 0.348167i
\(216\) −2038.43 −0.642120
\(217\) 1000.03i 0.312840i
\(218\) −124.259 + 258.025i −0.0386048 + 0.0801637i
\(219\) 612.512 294.970i 0.188994 0.0910148i
\(220\) 456.790 + 2001.33i 0.139985 + 0.613316i
\(221\) 542.440 261.225i 0.165106 0.0795110i
\(222\) −1954.94 2451.42i −0.591024 0.741120i
\(223\) 3080.37 + 1483.43i 0.925009 + 0.445461i 0.834857 0.550467i \(-0.185550\pi\)
0.0901524 + 0.995928i \(0.471265\pi\)
\(224\) −1772.44 1413.47i −0.528688 0.421615i
\(225\) −37.7464 165.378i −0.0111841 0.0490008i
\(226\) 624.420 + 2735.76i 0.183787 + 0.805222i
\(227\) 1144.85 2377.31i 0.334742 0.695099i −0.663866 0.747852i \(-0.731085\pi\)
0.998608 + 0.0527531i \(0.0167996\pi\)
\(228\) 692.496 158.058i 0.201148 0.0459107i
\(229\) −1682.47 + 3493.68i −0.485505 + 1.00816i 0.504005 + 0.863700i \(0.331859\pi\)
−0.989510 + 0.144461i \(0.953855\pi\)
\(230\) 2074.24 0.594657
\(231\) 573.598 2513.10i 0.163377 0.715800i
\(232\) −202.170 161.225i −0.0572117 0.0456248i
\(233\) 565.000 0.158860 0.0794299 0.996840i \(-0.474690\pi\)
0.0794299 + 0.996840i \(0.474690\pi\)
\(234\) 213.159 + 267.293i 0.0595497 + 0.0746729i
\(235\) 1638.14 373.895i 0.454726 0.103788i
\(236\) −1538.71 1929.48i −0.424412 0.532195i
\(237\) −736.922 3228.67i −0.201976 0.884914i
\(238\) 2528.44 + 1217.63i 0.688632 + 0.331628i
\(239\) −1171.82 + 5134.06i −0.317148 + 1.38952i 0.525381 + 0.850867i \(0.323923\pi\)
−0.842529 + 0.538650i \(0.818934\pi\)
\(240\) −763.604 3345.57i −0.205377 0.899814i
\(241\) −1098.84 + 876.296i −0.293703 + 0.234221i −0.759244 0.650806i \(-0.774431\pi\)
0.465541 + 0.885026i \(0.345860\pi\)
\(242\) −2492.46 + 1987.67i −0.662073 + 0.527986i
\(243\) 1139.05 + 2365.26i 0.300699 + 0.624408i
\(244\) 1246.55 + 1563.12i 0.327057 + 0.410117i
\(245\) −1376.70 + 1097.88i −0.358996 + 0.286290i
\(246\) −6663.80 3209.12i −1.72711 0.831731i
\(247\) 317.846 + 253.473i 0.0818787 + 0.0652961i
\(248\) 632.396 792.999i 0.161924 0.203046i
\(249\) −2971.35 678.190i −0.756230 0.172605i
\(250\) 4639.05 2234.05i 1.17360 0.565175i
\(251\) 2930.97 + 1411.48i 0.737055 + 0.354947i 0.764455 0.644677i \(-0.223008\pi\)
−0.0273993 + 0.999625i \(0.508723\pi\)
\(252\) −121.511 + 532.373i −0.0303748 + 0.133081i
\(253\) 1176.49 + 2443.01i 0.292354 + 0.607079i
\(254\) 1496.98 + 341.675i 0.369798 + 0.0844040i
\(255\) 1137.02 + 2361.04i 0.279227 + 0.579820i
\(256\) −1105.35 4842.87i −0.269862 1.18234i
\(257\) 1809.12 7926.28i 0.439105 1.92384i 0.0608383 0.998148i \(-0.480623\pi\)
0.378267 0.925697i \(-0.376520\pi\)
\(258\) −1522.29 6669.60i −0.367340 1.60942i
\(259\) 2582.52 1243.67i 0.619574 0.298371i
\(260\) −266.316 + 333.949i −0.0635238 + 0.0796564i
\(261\) −42.8127 + 187.575i −0.0101534 + 0.0444850i
\(262\) −4780.40 + 2302.12i −1.12723 + 0.542845i
\(263\) −4810.37 + 1097.94i −1.12783 + 0.257421i −0.745436 0.666577i \(-0.767759\pi\)
−0.382397 + 0.923998i \(0.624901\pi\)
\(264\) 2044.08 1630.10i 0.476533 0.380022i
\(265\) 2593.46i 0.601189i
\(266\) 1894.98i 0.436799i
\(267\) 582.874 + 280.697i 0.133600 + 0.0643386i
\(268\) 659.749 1369.98i 0.150375 0.312258i
\(269\) 5269.00 1202.61i 1.19426 0.272582i 0.421232 0.906953i \(-0.361598\pi\)
0.773029 + 0.634370i \(0.218741\pi\)
\(270\) −4323.47 + 3447.85i −0.974511 + 0.777147i
\(271\) −4620.01 3684.33i −1.03559 0.825857i −0.0506452 0.998717i \(-0.516128\pi\)
−0.984946 + 0.172860i \(0.944699\pi\)
\(272\) 2119.02 + 4400.19i 0.472369 + 0.980884i
\(273\) 483.246 232.719i 0.107133 0.0515927i
\(274\) 4688.58i 1.03375i
\(275\) 632.121 + 504.100i 0.138612 + 0.110539i
\(276\) 427.714 + 888.156i 0.0932802 + 0.193698i
\(277\) 2756.81 + 5724.57i 0.597980 + 1.24172i 0.951890 + 0.306439i \(0.0991376\pi\)
−0.353910 + 0.935279i \(0.615148\pi\)
\(278\) −2795.38 3505.30i −0.603078 0.756236i
\(279\) −735.750 167.930i −0.157879 0.0360348i
\(280\) 1828.33 0.390228
\(281\) 1826.97i 0.387858i 0.981016 + 0.193929i \(0.0621232\pi\)
