Properties

Label 145.2.d.c.144.1
Level $145$
Weight $2$
Character 145.144
Analytic conductor $1.158$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(144,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.144"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 144.1
Root \(-0.780776 - 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 145.144
Dual form 145.2.d.c.144.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.56155 q^{3} -1.00000 q^{4} +(-0.280776 - 2.21837i) q^{5} -2.56155 q^{6} -3.46410i q^{7} -3.00000 q^{8} +3.56155 q^{9} +(-0.280776 - 2.21837i) q^{10} -0.972638i q^{11} +2.56155 q^{12} +4.43674i q^{13} -3.46410i q^{14} +(0.719224 + 5.68247i) q^{15} -1.00000 q^{16} -2.00000 q^{17} +3.56155 q^{18} -3.46410i q^{19} +(0.280776 + 2.21837i) q^{20} +8.87348i q^{21} -0.972638i q^{22} -3.46410i q^{23} +7.68466 q^{24} +(-4.84233 + 1.24573i) q^{25} +4.43674i q^{26} -1.43845 q^{27} +3.46410i q^{28} +(4.12311 + 3.46410i) q^{29} +(0.719224 + 5.68247i) q^{30} -7.90084i q^{31} +5.00000 q^{32} +2.49146i q^{33} -2.00000 q^{34} +(-7.68466 + 0.972638i) q^{35} -3.56155 q^{36} +7.12311 q^{37} -3.46410i q^{38} -11.3649i q^{39} +(0.842329 + 6.65511i) q^{40} -8.87348i q^{41} +8.87348i q^{42} +5.43845 q^{43} +0.972638i q^{44} +(-1.00000 - 7.90084i) q^{45} -3.46410i q^{46} -11.6847 q^{47} +2.56155 q^{48} -5.00000 q^{49} +(-4.84233 + 1.24573i) q^{50} +5.12311 q^{51} -4.43674i q^{52} -4.43674i q^{53} -1.43845 q^{54} +(-2.15767 + 0.273094i) q^{55} +10.3923i q^{56} +8.87348i q^{57} +(4.12311 + 3.46410i) q^{58} -1.12311 q^{59} +(-0.719224 - 5.68247i) q^{60} +1.94528i q^{61} -7.90084i q^{62} -12.3376i q^{63} +7.00000 q^{64} +(9.84233 - 1.24573i) q^{65} +2.49146i q^{66} +12.3376i q^{67} +2.00000 q^{68} +8.87348i q^{69} +(-7.68466 + 0.972638i) q^{70} -2.24621 q^{71} -10.6847 q^{72} -7.12311 q^{73} +7.12311 q^{74} +(12.4039 - 3.19101i) q^{75} +3.46410i q^{76} -3.36932 q^{77} -11.3649i q^{78} +14.8290i q^{79} +(0.280776 + 2.21837i) q^{80} -7.00000 q^{81} -8.87348i q^{82} -10.3923i q^{83} -8.87348i q^{84} +(0.561553 + 4.43674i) q^{85} +5.43845 q^{86} +(-10.5616 - 8.87348i) q^{87} +2.91791i q^{88} -8.87348i q^{89} +(-1.00000 - 7.90084i) q^{90} +15.3693 q^{91} +3.46410i q^{92} +20.2384i q^{93} -11.6847 q^{94} +(-7.68466 + 0.972638i) q^{95} -12.8078 q^{96} +8.24621 q^{97} -5.00000 q^{98} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} - 4 q^{4} + 3 q^{5} - 2 q^{6} - 12 q^{8} + 6 q^{9} + 3 q^{10} + 2 q^{12} + 7 q^{15} - 4 q^{16} - 8 q^{17} + 6 q^{18} - 3 q^{20} + 6 q^{24} - 7 q^{25} - 14 q^{27} + 7 q^{30} + 20 q^{32}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −2.56155 −1.47891 −0.739457 0.673204i \(-0.764917\pi\)
−0.739457 + 0.673204i \(0.764917\pi\)
\(4\) −1.00000 −0.500000
\(5\) −0.280776 2.21837i −0.125567 0.992085i
\(6\) −2.56155 −1.04575
\(7\) 3.46410i 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) −3.00000 −1.06066
\(9\) 3.56155 1.18718
\(10\) −0.280776 2.21837i −0.0887893 0.701510i
\(11\) 0.972638i 0.293261i −0.989191 0.146631i \(-0.953157\pi\)
0.989191 0.146631i \(-0.0468429\pi\)
\(12\) 2.56155 0.739457
\(13\) 4.43674i 1.23053i 0.788320 + 0.615265i \(0.210951\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 3.46410i 0.925820i
\(15\) 0.719224 + 5.68247i 0.185703 + 1.46721i
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 3.56155 0.839466
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0.280776 + 2.21837i 0.0627835 + 0.496043i
\(21\) 8.87348i 1.93635i
\(22\) 0.972638i 0.207367i
\(23\) 3.46410i 0.722315i −0.932505 0.361158i \(-0.882382\pi\)
0.932505 0.361158i \(-0.117618\pi\)
\(24\) 7.68466 1.56862
\(25\) −4.84233 + 1.24573i −0.968466 + 0.249146i
\(26\) 4.43674i 0.870116i
\(27\) −1.43845 −0.276829
\(28\) 3.46410i 0.654654i
\(29\) 4.12311 + 3.46410i 0.765641 + 0.643268i
\(30\) 0.719224 + 5.68247i 0.131312 + 1.03747i
\(31\) 7.90084i 1.41903i −0.704689 0.709516i \(-0.748913\pi\)
0.704689 0.709516i \(-0.251087\pi\)
\(32\) 5.00000 0.883883
\(33\) 2.49146i 0.433708i
\(34\) −2.00000 −0.342997
\(35\) −7.68466 + 0.972638i −1.29894 + 0.164406i
\(36\) −3.56155 −0.593592
\(37\) 7.12311 1.17103 0.585516 0.810661i \(-0.300892\pi\)
0.585516 + 0.810661i \(0.300892\pi\)
\(38\) 3.46410i 0.561951i
\(39\) 11.3649i 1.81985i
\(40\) 0.842329 + 6.65511i 0.133184 + 1.05227i
\(41\) 8.87348i 1.38580i −0.721031 0.692902i \(-0.756332\pi\)
0.721031 0.692902i \(-0.243668\pi\)
\(42\) 8.87348i 1.36921i
\(43\) 5.43845 0.829355 0.414678 0.909968i \(-0.363894\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(44\) 0.972638i 0.146631i
\(45\) −1.00000 7.90084i −0.149071 1.17779i
\(46\) 3.46410i 0.510754i
\(47\) −11.6847 −1.70438 −0.852191 0.523230i \(-0.824727\pi\)
−0.852191 + 0.523230i \(0.824727\pi\)
\(48\) 2.56155 0.369728