−0.981016 + 0.193929i \(0.937877\pi\)
\(282\) 1452.98 + 1821.98i 0.306822 + 0.384743i
\(283\) −773.508 1606.21i −0.162475 0.337382i 0.803798 0.594902i \(-0.202809\pi\)
−0.966273 + 0.257520i \(0.917095\pi\)
\(284\) 1769.22i 0.369661i
\(285\) −1103.28 + 1383.46i −0.229307 + 0.287542i
\(286\) −1588.65 362.599i −0.328458 0.0749684i
\(287\) 4215.70 5286.32i 0.867056 1.08725i
\(288\) −1337.57 + 1066.68i −0.273671 + 0.218246i
\(289\) 737.862 + 925.250i 0.150186 + 0.188327i
\(290\) −701.498 −0.142046
\(291\) 3152.99 + 2514.43i 0.635160 + 0.506523i
\(292\) 297.829 618.449i 0.0596889 0.123945i
\(293\) −354.740 + 444.830i −0.0707309 + 0.0886937i −0.815938 0.578139i \(-0.803779\pi\)
0.745207 + 0.666833i \(0.232351\pi\)
\(294\) −2200.33 1059.62i −0.436482 0.210199i
\(295\) 5993.89 + 1368.07i 1.18297 + 0.270006i
\(296\) 2834.35 + 646.923i 0.556566 + 0.127033i
\(297\) −6513.09 3136.54i −1.27248 0.612796i
\(298\) −6362.95 + 7978.89i −1.23690 + 1.55102i
\(299\) −244.800 + 508.332i −0.0473483 + 0.0983197i
\(300\) 229.807 + 183.265i 0.0442264 + 0.0352694i
\(301\) 6253.96 1.19758
\(302\) 1215.58 + 1524.29i 0.231619 + 0.290441i
\(303\) −4924.37 + 3927.06i −0.933656 + 0.744566i
\(304\) −2056.14 + 2578.31i −0.387919 + 0.486435i
\(305\) −4855.81 1108.31i −0.911616 0.208070i
\(306\) 1320.44 1655.78i 0.246682 0.309329i
\(307\) 269.200i 0.0500457i −0.999687 0.0250229i \(-0.992034\pi\)
0.999687 0.0250229i \(-0.00796585\pi\)
\(308\) −1129.27 2344.96i −0.208917 0.433820i
\(309\) −2511.72 3149.60i −0.462417 0.579853i
\(310\) 2751.58i 0.504127i
\(311\) 959.455 0.174938 0.0874690 0.996167i \(-0.472122\pi\)
0.0874690 + 0.996167i \(0.472122\pi\)
\(312\) 530.371 + 121.054i 0.0962382 + 0.0219657i
\(313\) −2954.82 3705.23i −0.533599 0.669112i 0.439835 0.898078i \(-0.355037\pi\)
−0.973434 + 0.228966i \(0.926465\pi\)
\(314\) 1710.22 + 3551.31i 0.307367 + 0.638254i
\(315\) −590.238 1225.64i −0.105575 0.219229i
\(316\) −2614.29 2084.82i −0.465396 0.371141i
\(317\) 5089.99i 0.901836i 0.892565 + 0.450918i \(0.148903\pi\)
−0.892565 + 0.450918i \(0.851097\pi\)
\(318\) −3240.72 + 1560.65i −0.571480 + 0.275210i
\(319\) −397.885 826.217i −0.0698348 0.145013i
\(320\) 319.697 + 254.950i 0.0558488 + 0.0445380i
\(321\) 1114.76 888.994i 0.193832 0.154576i
\(322\) −2563.96 + 585.207i −0.443739 + 0.101280i
\(323\) 1092.68 2268.97i 0.188230 0.390863i
\(324\) −1359.38 654.643i −0.233090 0.112250i
\(325\) 168.232i 0.0287133i
\(326\) 13449.4i 2.28495i
\(327\) 265.092 211.404i 0.0448307 0.0357513i
\(328\) 6685.92 1526.02i 1.12551 0.256891i
\(329\) −1919.42 + 924.343i −0.321644 + 0.154896i
\(330\) 1578.26 6914.81i 0.263274 1.15348i
\(331\) −2274.79 + 2852.50i −0.377746 + 0.473679i −0.933969 0.357355i \(-0.883679\pi\)
0.556223 + 0.831033i \(0.312250\pi\)
\(332\) −2772.55 + 1335.19i −0.458324 + 0.220717i
\(333\) −481.339 2108.88i −0.0792108 0.347045i
\(334\) −2080.75 + 9116.35i −0.340879 + 1.49349i
\(335\) 842.920 + 3693.07i 0.137473 + 0.602311i
\(336\) 1887.78 + 3920.02i 0.306508 + 0.636471i
\(337\) −9791.88 2234.93i −1.58278 0.361260i −0.661436 0.750002i \(-0.730053\pi\)
−0.921347 + 0.388742i \(0.872910\pi\)
\(338\) 3178.37 + 6599.96i 0.511481 + 1.06210i
\(339\) 739.278 3238.99i 0.118443 0.518932i
\(340\) 2383.93 + 1148.04i 0.380255 + 0.183121i
\(341\) 3240.78 1560.68i 0.514658 0.247846i
\(342\) 1394.19 + 318.216i 0.220437 + 0.0503132i
\(343\) 4208.98 5277.90i 0.662576 0.830845i
\(344\) 4959.26 + 3954.88i 0.777283 + 0.619863i
\(345\) −2212.58 1065.52i −0.345279 0.166278i
\(346\) 1790.74 1428.07i 0.278239 0.221888i
\(347\) −3775.07 4733.79i −0.584024 0.732343i 0.398769 0.917051i \(-0.369438\pi\)
−0.982793 + 0.184708i \(0.940866\pi\)
\(348\) −144.651 300.371i −0.0222819 0.0462688i
\(349\) −6617.62 + 5277.38i −1.01499 + 0.809431i −0.981781 0.190017i \(-0.939146\pi\)
−0.0332137 + 0.999448i \(0.510574\pi\)
\(350\) −613.088 + 488.921i −0.0936313 + 0.0746684i