\(49\) −5.00000 −0.714286
\(50\) −4.84233 + 1.24573i −0.684809 + 0.176173i
\(51\) 5.12311 0.717378
\(52\) 4.43674i 0.615265i
\(53\) 4.43674i 0.609433i −0.952443 0.304717i \(-0.901438\pi\)
0.952443 0.304717i \(-0.0985617\pi\)
\(54\) −1.43845 −0.195748
\(55\) −2.15767 + 0.273094i −0.290940 + 0.0368240i
\(56\) 10.3923i 1.38873i
\(57\) 8.87348i 1.17532i
\(58\) 4.12311 + 3.46410i 0.541390 + 0.454859i
\(59\) −1.12311 −0.146216 −0.0731079 0.997324i \(-0.523292\pi\)
−0.0731079 + 0.997324i \(0.523292\pi\)
\(60\) −0.719224 5.68247i −0.0928514 0.733604i
\(61\) 1.94528i 0.249067i 0.992215 + 0.124534i \(0.0397434\pi\)
−0.992215 + 0.124534i \(0.960257\pi\)
\(62\) 7.90084i 1.00341i
\(63\) 12.3376i 1.55439i
\(64\) 7.00000 0.875000
\(65\) 9.84233 1.24573i 1.22079 0.154514i
\(66\) 2.49146i 0.306678i
\(67\) 12.3376i 1.50728i 0.657290 + 0.753638i \(0.271703\pi\)
−0.657290 + 0.753638i \(0.728297\pi\)
\(68\) 2.00000 0.242536
\(69\) 8.87348i 1.06824i
\(70\) −7.68466 + 0.972638i −0.918492 + 0.116252i
\(71\) −2.24621 −0.266576 −0.133288 0.991077i \(-0.542554\pi\)
−0.133288 + 0.991077i \(0.542554\pi\)
\(72\) −10.6847 −1.25920
\(73\) −7.12311 −0.833696 −0.416848 0.908976i \(-0.636865\pi\)
−0.416848 + 0.908976i \(0.636865\pi\)
\(74\) 7.12311 0.828044
\(75\) 12.4039 3.19101i 1.43228 0.368466i
\(76\) 3.46410i 0.397360i
\(77\) −3.36932 −0.383969
\(78\) 11.3649i 1.28683i
\(79\) 14.8290i 1.66840i 0.551464 + 0.834199i \(0.314070\pi\)
−0.551464 + 0.834199i \(0.685930\pi\)
\(80\) 0.280776 + 2.21837i 0.0313918 + 0.248021i
\(81\) −7.00000 −0.777778
\(82\) 8.87348i 0.979912i
\(83\) 10.3923i 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) 8.87348i 0.968176i
\(85\) 0.561553 + 4.43674i 0.0609090 + 0.481232i
\(86\) 5.43845 0.586443
\(87\) −10.5616 8.87348i −1.13232 0.951337i
\(88\) 2.91791i 0.311051i
\(89\) 8.87348i 0.940587i −0.882510 0.470293i \(-0.844148\pi\)
0.882510 0.470293i \(-0.155852\pi\)
\(90\) −1.00000 7.90084i −0.105409 0.832822i
\(91\) 15.3693 1.61114
\(92\) 3.46410i 0.361158i
\(93\) 20.2384i 2.09863i
\(94\) −11.6847 −1.20518
\(95\) −7.68466 + 0.972638i −0.788429 + 0.0997906i
\(96\) −12.8078 −1.30719
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) −5.00000 −0.505076
\(99\) 3.46410i 0.348155i
\(100\) 4.84233 1.24573i 0.484233 0.124573i
\(101\) 6.92820i 0.689382i −0.938716 0.344691i \(-0.887984\pi\)
0.938716 0.344691i \(-0.112016\pi\)
\(102\) 5.12311 0.507263
\(103\) 1.51883i 0.149654i 0.997197 + 0.0748272i \(0.0238405\pi\)
−0.997197 + 0.0748272i \(0.976159\pi\)
\(104\) 13.3102i 1.30517i
\(105\) 19.6847 2.49146i 1.92103 0.243142i
\(106\) 4.43674i 0.430934i
\(107\) 14.2829i 1.38078i −0.723439 0.690388i \(-0.757440\pi\)
0.723439 0.690388i \(-0.242560\pi\)
\(108\) 1.43845 0.138415
\(109\) −5.68466 −0.544492 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(110\) −2.15767 + 0.273094i −0.205726 + 0.0260385i
\(111\) −18.2462 −1.73185
\(112\) 3.46410i 0.327327i
\(113\) 5.36932 0.505103 0.252551 0.967583i \(-0.418730\pi\)
0.252551 + 0.967583i \(0.418730\pi\)
\(114\) 8.87348i 0.831077i
\(115\) −7.68466 + 0.972638i −0.716598 + 0.0906990i
\(116\) −4.12311 3.46410i −0.382821 0.321634i
\(117\) 15.8017i 1.46087i
\(118\) −1.12311 −0.103390
\(119\) 6.92820i 0.635107i
\(120\) −2.15767 17.0474i −0.196967 1.55621i
\(121\) 10.0540 0.913998
\(122\) 1.94528i 0.176117i
\(123\) 22.7299i 2.04948i
\(124\) 7.90084i 0.709516i
\(125\) 4.12311 + 10.3923i 0.368782 + 0.929516i
\(126\) 12.3376i 1.09912i
\(127\) −2.24621 −0.199319 −0.0996595 0.995022i \(-0.531775\pi\)
−0.0996595 + 0.995022i \(0.531775\pi\)
\(128\) −3.00000 −0.265165
\(129\) −13.9309 −1.22654
\(130\) 9.84233 1.24573i 0.863229 0.109258i
\(131\) 14.2829i 1.24790i 0.781465 + 0.623949i \(0.214473\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) 2.49146i 0.216854i
\(133\) −12.0000 −1.04053
\(134\) 12.3376i 1.06580i
\(135\) 0.403882 + 3.19101i 0.0347606 + 0.274638i
\(136\) 6.00000 0.514496
\(137\) 13.3693 1.14222 0.571109 0.820874i \(-0.306513\pi\)
0.571109 + 0.820874i \(0.306513\pi\)
\(138\) 8.87348i 0.755361i
\(139\) 19.3693 1.64288 0.821442 0.570292i \(-0.193170\pi\)
0.821442 + 0.570292i \(0.193170\pi\)
\(140\) 7.68466 0.972638i 0.649472 0.0822029i
\(141\) 29.9309 2.52063
\(142\) −2.24621 −0.188498
\(143\) 4.31534 0.360867
\(144\) −3.56155 −0.296796
\(145\) 6.52699 10.1192i 0.542037 0.840355i
\(146\) −7.12311 −0.589512
\(147\) 12.8078 1.05637
\(148\) −7.12311 −0.585516
\(149\) −13.6847 −1.12109 −0.560545 0.828124i \(-0.689408\pi\)
−0.560545 + 0.828124i \(0.689408\pi\)
\(150\) 12.4039 3.19101i 1.01277 0.260545i
\(151\) 15.3693 1.25074 0.625369 0.780329i \(-0.284949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(152\) 10.3923i 0.842927i
\(153\) −7.12311 −0.575869
\(154\) −3.36932 −0.271507
\(155\) −17.5270 + 2.21837i −1.40780 + 0.178184i
\(156\) 11.3649i 0.909924i
\(157\) 22.4924 1.79509 0.897545 0.440922i \(-0.145349\pi\)
0.897545 + 0.440922i \(0.145349\pi\)
\(158\) 14.8290i 1.17974i
\(159\) 11.3649i 0.901299i
\(160\) −1.40388 11.0918i −0.110987 0.876888i
\(161\) −12.0000 −0.945732
\(162\) −7.00000 −0.549972
\(163\) −5.43845 −0.425972 −0.212986 0.977055i \(-0.568319\pi\)
−0.212986 + 0.977055i \(0.568319\pi\)
\(164\) 8.87348i 0.692902i
\(165\) 5.52699 0.699544i 0.430275 0.0544594i
\(166\) 10.3923i 0.806599i
\(167\) 8.44703i 0.653651i −0.945085 0.326825i \(-0.894021\pi\)
0.945085 0.326825i \(-0.105979\pi\)
\(168\) 26.6204i 2.05381i
\(169\) −6.68466 −0.514204
\(170\) 0.561553 + 4.43674i 0.0430691 + 0.340282i
\(171\) 12.3376i 0.943478i
\(172\) −5.43845 −0.414678
\(173\) 10.8188i 0.822535i 0.911515 + 0.411267i \(0.134914\pi\)
−0.911515 + 0.411267i \(0.865086\pi\)
\(174\) −10.5616 8.87348i −0.800669 0.672697i
\(175\) 4.31534 + 16.7743i 0.326209 + 1.26802i
\(176\) 0.972638i 0.0733153i
\(177\) 2.87689 0.216241
\(178\) 8.87348i 0.665095i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 1.00000 + 7.90084i 0.0745356 + 0.588894i
\(181\) −13.6847 −1.01717 −0.508586 0.861011i \(-0.669832\pi\)
−0.508586 + 0.861011i \(0.669832\pi\)
\(182\) 15.3693 1.13925
\(183\) 4.98293i 0.368349i
\(184\) 10.3923i 0.766131i
\(185\) −2.00000 15.8017i −0.147043 1.16176i
\(186\) 20.2384i 1.48395i
\(187\) 1.94528i 0.142253i
\(188\) 11.6847 0.852191
\(189\) 4.98293i 0.362455i
\(190\) −7.68466 + 0.972638i −0.557504 + 0.0705626i
\(191\) 3.46410i 0.250654i 0.992116 + 0.125327i \(0.0399979\pi\)
−0.992116 + 0.125327i \(0.960002\pi\)
\(192\) −17.9309 −1.29405
\(193\) 8.24621 0.593575 0.296788 0.954944i \(-0.404085\pi\)
0.296788 + 0.954944i \(0.404085\pi\)
\(194\) 8.24621 0.592043
\(195\) −25.2116 + 3.19101i −1.80544 + 0.228513i
\(196\) 5.00000 0.357143
\(197\) 10.8188i 0.770804i −0.922749 0.385402i \(-0.874063\pi\)
0.922749 0.385402i \(-0.125937\pi\)
\(198\) 3.46410i 0.246183i
\(199\) −15.3693 −1.08950 −0.544751 0.838598i \(-0.683376\pi\)
−0.544751 + 0.838598i \(0.683376\pi\)
\(200\) 14.5270 3.73720i 1.02721 0.264260i
\(201\) 31.6034i 2.22913i
\(202\) 6.92820i 0.487467i
\(203\) 12.0000 14.2829i 0.842235 1.00246i
\(204\) −5.12311 −0.358689
\(205\) −19.6847 + 2.49146i −1.37484 + 0.174011i
\(206\) 1.51883i 0.105822i
\(207\) 12.3376i 0.857521i
\(208\) 4.43674i 0.307633i
\(209\) −3.36932 −0.233061
\(210\) 19.6847 2.49146i 1.35837 0.171927i
\(211\) 14.8290i 1.02087i −0.859915 0.510437i \(-0.829484\pi\)
0.859915 0.510437i \(-0.170516\pi\)
\(212\) 4.43674i 0.304717i
\(213\) 5.75379 0.394243
\(214\) 14.2829i 0.976356i
\(215\) −1.52699 12.0645i −0.104140 0.822791i
\(216\) 4.31534 0.293622
\(217\) −27.3693 −1.85795
\(218\) −5.68466 −0.385014
\(219\) 18.2462 1.23296
\(220\) 2.15767 0.273094i 0.145470 0.0184120i
\(221\) 8.87348i 0.596895i
\(222\) −18.2462 −1.22461
\(223\) 12.3376i 0.826186i −0.910689 0.413093i \(-0.864449\pi\)
0.910689 0.413093i \(-0.135551\pi\)
\(224\) 17.3205i 1.15728i
\(225\) −17.2462 + 4.43674i −1.14975 + 0.295783i
\(226\) 5.36932 0.357162
\(227\) 12.3376i 0.818874i 0.912338 + 0.409437i \(0.134275\pi\)
−0.912338 + 0.409437i \(0.865725\pi\)
\(228\) 8.87348i 0.587661i
\(229\) 15.8017i 1.04420i 0.852883 + 0.522102i \(0.174852\pi\)
−0.852883 + 0.522102i \(0.825148\pi\)
\(230\) −7.68466 + 0.972638i −0.506711 + 0.0641339i
\(231\) 8.63068 0.567857
\(232\) −12.3693 10.3923i −0.812085 0.682288i
\(233\) 2.49146i 0.163221i −0.996664 0.0816106i \(-0.973994\pi\)
0.996664 0.0816106i \(-0.0260064\pi\)
\(234\) 15.8017i 1.03299i
\(235\) 3.28078 + 25.9209i 0.214014 + 1.69089i
\(236\) 1.12311 0.0731079
\(237\) 37.9854i 2.46742i
\(238\) 6.92820i 0.449089i
\(239\) 13.1231 0.848863 0.424432 0.905460i \(-0.360474\pi\)
0.424432 + 0.905460i \(0.360474\pi\)
\(240\) −0.719224 5.68247i −0.0464257 0.366802i
\(241\) −1.68466 −0.108518 −0.0542592 0.998527i \(-0.517280\pi\)
−0.0542592 + 0.998527i \(0.517280\pi\)
\(242\) 10.0540 0.646294
\(243\) 22.2462 1.42710
\(244\) 1.94528i 0.124534i
\(245\) 1.40388 + 11.0918i 0.0896907 + 0.708632i
\(246\) 22.7299i 1.44920i
\(247\) 15.3693 0.977926
\(248\) 23.7025i 1.50511i
\(249\) 26.6204i 1.68700i
\(250\) 4.12311 + 10.3923i 0.260768 + 0.657267i
\(251\) 16.7743i 1.05879i 0.848377 + 0.529393i \(0.177580\pi\)
−0.848377 + 0.529393i \(0.822420\pi\)
\(252\) 12.3376i 0.777195i
\(253\) −3.36932 −0.211827
\(254\) −2.24621 −0.140940
\(255\) −1.43845 11.3649i −0.0900791 0.711700i
\(256\) −17.0000 −1.06250
\(257\) 11.3649i 0.708926i 0.935070 + 0.354463i \(0.115336\pi\)
−0.935070 + 0.354463i \(0.884664\pi\)
\(258\) −13.9309 −0.867298
\(259\) 24.6752i 1.53324i
\(260\) −9.84233 + 1.24573i −0.610395 + 0.0772570i