\(351\) −334.711 1466.46i −0.0508990 0.223003i
\(352\) 1814.50 7949.86i 0.274754 1.20378i
\(353\) −3800.61 1830.28i −0.573048 0.275966i 0.124834 0.992178i \(-0.460160\pi\)
−0.697883 + 0.716212i \(0.745874\pi\)
\(354\) 1897.40 + 8313.06i 0.284875 + 1.24812i
\(355\) 2748.02 + 3445.91i 0.410844 + 0.515183i
\(356\) 636.835 145.353i 0.0948095 0.0216396i
\(357\) −2071.59 2597.69i −0.307115 0.385110i
\(358\) 4484.83 0.662097
\(359\) 169.608 + 135.258i 0.0249347 + 0.0198847i 0.635878 0.771790i \(-0.280638\pi\)
−0.610943 + 0.791674i \(0.709210\pi\)
\(360\) 307.024 1345.16i 0.0449489 0.196934i
\(361\) −5158.49 −0.752076
\(362\) 5823.76 12093.2i 0.845552 1.75581i
\(363\) 3679.76 839.882i 0.532059 0.121439i
\(364\) 234.975 487.930i 0.0338352 0.0702596i
\(365\) 380.518 + 1667.16i 0.0545677 + 0.239077i
\(366\) −1537.14 6734.63i −0.219528 0.961817i
\(367\) −618.650 493.357i −0.0879925 0.0701717i 0.578506 0.815678i \(-0.303636\pi\)
−0.666498 + 0.745507i \(0.732208\pi\)
\(368\) −4123.51 1985.78i −0.584111 0.281293i
\(369\) −3181.39 3989.33i −0.448825 0.562809i
\(370\) 7105.82 3421.98i 0.998416 0.480812i
\(371\) −731.697 3205.77i −0.102393 0.448613i
\(372\) 1178.18 567.384i 0.164210 0.0790793i
\(373\) 2527.44 5248.29i 0.350847 0.728542i −0.648622 0.761111i \(-0.724654\pi\)
0.999470 + 0.0325685i \(0.0103687\pi\)
\(374\) 10094.2i 1.39561i
\(375\) −6096.08 −0.839467
\(376\) −2106.59 480.816i −0.288934 0.0659473i
\(377\) 82.7903 171.916i 0.0113101 0.0234857i
\(378\) 4371.49 5481.67i 0.594828 0.745891i
\(379\) −3276.09 + 4108.09i −0.444015 + 0.556777i −0.952596 0.304237i \(-0.901599\pi\)
0.508581 + 0.861014i \(0.330170\pi\)
\(380\) 1786.67i 0.241195i
\(381\) −1421.31 1133.45i −0.191117 0.152411i
\(382\) 4874.58 1112.59i 0.652893 0.149019i
\(383\) −8128.04 + 1855.17i −1.08440 + 0.247506i −0.727132 0.686497i \(-0.759147\pi\)
−0.357264 + 0.934004i \(0.616290\pi\)
\(384\) −1391.63 + 6097.13i −0.184938 + 0.810268i
\(385\) 5841.79 + 2813.26i 0.773312 + 0.372408i
\(386\) −5200.31 + 4147.11i −0.685722 + 0.546845i
\(387\) 1050.20 4601.23i 0.137945 0.604377i
\(388\) 4071.91 0.532784
\(389\) −2868.45 + 5956.40i −0.373872 + 0.776353i −0.999994 0.00337190i \(-0.998927\pi\)
0.626123 + 0.779725i \(0.284641\pi\)
\(390\) 1329.66 640.329i 0.172640 0.0831392i
\(391\) 3407.42 + 777.722i 0.440718 + 0.100591i
\(392\) 2207.63 503.878i 0.284445 0.0649226i
\(393\) 6281.82 0.806301
\(394\) 2389.46 + 9345.44i 0.305532 + 1.19497i
\(395\) 8330.10 1.06110
\(396\) −1914.90 + 437.063i −0.242998 + 0.0554627i
\(397\) −10174.6 2322.29i −1.28627 0.293583i −0.475900 0.879499i \(-0.657878\pi\)
−0.810372 + 0.585916i \(0.800735\pi\)
\(398\) −1403.86 + 676.064i −0.176807 + 0.0851458i
\(399\) 973.439 2021.37i 0.122138 0.253621i
\(400\) −1364.67 −0.170584
\(401\) −2151.02 + 9424.25i −0.267873 + 1.17363i 0.644610 + 0.764512i \(0.277020\pi\)
−0.912483 + 0.409116i \(0.865837\pi\)
\(402\) −4107.53 + 3275.65i −0.509614 + 0.406404i
\(403\) 674.329 + 324.740i 0.0833516 + 0.0401400i
\(404\) −1415.13 + 6200.11i −0.174271 + 0.763532i
\(405\) 3664.49 836.396i 0.449605 0.102619i
\(406\) 867.120 197.915i 0.105996 0.0241929i
\(407\) 8060.75 + 6428.23i 0.981711 + 0.782889i
\(408\) 3369.94i 0.408914i
\(409\) −8541.33 + 10710.5i −1.03262 + 1.29486i −0.0780263 + 0.996951i \(0.524862\pi\)
−0.954593 + 0.297913i \(0.903710\pi\)
\(410\) 11599.5 14545.4i 1.39722 1.75206i
\(411\) 2408.50 5001.29i 0.289057 0.600233i
\(412\) −3965.56 905.112i −0.474196 0.108232i
\(413\) −7795.01 −0.928734
\(414\) 1984.66i 0.235605i
\(415\) 3326.24 6907.00i 0.393442 0.816991i
\(416\) 1528.69 736.177i 0.180168 0.0867645i
\(417\) 1181.17 + 5175.06i 0.138711 + 0.607731i
\(418\) −6141.05 + 2957.37i −0.718585 + 0.346052i
\(419\) 7268.45 + 9114.35i 0.847464 + 1.06269i 0.997261 + 0.0739690i \(0.0235666\pi\)
−0.149797 + 0.988717i \(0.547862\pi\)
\(420\) 2123.78 + 1022.76i 0.246738 + 0.118823i
\(421\) −126.860 101.167i −0.0146859 0.0117116i 0.616119 0.787653i \(-0.288704\pi\)