\(261\) 14.6847 + 12.3376i 0.908958 + 0.763677i
\(262\) 14.2829i 0.882398i
\(263\) 3.68466 0.227206 0.113603 0.993526i \(-0.463761\pi\)
0.113603 + 0.993526i \(0.463761\pi\)
\(264\) 7.47439i 0.460017i
\(265\) −9.84233 + 1.24573i −0.604609 + 0.0765247i
\(266\) −12.0000 −0.735767
\(267\) 22.7299i 1.39105i
\(268\) 12.3376i 0.753638i
\(269\) 15.8017i 0.963446i −0.876324 0.481723i \(-0.840011\pi\)
0.876324 0.481723i \(-0.159989\pi\)
\(270\) 0.403882 + 3.19101i 0.0245795 + 0.194199i
\(271\) 14.8290i 0.900800i 0.892827 + 0.450400i \(0.148719\pi\)
−0.892827 + 0.450400i \(0.851281\pi\)
\(272\) 2.00000 0.121268
\(273\) −39.3693 −2.38274
\(274\) 13.3693 0.807670
\(275\) 1.21165 + 4.70983i 0.0730650 + 0.284014i
\(276\) 8.87348i 0.534121i
\(277\) 10.8188i 0.650036i −0.945708 0.325018i \(-0.894630\pi\)
0.945708 0.325018i \(-0.105370\pi\)
\(278\) 19.3693 1.16169
\(279\) 28.1393i 1.68465i
\(280\) 23.0540 2.91791i 1.37774 0.174379i
\(281\) 13.6847 0.816358 0.408179 0.912902i \(-0.366164\pi\)
0.408179 + 0.912902i \(0.366164\pi\)
\(282\) 29.9309 1.78236
\(283\) 14.2829i 0.849028i −0.905421 0.424514i \(-0.860445\pi\)
0.905421 0.424514i \(-0.139555\pi\)
\(284\) 2.24621 0.133288
\(285\) 19.6847 2.49146i 1.16602 0.147582i
\(286\) 4.31534 0.255171
\(287\) −30.7386 −1.81444
\(288\) 17.8078 1.04933
\(289\) −13.0000 −0.764706
\(290\) 6.52699 10.1192i 0.383278 0.594221i
\(291\) −21.1231 −1.23826
\(292\) 7.12311 0.416848
\(293\) 1.36932 0.0799963 0.0399982 0.999200i \(-0.487265\pi\)
0.0399982 + 0.999200i \(0.487265\pi\)
\(294\) 12.8078 0.746964
\(295\) 0.315342 + 2.49146i 0.0183599 + 0.145059i
\(296\) −21.3693 −1.24207
\(297\) 1.39909i 0.0811833i
\(298\) −13.6847 −0.792731
\(299\) 15.3693 0.888831
\(300\) −12.4039 + 3.19101i −0.716138 + 0.184233i
\(301\) 18.8393i 1.08588i
\(302\) 15.3693 0.884405
\(303\) 17.7470i 1.01954i
\(304\) 3.46410i 0.198680i
\(305\) 4.31534 0.546188i 0.247096 0.0312746i
\(306\) −7.12311 −0.407201
\(307\) 3.19224 0.182191 0.0910953 0.995842i \(-0.470963\pi\)
0.0910953 + 0.995842i \(0.470963\pi\)
\(308\) 3.36932 0.191985
\(309\) 3.89055i 0.221326i
\(310\) −17.5270 + 2.21837i −0.995466 + 0.125995i
\(311\) 0.426450i 0.0241818i −0.999927 0.0120909i \(-0.996151\pi\)
0.999927 0.0120909i \(-0.00384874\pi\)
\(312\) 34.0948i 1.93024i
\(313\) 2.49146i 0.140826i −0.997518 0.0704129i \(-0.977568\pi\)
0.997518 0.0704129i \(-0.0224317\pi\)
\(314\) 22.4924 1.26932
\(315\) −27.3693 + 3.46410i −1.54209 + 0.195180i
\(316\) 14.8290i 0.834199i
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 11.3649i 0.637314i
\(319\) 3.36932 4.01029i 0.188646 0.224533i
\(320\) −1.96543 15.5286i −0.109871 0.868074i
\(321\) 36.5863i 2.04205i
\(322\) −12.0000 −0.668734
\(323\) 6.92820i 0.385496i
\(324\) 7.00000 0.388889
\(325\) −5.52699 21.4842i −0.306582 1.19173i
\(326\) −5.43845 −0.301208
\(327\) 14.5616 0.805256
\(328\) 26.6204i 1.46987i
\(329\) 40.4768i 2.23156i
\(330\) 5.52699 0.699544i 0.304251 0.0385086i
\(331\) 5.95557i 0.327347i −0.986515 0.163674i \(-0.947666\pi\)
0.986515 0.163674i \(-0.0523344\pi\)
\(332\) 10.3923i 0.570352i
\(333\) 25.3693 1.39023
\(334\) 8.44703i 0.462201i
\(335\) 27.3693 3.46410i 1.49535 0.189264i
\(336\) 8.87348i 0.484088i
\(337\) 3.75379 0.204482 0.102241 0.994760i \(-0.467399\pi\)
0.102241 + 0.994760i \(0.467399\pi\)
\(338\) −6.68466 −0.363597
\(339\) −13.7538 −0.747003
\(340\) −0.561553 4.43674i −0.0304545 0.240616i
\(341\) −7.68466 −0.416148
\(342\) 12.3376i 0.667140i
\(343\) 6.92820i 0.374088i
\(344\) −16.3153 −0.879664
\(345\) 19.6847 2.49146i 1.05979 0.134136i
\(346\) 10.8188i 0.581620i
\(347\) 26.1940i 1.40617i 0.711107 + 0.703083i \(0.248194\pi\)
−0.711107 + 0.703083i \(0.751806\pi\)
\(348\) 10.5616 + 8.87348i 0.566159 + 0.475668i
\(349\) 10.3153 0.552168 0.276084 0.961134i \(-0.410963\pi\)
0.276084 + 0.961134i \(0.410963\pi\)
\(350\) 4.31534 + 16.7743i 0.230665 + 0.896625i
\(351\) 6.38202i 0.340647i
\(352\) 4.86319i 0.259209i
\(353\) 17.7470i 0.944575i −0.881444 0.472288i \(-0.843428\pi\)
0.881444 0.472288i \(-0.156572\pi\)
\(354\) 2.87689 0.152905
\(355\) 0.630683 + 4.98293i 0.0334732 + 0.264466i
\(356\) 8.87348i 0.470293i
\(357\) 17.7470i 0.939269i
\(358\) −12.0000 −0.634220
\(359\) 21.7572i 1.14830i −0.818749 0.574152i \(-0.805332\pi\)
0.818749 0.574152i \(-0.194668\pi\)
\(360\) 3.00000 + 23.7025i 0.158114 + 1.24923i
\(361\) 7.00000 0.368421
\(362\) −13.6847 −0.719250
\(363\) −25.7538 −1.35172
\(364\) −15.3693 −0.805571
\(365\) 2.00000 + 15.8017i 0.104685 + 0.827098i
\(366\) 4.98293i 0.260462i
\(367\) −28.4924 −1.48729 −0.743646 0.668573i \(-0.766905\pi\)
−0.743646 + 0.668573i \(0.766905\pi\)
\(368\) 3.46410i 0.180579i
\(369\) 31.6034i 1.64521i
\(370\) −2.00000 15.8017i −0.103975 0.821490i
\(371\) −15.3693 −0.797935