−0.630805 + 0.775941i \(0.717275\pi\)
\(422\) −995.610 4362.05i −0.114847 0.503179i
\(423\) 357.748 + 1567.40i 0.0411213 + 0.180164i
\(424\) 1447.04 3004.82i 0.165742 0.344167i
\(425\) 1016.01 231.897i 0.115961 0.0264674i
\(426\) −2652.26 + 5507.48i −0.301649 + 0.626381i
\(427\) 6314.95 0.715695
\(428\) 320.354 1403.56i 0.0361796 0.158513i
\(429\) 1508.35 + 1202.87i 0.169752 + 0.135373i
\(430\) 17207.8 1.92985
\(431\) −4119.80 5166.07i −0.460426 0.577356i 0.496372 0.868110i \(-0.334665\pi\)
−0.956798 + 0.290754i \(0.906094\pi\)
\(432\) 11895.7 2715.12i 1.32485 0.302387i
\(433\) −2318.76 2907.64i −0.257350 0.322707i 0.636325 0.771421i \(-0.280454\pi\)
−0.893675 + 0.448714i \(0.851882\pi\)
\(434\) 776.307 + 3401.22i 0.0858616 + 0.376184i
\(435\) 748.286 + 360.355i 0.0824771 + 0.0397189i
\(436\) 76.1806 333.769i 0.00836786 0.0366620i
\(437\) 525.153 + 2300.84i 0.0574862 + 0.251863i
\(438\) −1854.26 + 1478.72i −0.202283 + 0.161315i
\(439\) −6207.33 + 4950.18i −0.674851 + 0.538176i −0.899859 0.436181i \(-0.856331\pi\)
0.225008 + 0.974357i \(0.427759\pi\)
\(440\) 2853.37 + 5925.08i 0.309157 + 0.641971i
\(441\) −1050.47 1317.24i −0.113429 0.142235i
\(442\) −1642.13 + 1309.55i −0.176715 + 0.140925i
\(443\) 2660.85 + 1281.40i 0.285374 + 0.137429i 0.571095 0.820884i \(-0.306519\pi\)
−0.285721 + 0.958313i \(0.592233\pi\)
\(444\) 2930.48 + 2336.98i 0.313231 + 0.249793i
\(445\) −1014.60 + 1272.26i −0.108082 + 0.135531i
\(446\) −11628.3 2654.09i −1.23457 0.281782i
\(447\) 10886.1 5242.45i 1.15189 0.554719i
\(448\) −467.107 224.947i −0.0492606 0.0237226i
\(449\) −2906.87 + 12735.8i −0.305532 + 1.33862i 0.556111 + 0.831108i \(0.312293\pi\)
−0.861643 + 0.507515i \(0.830564\pi\)
\(450\) 256.761 + 533.170i 0.0268974 + 0.0558531i
\(451\) 23710.6 + 5411.78i 2.47558 + 0.565035i
\(452\) −1455.46 3022.29i −0.151458 0.314506i
\(453\) −513.638 2250.39i −0.0532733 0.233406i
\(454\) −2048.32 + 8974.28i −0.211745 + 0.927717i
\(455\) 300.212 + 1315.32i 0.0309323 + 0.135523i
\(456\) 2050.19 987.318i 0.210546 0.101393i
\(457\) 2723.63 3415.32i 0.278788 0.349589i −0.622648 0.782502i \(-0.713943\pi\)
0.901435 + 0.432914i \(0.142514\pi\)
\(458\) 3010.20 13188.6i 0.307113 1.34555i
\(459\) −8395.07 + 4042.85i −0.853700 + 0.411120i
\(460\) −2417.41 + 551.759i −0.245027 + 0.0559259i
\(461\) −5868.22 + 4679.75i −0.592864 + 0.472793i −0.873369 0.487059i \(-0.838070\pi\)
0.280505 + 0.959853i \(0.409498\pi\)
\(462\) 8992.67i 0.905577i
\(463\) 9274.72i 0.930956i −0.885059 0.465478i \(-0.845882\pi\)
0.885059 0.465478i \(-0.154118\pi\)
\(464\) 1394.55 + 671.581i 0.139527 + 0.0671926i
\(465\) −1413.47 + 2935.10i −0.140964 + 0.292714i
\(466\) −1921.64 + 438.602i −0.191026 + 0.0436005i
\(467\) 8286.68 6608.40i 0.821117 0.654819i −0.120047 0.992768i \(-0.538305\pi\)
0.941164 + 0.337949i \(0.109733\pi\)
\(468\) −319.527 254.814i −0.0315601 0.0251684i
\(469\) −2083.86 4327.19i −0.205168 0.426036i
\(470\) −5281.29 + 2543.34i −0.518315 + 0.249607i
\(471\) 4666.70i 0.456540i
\(472\) −6181.27 4929.40i −0.602789 0.480708i
\(473\) 9760.17 + 20267.2i 0.948781 + 1.97016i
\(474\) 5012.75 + 10409.1i 0.485745 + 1.00866i
\(475\) 438.748 + 550.172i 0.0423813 + 0.0531445i
\(476\) −3270.67 746.508i −0.314938 0.0718827i
\(477\) −2481.46 −0.238193
\(478\) 18371.3i 1.75792i
\(479\) 8141.92 + 10209.6i 0.776646 + 0.973884i 1.00000 0.000853781i \(-0.000271767\pi\)
−0.223353 + 0.974738i \(0.571700\pi\)
\(480\) 3204.31 + 6653.81i 0.304700 + 0.632715i
\(481\) 2145.28i 0.203360i
\(482\) 3057.05 3833.42i 0.288889 0.362256i
\(483\) 3035.59 + 692.853i 0.285971 + 0.0652710i
\(484\) 2376.11 2979.54i 0.223150 0.279822i
\(485\) −7930.89 + 6324.67i −0.742522 + 0.592141i
\(486\) −5710.17 7160.33i −0.532960 0.668311i
\(487\) 5117.91 0.476210 0.238105 0.971239i \(-0.423474\pi\)
0.238105 + 0.971239i \(0.423474\pi\)
\(488\) 5007.62 + 3993.44i 0.464517 + 0.370440i