\(372\) 20.2384i 1.04931i
\(373\) 36.0401i 1.86609i 0.359765 + 0.933043i \(0.382857\pi\)
−0.359765 + 0.933043i \(0.617143\pi\)
\(374\) 1.94528i 0.100588i
\(375\) −10.5616 26.6204i −0.545396 1.37467i
\(376\) 35.0540 1.80777
\(377\) −15.3693 + 18.2931i −0.791560 + 0.942145i
\(378\) 4.98293i 0.256294i
\(379\) 0.426450i 0.0219053i 0.999940 + 0.0109526i \(0.00348640\pi\)
−0.999940 + 0.0109526i \(0.996514\pi\)
\(380\) 7.68466 0.972638i 0.394215 0.0498953i
\(381\) 5.75379 0.294776
\(382\) 3.46410i 0.177239i
\(383\) 17.3205i 0.885037i −0.896759 0.442518i \(-0.854085\pi\)
0.896759 0.442518i \(-0.145915\pi\)
\(384\) 7.68466 0.392156
\(385\) 0.946025 + 7.47439i 0.0482139 + 0.380930i
\(386\) 8.24621 0.419721
\(387\) 19.3693 0.984598
\(388\) −8.24621 −0.418638
\(389\) 10.8188i 0.548533i 0.961654 + 0.274266i \(0.0884350\pi\)
−0.961654 + 0.274266i \(0.911565\pi\)
\(390\) −25.2116 + 3.19101i −1.27664 + 0.161583i
\(391\) 6.92820i 0.350374i
\(392\) 15.0000 0.757614
\(393\) 36.5863i 1.84553i
\(394\) 10.8188i 0.545041i
\(395\) 32.8963 4.16365i 1.65519 0.209496i
\(396\) 3.46410i 0.174078i
\(397\) 0.546188i 0.0274124i −0.999906 0.0137062i \(-0.995637\pi\)
0.999906 0.0137062i \(-0.00436295\pi\)
\(398\) −15.3693 −0.770394
\(399\) 30.7386 1.53886
\(400\) 4.84233 1.24573i 0.242116 0.0622866i
\(401\) 15.9309 0.795550 0.397775 0.917483i \(-0.369783\pi\)
0.397775 + 0.917483i \(0.369783\pi\)
\(402\) 31.6034i 1.57623i
\(403\) 35.0540 1.74616
\(404\) 6.92820i 0.344691i
\(405\) 1.96543 + 15.5286i 0.0976632 + 0.771622i
\(406\) 12.0000 14.2829i 0.595550 0.708846i
\(407\) 6.92820i 0.343418i
\(408\) −15.3693 −0.760895
\(409\) 3.89055i 0.192375i −0.995363 0.0961877i \(-0.969335\pi\)
0.995363 0.0961877i \(-0.0306649\pi\)
\(410\) −19.6847 + 2.49146i −0.972156 + 0.123045i
\(411\) −34.2462 −1.68924
\(412\) 1.51883i 0.0748272i
\(413\) 3.89055i 0.191442i
\(414\) 12.3376i 0.606359i
\(415\) −23.0540 + 2.91791i −1.13168 + 0.143235i
\(416\) 22.1837i 1.08765i
\(417\) −49.6155 −2.42968
\(418\) −3.36932 −0.164799
\(419\) 14.2462 0.695973 0.347986 0.937500i \(-0.386866\pi\)
0.347986 + 0.937500i \(0.386866\pi\)
\(420\) −19.6847 + 2.49146i −0.960513 + 0.121571i
\(421\) 37.4392i 1.82467i −0.409439 0.912337i \(-0.634276\pi\)
0.409439 0.912337i \(-0.365724\pi\)
\(422\) 14.8290i 0.721867i
\(423\) −41.6155 −2.02342
\(424\) 13.3102i 0.646401i
\(425\) 9.68466 2.49146i 0.469775 0.120854i
\(426\) 5.75379 0.278772
\(427\) 6.73863 0.326105
\(428\) 14.2829i 0.690388i
\(429\) −11.0540 −0.533691
\(430\) −1.52699 12.0645i −0.0736379 0.581801i
\(431\) 8.63068 0.415725 0.207863 0.978158i \(-0.433349\pi\)
0.207863 + 0.978158i \(0.433349\pi\)
\(432\) 1.43845 0.0692073
\(433\) 16.8769 0.811052 0.405526 0.914084i \(-0.367088\pi\)
0.405526 + 0.914084i \(0.367088\pi\)
\(434\) −27.3693 −1.31377
\(435\) −16.7192 + 25.9209i −0.801625 + 1.24281i
\(436\) 5.68466 0.272246
\(437\) −12.0000 −0.574038
\(438\) 18.2462 0.871838
\(439\) 15.3693 0.733537 0.366769 0.930312i \(-0.380464\pi\)
0.366769 + 0.930312i \(0.380464\pi\)
\(440\) 6.47301 0.819281i 0.308589 0.0390577i
\(441\) −17.8078 −0.847989
\(442\) 8.87348i 0.422068i
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 18.2462 0.865927
\(445\) −19.6847 + 2.49146i −0.933142 + 0.118107i
\(446\) 12.3376i 0.584201i
\(447\) 35.0540 1.65800
\(448\) 24.2487i 1.14564i
\(449\) 17.7470i 0.837531i −0.908094 0.418765i \(-0.862463\pi\)
0.908094 0.418765i \(-0.137537\pi\)
\(450\) −17.2462 + 4.43674i −0.812994 + 0.209150i
\(451\) −8.63068 −0.406403
\(452\) −5.36932 −0.252551
\(453\) −39.3693 −1.84973
\(454\) 12.3376i 0.579031i
\(455\) −4.31534 34.0948i −0.202306 1.59839i
\(456\) 26.6204i 1.24662i
\(457\) 3.89055i 0.181992i −0.995851 0.0909962i \(-0.970995\pi\)
0.995851 0.0909962i \(-0.0290051\pi\)
\(458\) 15.8017i 0.738364i
\(459\) 2.87689 0.134282
\(460\) 7.68466 0.972638i 0.358299 0.0453495i
\(461\) 34.6410i 1.61339i 0.590966 + 0.806696i \(0.298747\pi\)
−0.590966 + 0.806696i \(0.701253\pi\)
\(462\) 8.63068 0.401536
\(463\) 7.35465i 0.341800i −0.985288 0.170900i \(-0.945333\pi\)
0.985288 0.170900i \(-0.0546675\pi\)
\(464\) −4.12311 3.46410i −0.191410 0.160817i
\(465\) 44.8963 5.68247i 2.08202 0.263518i
\(466\) 2.49146i 0.115415i
\(467\) −8.31534 −0.384788 −0.192394 0.981318i \(-0.561625\pi\)
−0.192394 + 0.981318i \(0.561625\pi\)
\(468\) 15.8017i 0.730433i
\(469\) 42.7386 1.97349
\(470\) 3.28078 + 25.9209i 0.151331 + 1.19564i
\(471\) −57.6155 −2.65478
\(472\) 3.36932 0.155085
\(473\) 5.28964i 0.243218i
\(474\) 37.9854i 1.74473i
\(475\) 4.31534 + 16.7743i 0.198001 + 0.769659i
\(476\) 6.92820i 0.317554i
\(477\) 15.8017i 0.723509i
\(478\) 13.1231 0.600237
\(479\) 2.91791i 0.133323i −0.997776 0.0666614i \(-0.978765\pi\)
0.997776 0.0666614i \(-0.0212347\pi\)