\(489\) −6908.89 + 14346.5i −0.638918 + 1.32673i
\(490\) 3830.06 4802.75i 0.353112 0.442788i
\(491\) −14992.9 7220.19i −1.37804 0.663631i −0.409462 0.912327i \(-0.634284\pi\)
−0.968582 + 0.248696i \(0.919998\pi\)
\(492\) 8619.96 + 1967.45i 0.789874 + 0.180284i
\(493\) −1152.38 263.022i −0.105275 0.0240282i
\(494\) −1277.80 615.358i −0.116379 0.0560451i
\(495\) 3050.79 3825.57i 0.277016 0.347367i
\(496\) −2634.23 + 5470.04i −0.238469 + 0.495186i
\(497\) −4369.02 3484.18i −0.394321 0.314460i
\(498\) 10632.4 0.956727
\(499\) −10933.1 13709.6i −0.980825 1.22992i −0.973204 0.229945i \(-0.926145\pi\)
−0.00762150 0.999971i \(-0.502426\pi\)
\(500\) −4812.30 + 3837.68i −0.430426 + 0.343253i
\(501\) 6902.54 8655.52i 0.615535 0.771856i
\(502\) −11064.3 2525.36i −0.983715 0.224527i
\(503\) 2341.57 2936.24i 0.207565 0.260279i −0.667141 0.744931i \(-0.732482\pi\)
0.874707 + 0.484652i \(0.161054\pi\)
\(504\) 1749.37i 0.154610i
\(505\) −6874.01 14274.0i −0.605722 1.25779i
\(506\) −5897.89 7395.72i −0.518169 0.649763i
\(507\) 8672.87i 0.759715i
\(508\) −1835.54 −0.160313
\(509\) −2159.91 492.986i −0.188087 0.0429297i 0.127440 0.991846i \(-0.459324\pi\)
−0.315527 + 0.948917i \(0.602181\pi\)
\(510\) −5700.00 7147.57i −0.494902 0.620588i
\(511\) −940.715 1953.41i −0.0814379 0.169108i
\(512\) 2263.17 + 4699.53i 0.195350 + 0.405648i
\(513\) −4919.14 3922.88i −0.423363 0.337621i
\(514\) 28362.8i 2.43391i
\(515\) 9129.59 4396.58i 0.781161 0.376187i
\(516\) 3548.31 + 7368.13i 0.302724 + 0.628612i
\(517\) −5991.03 4777.69i −0.509643 0.406427i
\(518\) −7818.04 + 6234.68i −0.663137 + 0.528834i
\(519\) −2643.77 + 603.422i −0.223600 + 0.0510353i
\(520\) −593.717 + 1232.87i −0.0500696 + 0.103971i
\(521\) −2540.83 1223.60i −0.213658 0.102892i 0.323994 0.946059i \(-0.394974\pi\)
−0.537652 + 0.843167i \(0.680689\pi\)
\(522\) 671.202i 0.0562792i
\(523\) 5117.19i 0.427838i −0.976851 0.213919i \(-0.931377\pi\)
0.976851 0.213919i \(-0.0686228\pi\)
\(524\) 4958.93 3954.62i 0.413420 0.329691i
\(525\) 905.136 206.591i 0.0752445 0.0171741i
\(526\) 15508.4 7468.46i 1.28555 0.619088i
\(527\) 1031.69 4520.12i 0.0852771 0.373623i
\(528\) −9757.45 + 12235.5i −0.804239 + 1.00848i
\(529\) 8011.16 3857.97i 0.658433 0.317085i
\(530\) −2013.27 8820.71i −0.165002 0.722919i
\(531\) −1308.98 + 5735.03i −0.106977 + 0.468699i
\(532\) −504.076 2208.50i −0.0410798 0.179982i
\(533\) 2195.66 + 4559.33i 0.178432 + 0.370519i
\(534\) −2200.34 502.212i −0.178311 0.0406982i
\(535\) 1556.12 + 3231.31i 0.125751 + 0.261125i
\(536\) 1083.96 4749.16i 0.0873510 0.382710i
\(537\) −4783.96 2303.83i −0.384438 0.185135i
\(538\) −16987.0 + 8180.51i −1.36127 + 0.655551i
\(539\) 7829.02 + 1786.92i 0.625639 + 0.142798i
\(540\) 4121.63 5168.36i 0.328457 0.411872i
\(541\) −3173.20 2530.54i −0.252174 0.201102i 0.489241 0.872149i \(-0.337274\pi\)
−0.741416 + 0.671046i \(0.765845\pi\)
\(542\) 18573.4 + 8944.46i 1.47195 + 0.708851i
\(543\) −12424.4 + 9908.10i −0.981917 + 0.783052i
\(544\) −6553.21 8217.46i −0.516482 0.647648i
\(545\) 370.047 + 768.410i 0.0290845 + 0.0603946i
\(546\) −1462.93 + 1166.65i −0.114666 + 0.0914430i
\(547\) 2167.92 1728.86i 0.169458 0.135138i −0.535089 0.844796i \(-0.679722\pi\)
0.704547 + 0.709658i \(0.251150\pi\)
\(548\) −1247.19 5464.30i −0.0972214 0.425955i
\(549\) 1060.44 4646.10i 0.0824382 0.361185i
\(550\) −2541.26 1223.80i −0.197017 0.0948785i
\(551\) −177.604 778.136i −0.0137318 0.0601628i
\(552\) 1969.01 + 2469.06i 0.151824 + 0.190381i
\(553\) −10296.8 + 2350.18i −0.791800 + 0.180723i
\(554\) −13820.2 17330.0i −1.05986 1.32902i
\(555\) −9337.61 −0.714161
\(556\) 4190.30 + 3341.65i 0.319619 + 0.254888i
\(557\) −5545.64 + 24297.0i −0.421861 + 1.84829i 0.0996150 + 0.995026i \(0.468239\pi\)
−0.521476 + 0.853266i \(0.674618\pi\)
\(558\) 2632.75 0.199737
\(559\) −2030.86 + 4217.12i −0.153660 + 0.319079i
\(560\) −10669.6 + 2435.27i −0.805133 + 0.183766i