\(480\) 3.59612 + 28.4124i 0.164140 + 1.29684i
\(481\) 31.6034i 1.44099i
\(482\) −1.68466 −0.0767341
\(483\) 30.7386 1.39866
\(484\) −10.0540 −0.456999
\(485\) −2.31534 18.2931i −0.105134 0.830649i
\(486\) 22.2462 1.00911
\(487\) 32.0298i 1.45141i 0.688006 + 0.725705i \(0.258486\pi\)
−0.688006 + 0.725705i \(0.741514\pi\)
\(488\) 5.83583i 0.264176i
\(489\) 13.9309 0.629976
\(490\) 1.40388 + 11.0918i 0.0634209 + 0.501079i
\(491\) 29.5384i 1.33305i 0.745484 + 0.666524i \(0.232218\pi\)
−0.745484 + 0.666524i \(0.767782\pi\)
\(492\) 22.7299i 1.02474i
\(493\) −8.24621 6.92820i −0.371391 0.312031i
\(494\) 15.3693 0.691498
\(495\) −7.68466 + 0.972638i −0.345400 + 0.0437168i
\(496\) 7.90084i 0.354758i
\(497\) 7.78110i 0.349030i
\(498\) 26.6204i 1.19289i
\(499\) −4.63068 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(500\) −4.12311 10.3923i −0.184391 0.464758i
\(501\) 21.6375i 0.966693i
\(502\) 16.7743i 0.748675i
\(503\) 4.94602 0.220532 0.110266 0.993902i \(-0.464830\pi\)
0.110266 + 0.993902i \(0.464830\pi\)
\(504\) 37.0127i 1.64868i
\(505\) −15.3693 + 1.94528i −0.683926 + 0.0865636i
\(506\) −3.36932 −0.149784
\(507\) 17.1231 0.760464
\(508\) 2.24621 0.0996595
\(509\) −29.0540 −1.28779 −0.643897 0.765112i \(-0.722684\pi\)
−0.643897 + 0.765112i \(0.722684\pi\)
\(510\) −1.43845 11.3649i −0.0636955 0.503248i
\(511\) 24.6752i 1.09156i
\(512\) −11.0000 −0.486136
\(513\) 4.98293i 0.220002i
\(514\) 11.3649i 0.501286i
\(515\) 3.36932 0.426450i 0.148470 0.0187916i
\(516\) 13.9309 0.613272
\(517\) 11.3649i 0.499830i
\(518\) 24.6752i 1.08416i
\(519\) 27.7128i 1.21646i
\(520\) −29.5270 + 3.73720i −1.29484 + 0.163887i
\(521\) 22.3153 0.977653 0.488826 0.872381i \(-0.337425\pi\)
0.488826 + 0.872381i \(0.337425\pi\)
\(522\) 14.6847 + 12.3376i 0.642730 + 0.540001i
\(523\) 26.1940i 1.14538i 0.819771 + 0.572692i \(0.194101\pi\)
−0.819771 + 0.572692i \(0.805899\pi\)
\(524\) 14.2829i 0.623949i
\(525\) −11.0540 42.9683i −0.482435 1.87529i
\(526\) 3.68466 0.160659
\(527\) 15.8017i 0.688332i
\(528\) 2.49146i 0.108427i
\(529\) 11.0000 0.478261
\(530\) −9.84233 + 1.24573i −0.427523 + 0.0541111i
\(531\) −4.00000 −0.173585
\(532\) 12.0000 0.520266
\(533\) 39.3693 1.70527
\(534\) 22.7299i 0.983618i
\(535\) −31.6847 + 4.01029i −1.36985 + 0.173380i
\(536\) 37.0127i 1.59871i
\(537\) 30.7386 1.32647
\(538\) 15.8017i 0.681259i
\(539\) 4.86319i 0.209472i
\(540\) −0.403882 3.19101i −0.0173803 0.137319i
\(541\) 38.5316i 1.65660i −0.560284 0.828301i \(-0.689308\pi\)
0.560284 0.828301i \(-0.310692\pi\)
\(542\) 14.8290i 0.636962i
\(543\) 35.0540 1.50431
\(544\) −10.0000 −0.428746
\(545\) 1.59612 + 12.6107i 0.0683702 + 0.540182i
\(546\) −39.3693 −1.68485
\(547\) 7.35465i 0.314462i 0.987562 + 0.157231i \(0.0502568\pi\)
−0.987562 + 0.157231i \(0.949743\pi\)
\(548\) −13.3693 −0.571109
\(549\) 6.92820i 0.295689i
\(550\) 1.21165 + 4.70983i 0.0516648 + 0.200828i
\(551\) 12.0000 14.2829i 0.511217 0.608470i
\(552\) 26.6204i 1.13304i
\(553\) 51.3693 2.18445
\(554\) 10.8188i 0.459645i
\(555\) 5.12311 + 40.4768i 0.217464 + 1.71815i
\(556\) −19.3693 −0.821442
\(557\) 6.92820i 0.293557i −0.989169 0.146779i \(-0.953109\pi\)
0.989169 0.146779i \(-0.0468905\pi\)
\(558\) 28.1393i 1.19123i
\(559\) 24.1290i 1.02055i
\(560\) 7.68466 0.972638i 0.324736 0.0411015i
\(561\) 4.98293i 0.210379i
\(562\) 13.6847 0.577252
\(563\) −15.6847 −0.661030 −0.330515 0.943801i \(-0.607222\pi\)
−0.330515 + 0.943801i \(0.607222\pi\)
\(564\) −29.9309 −1.26032
\(565\) −1.50758 11.9111i −0.0634243 0.501105i
\(566\) 14.2829i 0.600353i
\(567\) 24.2487i 1.01835i
\(568\) 6.73863 0.282747
\(569\) 3.89055i 0.163100i −0.996669 0.0815502i \(-0.974013\pi\)
0.996669 0.0815502i \(-0.0259871\pi\)
\(570\) 19.6847 2.49146i 0.824500 0.104356i
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −4.31534 −0.180433
\(573\) 8.87348i 0.370695i
\(574\) −30.7386 −1.28301
\(575\) 4.31534 + 16.7743i 0.179962 + 0.699538i
\(576\) 24.9309 1.03879
\(577\) −44.2462 −1.84199 −0.920997 0.389570i \(-0.872624\pi\)
−0.920997 + 0.389570i \(0.872624\pi\)
\(578\) −13.0000 −0.540729
\(579\) −21.1231 −0.877846
\(580\) −6.52699 + 10.1192i −0.271018 + 0.420177i
\(581\) −36.0000 −1.49353
\(582\) −21.1231 −0.875581
\(583\) −4.31534 −0.178723
\(584\) 21.3693 0.884269
\(585\) 35.0540 4.43674i 1.44930 0.183437i
\(586\) 1.36932 0.0565660
\(587\) 13.4300i 0.554314i 0.960825 + 0.277157i \(0.0893921\pi\)
−0.960825 + 0.277157i \(0.910608\pi\)
\(588\) −12.8078 −0.528183
\(589\) −27.3693 −1.12773
\(590\) 0.315342 + 2.49146i 0.0129824 + 0.102572i
\(591\) 27.7128i 1.13995i
\(592\) −7.12311 −0.292758
\(593\) 6.38202i 0.262078i −0.991377 0.131039i \(-0.958169\pi\)
0.991377 0.131039i \(-0.0418313\pi\)
\(594\) 1.39909i 0.0574053i
\(595\) 15.3693 1.94528i 0.630081 0.0797485i
\(596\) 13.6847 0.560545
\(597\) 39.3693 1.61128
\(598\) 15.3693 0.628498
\(599\) 0.972638i 0.0397409i 0.999803 + 0.0198705i \(0.00632538\pi\)
−0.999803 + 0.0198705i \(0.993675\pi\)
\(600\) −37.2116 + 9.57302i −1.51916 + 0.390817i
\(601\) 8.87348i 0.361957i 0.983487 + 0.180978i \(0.0579264\pi\)
−0.983487 + 0.180978i \(0.942074\pi\)
\(602\) 18.8393i 0.767834i
\(603\) 43.9409i 1.78941i
\(604\) −15.3693 −0.625369
\(605\) −2.82292 22.3034i −0.114768 0.906764i
\(606\) 17.7470i 0.720921i
\(607\) 0.177081 0.00718749 0.00359375 0.999994i \(-0.498856\pi\)
0.00359375 + 0.999994i \(0.498856\pi\)
\(608\) 17.3205i 0.702439i
\(609\) −30.7386 + 36.5863i −1.24559 + 1.48255i
\(610\) 4.31534 0.546188i 0.174723 0.0221145i
\(611\) 51.8418i 2.09729i
\(612\) 7.12311 0.287934
\(613\) 14.4026i 0.581715i −0.956766 0.290858i \(-0.906059\pi\)
0.956766 0.290858i \(-0.0939406\pi\)
\(614\) 3.19224 0.128828
\(615\) 50.4233 6.38202i 2.03326 0.257348i
\(616\) 10.1080 0.407261
\(617\) 13.3693 0.538228 0.269114 0.963108i \(-0.413269\pi\)
0.269114 + 0.963108i \(0.413269\pi\)
\(618\) 3.89055i 0.156501i
\(619\) 10.9385i 0.439655i −0.975539 0.219828i \(-0.929451\pi\)
0.975539 0.219828i \(-0.0705495\pi\)
\(620\) 17.5270 2.21837i 0.703901 0.0890919i
\(621\) 4.98293i 0.199958i
\(622\) 0.426450i 0.0170991i
\(623\) −30.7386 −1.23152
\(624\) 11.3649i 0.454962i
\(625\) 21.8963 12.0645i 0.875852 0.482579i
\(626\) 2.49146i 0.0995789i
\(627\) 8.63068 0.344676
\(628\) −22.4924 −0.897545
\(629\) −14.2462 −0.568034
\(630\) −27.3693 + 3.46410i −1.09042 + 0.138013i
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 44.4871i 1.76960i
\(633\) 37.9854i 1.50978i
\(634\) 2.00000 0.0794301
\(635\) 0.630683 + 4.98293i 0.0250279 + 0.197741i
\(636\) 11.3649i 0.450649i
\(637\) 22.1837i 0.878950i
\(638\) 3.36932 4.01029i 0.133393 0.158769i
\(639\) −8.00000 −0.316475
\(640\) 0.842329 + 6.65511i 0.0332960 + 0.263066i
\(641\) 4.98293i 0.196814i −0.995146 0.0984069i \(-0.968625\pi\)
0.995146 0.0984069i \(-0.0313747\pi\)
\(642\) 36.5863i 1.44395i
\(643\) 35.0675i 1.38293i 0.722412 + 0.691463i \(0.243033\pi\)
−0.722412 + 0.691463i \(0.756967\pi\)
\(644\) 12.0000 0.472866
\(645\) 3.91146 + 30.9038i 0.154014 + 1.21684i
\(646\) 6.92820i 0.272587i
\(647\) 48.9239i 1.92340i −0.274111 0.961698i \(-0.588384\pi\)
0.274111 0.961698i \(-0.411616\pi\)
\(648\) 21.0000 0.824958
\(649\) 1.09238i 0.0428795i
\(650\) −5.52699 21.4842i −0.216786 0.842678i
\(651\) 70.1080 2.74775
\(652\) 5.43845 0.212986
\(653\) −28.7386 −1.12463 −0.562315 0.826923i \(-0.690089\pi\)
−0.562315 + 0.826923i \(0.690089\pi\)
\(654\) 14.5616 0.569402
\(655\) 31.6847 4.01029i 1.23802 0.156695i
\(656\) 8.87348i 0.346451i
\(657\) −25.3693 −0.989751
\(658\) 40.4768i 1.57795i
\(659\) 35.6137i 1.38731i 0.720307 + 0.693655i \(0.244001\pi\)
−0.720307 + 0.693655i \(0.755999\pi\)
\(660\) −5.52699 + 0.699544i −0.215138 + 0.0272297i
\(661\) −24.7386 −0.962221 −0.481111 0.876660i \(-0.659766\pi\)
−0.481111 + 0.876660i \(0.659766\pi\)
\(662\) 5.95557i 0.231470i
\(663\) 22.7299i 0.882756i
\(664\) 31.1769i 1.20990i
\(665\) 3.36932 + 26.6204i 0.130657 + 1.03230i
\(666\) 25.3693 0.983041
\(667\) 12.0000 14.2829i 0.464642 0.553034i
\(668\) 8.44703i 0.326825i
\(669\) 31.6034i 1.22186i
\(670\) 27.3693 3.46410i 1.05737 0.133830i
\(671\) 1.89205 0.0730418
\(672\) 44.3674i 1.71151i
\(673\) 29.1119i 1.12218i −0.827754 0.561091i \(-0.810382\pi\)
0.827754 0.561091i \(-0.189618\pi\)
\(674\) 3.75379 0.144591
\(675\) 6.96543 1.79192i 0.268100 0.0689710i
\(676\) 6.68466 0.257102
\(677\) −13.3693 −0.513825 −0.256912 0.966435i \(-0.582705\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(678\) −13.7538 −0.528211
\(679\) 28.5657i 1.09625i
\(680\) −1.68466 13.3102i −0.0646037 0.510424i
\(681\) 31.6034i 1.21104i
\(682\) −7.68466 −0.294261
\(683\) 16.2281i 0.620952i 0.950581 + 0.310476i \(0.100488\pi\)
−0.950581 + 0.310476i \(0.899512\pi\)
\(684\) 12.3376i 0.471739i
\(685\) −3.75379 29.6581i −0.143425 1.13318i
\(686\) 6.92820i 0.264520i
\(687\) 40.4768i 1.54429i
\(688\) −5.43845 −0.207339
\(689\) 19.6847 0.749926
\(690\) 19.6847 2.49146i 0.749382 0.0948484i
\(691\) 18.7386 0.712851 0.356426 0.934324i \(-0.383995\pi\)
0.356426 + 0.934324i \(0.383995\pi\)
\(692\) 10.8188i 0.411267i
\(693\) −12.0000 −0.455842
\(694\) 26.1940i 0.994310i
\(695\) −5.43845 42.9683i −0.206292 1.62988i
\(696\) 31.6847 + 26.6204i 1.20100 + 1.00905i
\(697\) 17.7470i 0.672214i
\(698\) 10.3153 0.390441
\(699\) 6.38202i 0.241390i
\(700\) −4.31534 16.7743i −0.163105 0.634010i
\(701\) −50.8078 −1.91898 −0.959491 0.281738i \(-0.909089\pi\)
−0.959491 + 0.281738i \(0.909089\pi\)
\(702\) 6.38202i 0.240874i
\(703\) 24.6752i 0.930641i
\(704\) 6.80847i 0.256604i