\(561\) 5185.33 10767.5i 0.390241 0.810343i
\(562\) −1418.26 6213.79i −0.106451 0.466393i
\(563\) −5435.43 23814.2i −0.406885 1.78268i −0.598410 0.801190i \(-0.704201\pi\)
0.191525 0.981488i \(-0.438657\pi\)
\(564\) −2178.04 1736.93i −0.162610 0.129677i
\(565\) 7529.15 + 3625.85i 0.560626 + 0.269983i
\(566\) 3877.68 + 4862.46i 0.287970 + 0.361103i
\(567\) −4293.70 + 2067.74i −0.318022 + 0.153151i
\(568\) −1261.22 5525.76i −0.0931683 0.408197i
\(569\) 20255.8 9754.70i 1.49239 0.718696i 0.503040 0.864263i \(-0.332215\pi\)
0.989348 + 0.145567i \(0.0465007\pi\)
\(570\) 2678.43 5561.81i 0.196819 0.408699i
\(571\) 19233.7i 1.40964i 0.709387 + 0.704819i \(0.248972\pi\)
−0.709387 + 0.704819i \(0.751028\pi\)
\(572\) 1947.95 0.142391
\(573\) −5771.23 1317.25i −0.420762 0.0960362i
\(574\) −10234.5 + 21252.1i −0.744214 + 1.54538i
\(575\) −608.905 + 763.543i −0.0441619 + 0.0553773i
\(576\) −243.940 + 305.891i −0.0176461 + 0.0221275i
\(577\) 1209.67i 0.0872779i 0.999047 + 0.0436390i \(0.0138951\pi\)
−0.999047 + 0.0436390i \(0.986105\pi\)
\(578\) −3227.83 2574.11i −0.232284 0.185240i
\(579\) 7677.50 1752.34i 0.551064 0.125777i
\(580\) 817.559 186.603i 0.0585298 0.0133591i
\(581\) −2162.87 + 9476.17i −0.154443 + 0.676657i
\(582\) −12675.7 6104.28i −0.902789 0.434760i
\(583\) 9247.03 7374.26i 0.656900 0.523861i
\(584\) 489.332 2143.90i 0.0346725 0.151910i
\(585\) 1018.13 0.0719566
\(586\) 861.204 1788.31i 0.0607099 0.126065i
\(587\) −11522.0 + 5548.69i −0.810158 + 0.390151i −0.792636 0.609695i \(-0.791292\pi\)
−0.0175218 + 0.999846i \(0.505578\pi\)
\(588\) 2846.24 + 649.635i 0.199620 + 0.0455620i
\(589\) 3052.19 696.642i 0.213520 0.0487345i
\(590\) −21448.0 −1.49661
\(591\) 2251.87 11196.2i 0.156733 0.779274i
\(592\) −17402.2 −1.20815
\(593\) 7609.14 1736.74i 0.526931 0.120268i 0.0492238 0.998788i \(-0.484325\pi\)
0.477707 + 0.878519i \(0.341468\pi\)
\(594\) 24586.8 + 5611.77i 1.69833 + 0.387632i
\(595\) 7529.80 3626.16i 0.518809 0.249845i
\(596\) 5293.26 10991.6i 0.363793 0.755423i
\(597\) 1844.79 0.126469
\(598\) 437.986 1918.94i 0.0299508 0.131223i
\(599\) −6716.78 + 5356.45i −0.458164 + 0.365373i −0.825207 0.564831i \(-0.808942\pi\)
0.367043 + 0.930204i \(0.380370\pi\)
\(600\) 848.397 + 408.567i 0.0577261 + 0.0277994i
\(601\) 547.602 2399.20i 0.0371667 0.162838i −0.952939 0.303163i \(-0.901957\pi\)
0.990106 + 0.140325i \(0.0448146\pi\)
\(602\) −21270.6 + 4854.87i −1.44007 + 0.328687i
\(603\) −3533.58 + 806.517i −0.238638 + 0.0544675i
\(604\) −1822.17 1453.13i −0.122753 0.0978925i
\(605\) 9493.94i 0.637989i
\(606\) 13699.9 17179.2i 0.918353 1.15158i
\(607\) 174.680 219.042i 0.0116805 0.0146469i −0.775957 0.630786i \(-0.782733\pi\)
0.787637 + 0.616139i \(0.211304\pi\)
\(608\) 3079.35 6394.34i 0.205402 0.426521i
\(609\) −1026.62 234.320i −0.0683101 0.0155913i
\(610\) 17375.6 1.15331
\(611\) 1594.45i 0.105572i
\(612\) −1098.46 + 2280.97i −0.0725532 + 0.150658i
\(613\) −6035.91 + 2906.74i −0.397697 + 0.191521i −0.622033 0.782991i \(-0.713693\pi\)
0.224336 + 0.974512i \(0.427979\pi\)
\(614\) 208.976 + 915.584i 0.0137355 + 0.0601791i
\(615\) −19845.1 + 9556.88i −1.30119 + 0.626619i
\(616\) −5198.70 6518.96i −0.340035 0.426390i
\(617\) −13427.1 6466.17i −0.876104 0.421910i −0.0589043 0.998264i \(-0.518761\pi\)
−0.817200 + 0.576354i \(0.804475\pi\)
\(618\) 10987.7 + 8762.40i 0.715195 + 0.570349i
\(619\) −6339.98 27777.3i −0.411672 1.80365i −0.576231 0.817287i \(-0.695477\pi\)
0.164558 0.986367i \(-0.447380\pi\)
\(620\) 731.937 + 3206.82i 0.0474118 + 0.207724i
\(621\) 3788.64 7867.20i 0.244820 0.508373i
\(622\) −3263.24 + 744.813i −0.210360 + 0.0480133i
\(623\) 895.196 1858.89i 0.0575687 0.119543i
\(624\) −3256.33 −0.208906
\(625\) 2937.44 12869.8i 0.187996 0.823664i
\(626\) 12926.1 + 10308.2i 0.825288 + 0.658145i
\(627\) 8069.83 0.514000
\(628\) −2937.84 3683.94i −0.186676 0.234085i
\(629\) 12956.0 2957.13i 0.821289 0.187454i
\(630\) 2958.93 + 3710.38i 0.187122 + 0.234643i
\(631\) −5598.86 24530.2i −0.353229 1.54760i −0.769675 0.638436i \(-0.779582\pi\)
0.416447 0.909160i \(-0.363275\pi\)
\(632\) −9651.37 4647.85i −0.607454 0.292534i
\(633\) −1178.75 + 5164.43i −0.0740142 + 0.324277i
\(634\) −3951.29 17311.7i −0.247517 1.08444i
\(635\) 3575.09 2851.04i 0.223422 0.178173i
\(636\) 3361.75 2680.91i 0.209595 0.167146i
\(637\) 724.986 + 1505.45i 0.0450942 + 0.0936391i
\(638\) 1994.64 + 2501.20i 0.123775 + 0.155209i
\(639\) −3297.09 + 2629.34i −0.204117 + 0.162778i
\(640\) −14173.0 6825.36i −0.875371 0.421556i
\(641\) 1679.74 + 1339.54i 0.103503 + 0.0825410i 0.673874 0.738846i \(-0.264629\pi\)
−0.570371 + 0.821387i \(0.693200\pi\)
\(642\) −3101.35 + 3888.97i −0.190655 + 0.239074i
\(643\) 24711.0 + 5640.12i 1.51556 + 0.345917i 0.897784 0.440436i \(-0.145176\pi\)
0.617777 + 0.786353i \(0.288033\pi\)
\(644\) 2832.49 1364.06i 0.173317 0.0834649i
\(645\) −18355.5 8839.57i −1.12054 0.539624i
\(646\) −1954.98 + 8565.31i −0.119067 + 0.521668i
\(647\) −2725.97 5660.54i −0.165640 0.343955i 0.801583 0.597883i \(-0.203991\pi\)
−0.967223 + 0.253929i \(0.918277\pi\)
\(648\) −4712.40 1075.58i −0.285680 0.0652046i
\(649\) −12165.2 25261.3i −0.735786 1.52788i
\(650\) −130.596 572.180i −0.00788063 0.0345273i
\(651\) 919.105 4026.86i 0.0553342 0.242435i
\(652\) 3577.63 + 15674.6i 0.214894 + 0.941510i
\(653\) −9990.83 + 4811.33i −0.598731 + 0.288334i −0.708598 0.705613i \(-0.750672\pi\)
0.109867 + 0.993946i \(0.464958\pi\)
\(654\) −737.505 + 924.802i −0.0440959 + 0.0552945i
\(655\) −3516.06 + 15404.8i −0.209746 + 0.918958i
\(656\) −36984.5 + 17810.8i −2.20122 + 1.06005i
\(657\) −1595.16 + 364.084i −0.0947230 + 0.0216199i
\(658\) 5810.64 4633.83i 0.344259 0.274537i
\(659\) 1879.31i 0.111089i −0.998456 0.0555444i \(-0.982311\pi\)
0.998456 0.0555444i \(-0.0176894\pi\)
\(660\) 8478.69i 0.500049i
\(661\) 2415.70 + 1163.34i 0.142148 + 0.0684549i 0.503606 0.863934i \(-0.332006\pi\)
−0.361458 + 0.932389i \(0.617721\pi\)
\(662\) 5522.52 11467.6i 0.324228 0.673266i
\(663\) 2424.36 553.345i 0.142013 0.0324135i
\(664\) −7707.65 + 6146.64i −0.450474 + 0.359241i
\(665\) 4412.13 + 3518.55i 0.257286 + 0.205178i
\(666\) 3274.20 + 6798.94i 0.190499 + 0.395576i
\(667\) 997.992 480.608i 0.0579346 0.0278999i
\(668\) 11178.1i 0.647447i
\(669\) 11040.5 + 8804.52i 0.638044 + 0.508823i
\(670\) −5733.77 11906.3i −0.330619 0.686538i
\(671\) 9855.35 + 20464.8i 0.567007 + 1.17740i
\(672\) −5838.09 7320.73i −0.335133 0.420243i
\(673\) −31865.2 7273.03i −1.82513 0.416575i −0.834259 0.551372i \(-0.814104\pi\)
−0.990873 + 0.134798i \(0.956961\pi\)
\(674\) 35038.5 2.00242
\(675\) 2603.64i 0.148466i
\(676\) −5459.86 6846.44i −0.310643 0.389534i
\(677\) −5791.06 12025.3i −0.328757 0.682671i 0.669429 0.742876i \(-0.266539\pi\)
−0.998186 + 0.0602053i \(0.980824\pi\)
\(678\) 11590.1i 0.656514i
\(679\) 8018.97 10055.5i 0.453225 0.568326i
\(680\) 8264.08 + 1886.22i 0.466048 + 0.106372i
\(681\) 6794.97 8520.63i 0.382355 0.479458i
\(682\) −9810.81 + 7823.86i −0.550843 + 0.439283i
\(683\) 15405.3 + 19317.6i 0.863055 + 1.08224i 0.995842 + 0.0910922i \(0.0290358\pi\)
−0.132787 + 0.991145i \(0.542393\pi\)
\(684\) −1709.51 −0.0955624
\(685\) 10916.5 + 8705.65i 0.608904 + 0.485585i
\(686\) −10218.2 + 21218.2i −0.568704 + 1.18093i
\(687\) −9985.87 + 12521.9i −0.554563 + 0.695400i
\(688\) −34208.6 16474.0i −1.89562 0.912885i
\(689\) 2399.29 + 547.623i 0.132664 + 0.0302798i
\(690\) 8352.44 + 1906.39i 0.460829 + 0.105181i
\(691\) −5814.70 2800.21i −0.320118 0.154161i 0.266923 0.963718i \(-0.413993\pi\)
−0.587041 + 0.809557i \(0.699707\pi\)
\(692\) −1707.14 + 2140.69i −0.0937799 + 0.117596i
\(693\) −2691.76 + 5589.50i −0.147549 + 0.306389i
\(694\) 16514.3 + 13169.7i 0.903278 + 0.720340i
\(695\) −13351.9 −0.728727
\(696\) −665.911 835.026i −0.0362662 0.0454764i
\(697\) 24508.7 19545.0i 1.33190 1.06215i
\(698\) 18410.7 23086.2i 0.998358 1.25190i
\(699\) 2275.12 + 519.280i 0.123108 + 0.0280987i
\(700\) 584.467 732.898i 0.0315582 0.0395728i
\(701\) 5600.48i 0.301750i 0.988553 + 0.150875i \(0.0482092\pi\)
−0.988553 + 0.150875i \(0.951791\pi\)
\(702\) 2276.79 + 4727.81i 0.122410 + 0.254188i
\(703\) 5594.87 + 7015.75i 0.300163 + 0.376392i
\(704\) 1864.81i 0.0998336i
\(705\) 6940.04 0.370748
\(706\) 14347.2 + 3274.66i 0.764822 + 0.174566i
\(707\) 12524.1 + 15704.7i 0.666220 + 0.835414i
\(708\) −4422.65 9183.72i −0.234764 0.487493i
\(709\) 15097.1 + 31349.4i 0.799693 + 1.66058i 0.749652 + 0.661832i \(0.230221\pi\)
0.0500406 + 0.998747i \(0.484065\pi\)
\(710\) −12021.4 9586.75i −0.635430 0.506739i
\(711\) 7970.35i 0.420410i
\(712\) 1885.40 907.960i 0.0992391 0.0477910i
\(713\) 1885.15 + 3914.56i 0.0990176 + 0.205612i
\(714\) 9062.31 + 7226.95i 0.474998 + 0.378798i
\(715\) −3794.02 + 3025.63i −0.198445 + 0.158255i
\(716\) −5226.84 + 1192.99i −0.272816 + 0.0622684i
\(717\) −9437.23 + 19596.6i −0.491548 + 1.02071i
\(718\) −681.858 328.365i −0.0354411 0.0170675i
\(719\) 27515.3i 1.42719i −0.700561 0.713593i \(-0.747067\pi\)
0.700561 0.713593i \(-0.252933\pi\)
\(720\) 8258.93i 0.427489i
\(721\) −10044.7 + 8010.35i −0.518839 + 0.413760i
\(722\) 17544.7 4004.47i 0.904358 0.206414i
\(723\) −5230.15 + 2518.71i −0.269034 + 0.129560i
\(724\) −3570.44 + 15643.1i −0.183279 + 0.802999i
\(725\) 205.929 258.227i 0.0105490 0.0132280i
\(726\) −11863.4 + 5713.10i −0.606462 + 0.292057i
\(727\) 7217.76 + 31623.1i 0.368214 + 1.61325i 0.731682 + 0.681646i \(0.238736\pi\)
−0.363468 + 0.931607i \(0.618407\pi\)
\(728\) 386.063 1691.45i 0.0196544 0.0861117i
\(729\) 4586.47 + 20094.7i 0.233017 + 1.02091i
\(730\) −2588.39 5374.84i −0.131233 0.272509i
\(731\) 28267.9 + 6451.97i 1.43027 + 0.326450i
\(732\) 3582.91 + 7439.98i 0.180913 + 0.375669i
\(733\) −2253.52 + 9873.32i −0.113555 + 0.497516i 0.885880 + 0.463914i \(0.153555\pi\)
−0.999435 + 0.0336027i \(0.989302\pi\)
\(734\) 2487.10 + 1197.72i 0.125069 + 0.0602300i
\(735\) −6552.66 + 3155.60i −0.328842 + 0.158362i
\(736\) 9602.69 + 2191.75i 0.480923 + 0.109768i
\(737\) 10771.0 13506.3i 0.538335 0.675051i
\(738\) 13917.2 + 11098.6i 0.694172 + 0.553584i
\(739\) 1827.38 + 880.021i 0.0909626 + 0.0438053i 0.478812 0.877918i \(-0.341068\pi\)
−0.387849 + 0.921723i \(0.626782\pi\)
\(740\) −7371.20 + 5878.33i −0.366176 + 0.292016i
\(741\) 1046.92 + 1312.80i 0.0519025 + 0.0650837i
\(742\) 4977.20 + 10335.3i 0.246252 + 0.511347i
\(743\) 14146.5 11281.4i 0.698498 0.557033i −0.208575 0.978006i \(-0.566883\pi\)
0.907073 + 0.420973i \(0.138311\pi\)
\(744\) 3275.33 2611.99i 0.161397 0.128710i
\(745\) 6762.87 + 29630.1i 0.332580 + 1.45713i
\(746\) −4522.00 + 19812.2i −0.221933 + 0.972353i
\(747\) 6608.71 + 3182.59i 0.323695 + 0.155883i
\(748\) −2685.12 11764.3i −0.131254 0.575059i
\(749\) −2835.17 3555.19i −0.138311 0.173436i
\(750\) 20733.6 4732.31i 1.00945 0.230399i
\(751\) 10573.0 + 13258.1i 0.513733 + 0.644201i 0.969265 0.246019i \(-0.0791224\pi\)
−0.455532 + 0.890219i \(0.650551\pi\)
\(752\) 12933.9 0.627195
\(753\) 10505.0 + 8377.48i 0.508399 + 0.405435i
\(754\) −148.125 + 648.978i −0.00715437 + 0.0313453i
\(755\) 5806.11 0.279875
\(756\) −3636.59 + 7551.45i −0.174949 + 0.363285i
\(757\) −5095.28 + 1162.96i −0.244638 + 0.0558370i −0.343082 0.939306i \(-0.611471\pi\)
0.0984436 + 0.995143i \(0.468614\pi\)
\(758\) 7953.38 16515.4i 0.381108 0.791379i
\(759\) 2492.13 + 10918.7i 0.119181 + 0.522166i
\(760\) 1273.66 + 5580.27i 0.0607902 + 0.266339i
\(761\) 7180.45 + 5726.22i 0.342038 + 0.272766i 0.779410 0.626515i \(-0.215519\pi\)
−0.437372 + 0.899281i \(0.644091\pi\)
\(762\) 5713.94 + 2751.69i 0.271646 + 0.130818i
\(763\) −674.207 845.429i −0.0319894 0.0401135i
\(764\) −5385.12 + 2593.34i −0.255009 + 0.122806i
\(765\) −1403.43 6148.83i −0.0663283 0.290603i
\(766\) 26204.4 12619.4i 1.23604 0.595244i
\(767\) 2531.28 5256.26i