\(705\) −8.40388 66.3977i −0.316509 2.50068i
\(706\) 17.7470i 0.667916i
\(707\) −24.0000 −0.902613
\(708\) −2.87689 −0.108120
\(709\) −6.31534 −0.237178 −0.118589 0.992943i \(-0.537837\pi\)
−0.118589 + 0.992943i \(0.537837\pi\)
\(710\) 0.630683 + 4.98293i 0.0236691 + 0.187006i
\(711\) 52.8144i 1.98070i
\(712\) 26.6204i 0.997643i
\(713\) −27.3693 −1.02499
\(714\) 17.7470i 0.664163i
\(715\) −1.21165 9.57302i −0.0453130 0.358011i
\(716\) 12.0000 0.448461
\(717\) −33.6155 −1.25539
\(718\) 21.7572i 0.811973i
\(719\) 26.2462 0.978819 0.489409 0.872054i \(-0.337212\pi\)
0.489409 + 0.872054i \(0.337212\pi\)
\(720\) 1.00000 + 7.90084i 0.0372678 + 0.294447i
\(721\) 5.26137 0.195944
\(722\) 7.00000 0.260513
\(723\) 4.31534 0.160489
\(724\) 13.6847 0.508586
\(725\) −24.2808 11.6380i −0.901765 0.432226i
\(726\) −25.7538 −0.955813
\(727\) −4.49242 −0.166615 −0.0833074 0.996524i \(-0.526548\pi\)
−0.0833074 + 0.996524i \(0.526548\pi\)
\(728\) −46.1080 −1.70887
\(729\) −35.9848 −1.33277
\(730\) 2.00000 + 15.8017i 0.0740233 + 0.584847i
\(731\) −10.8769 −0.402296
\(732\) 4.98293i 0.184174i
\(733\) −16.8769 −0.623362 −0.311681 0.950187i \(-0.600892\pi\)
−0.311681 + 0.950187i \(0.600892\pi\)
\(734\) −28.4924 −1.05167
\(735\) −3.59612 28.4124i −0.132645 1.04801i
\(736\) 17.3205i 0.638442i
\(737\) 12.0000 0.442026
\(738\) 31.6034i 1.16334i
\(739\) 27.5931i 1.01503i −0.861644 0.507514i \(-0.830565\pi\)
0.861644 0.507514i \(-0.169435\pi\)
\(740\) 2.00000 + 15.8017i 0.0735215 + 0.580881i
\(741\) −39.3693 −1.44627
\(742\) −15.3693 −0.564225
\(743\) −32.0000 −1.17397 −0.586983 0.809599i \(-0.699684\pi\)
−0.586983 + 0.809599i \(0.699684\pi\)
\(744\) 60.7153i 2.22593i
\(745\) 3.84233 + 30.3576i 0.140772 + 1.11222i
\(746\) 36.0401i 1.31952i
\(747\) 37.0127i 1.35423i
\(748\) 1.94528i 0.0711263i
\(749\) −49.4773 −1.80786
\(750\) −10.5616 26.6204i −0.385653 0.972041i
\(751\) 6.50175i 0.237252i −0.992939 0.118626i \(-0.962151\pi\)
0.992939 0.118626i \(-0.0378490\pi\)
\(752\) 11.6847 0.426096
\(753\) 42.9683i 1.56585i
\(754\) −15.3693 + 18.2931i −0.559718 + 0.666197i
\(755\) −4.31534 34.0948i −0.157051 1.24084i
\(756\) 4.98293i 0.181227i
\(757\) 15.7538 0.572581 0.286291 0.958143i \(-0.407578\pi\)
0.286291 + 0.958143i \(0.407578\pi\)
\(758\) 0.426450i 0.0154894i
\(759\) 8.63068 0.313274
\(760\) 23.0540 2.91791i 0.836256 0.105844i
\(761\) −1.50758 −0.0546496 −0.0273248 0.999627i \(-0.508699\pi\)
−0.0273248 + 0.999627i \(0.508699\pi\)
\(762\) 5.75379 0.208438
\(763\) 19.6922i 0.712907i
\(764\) 3.46410i 0.125327i
\(765\) 2.00000 + 15.8017i 0.0723102 + 0.571311i
\(766\) 17.3205i 0.625815i
\(767\) 4.98293i 0.179923i
\(768\) 43.5464 1.57135
\(769\) 32.6957i 1.17904i −0.807754 0.589519i \(-0.799317\pi\)
0.807754 0.589519i \(-0.200683\pi\)
\(770\) 0.946025 + 7.47439i 0.0340924 + 0.269358i
\(771\) 29.1119i 1.04844i
\(772\) −8.24621 −0.296788
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 19.3693 0.696216
\(775\) 9.84233 + 38.2585i 0.353547 + 1.37428i
\(776\) −24.7386 −0.888065
\(777\) 63.2067i 2.26753i
\(778\) 10.8188i 0.387871i
\(779\) −30.7386 −1.10133
\(780\) 25.2116 3.19101i 0.902722 0.114256i
\(781\) 2.18475i 0.0781765i
\(782\) 6.92820i 0.247752i
\(783\) −5.93087 4.98293i −0.211952 0.178075i
\(784\) 5.00000 0.178571
\(785\) −6.31534 49.8965i −0.225404 1.78088i
\(786\) 36.5863i 1.30499i
\(787\) 12.3376i 0.439787i 0.975524 + 0.219894i \(0.0705710\pi\)
−0.975524 + 0.219894i \(0.929429\pi\)
\(788\) 10.8188i 0.385402i
\(789\) −9.43845 −0.336018
\(790\) 32.8963 4.16365i 1.17040 0.148136i
\(791\) 18.5999i 0.661335i
\(792\) 10.3923i 0.369274i
\(793\) −8.63068 −0.306485
\(794\) 0.546188i 0.0193835i
\(795\) 25.2116 3.19101i 0.894165 0.113173i
\(796\) 15.3693 0.544751
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 30.7386 1.08814
\(799\) 23.3693 0.826747
\(800\) −24.2116 + 6.22866i −0.856011 + 0.220216i
\(801\) 31.6034i 1.11665i
\(802\) 15.9309 0.562539
\(803\) 6.92820i 0.244491i
\(804\) 31.6034i 1.11456i
\(805\) 3.36932 + 26.6204i 0.118753 + 0.938247i
\(806\) 35.0540 1.23472
\(807\) 40.4768i 1.42485i
\(808\) 20.7846i 0.731200i
\(809\) 31.6034i 1.11112i 0.831478 + 0.555558i \(0.187495\pi\)
−0.831478 + 0.555558i \(0.812505\pi\)
\(810\) 1.96543 + 15.5286i 0.0690583 + 0.545619i
\(811\) 4.63068 0.162605 0.0813026 0.996689i \(-0.474092\pi\)
0.0813026 + 0.996689i \(0.474092\pi\)
\(812\) −12.0000 + 14.2829i −0.421117 + 0.501230i
\(813\) 37.9854i 1.33221i
\(814\) 6.92820i 0.242833i
\(815\) 1.52699 + 12.0645i 0.0534880 + 0.422601i
\(816\) −5.12311 −0.179345
\(817\) 18.8393i 0.659105i
\(818\) 3.89055i 0.136030i
\(819\) 54.7386 1.91272
\(820\) 19.6847 2.49146i 0.687418 0.0870057i
\(821\) 47.7926 1.66797 0.833987 0.551784i \(-0.186053\pi\)
0.833987 + 0.551784i \(0.186053\pi\)
\(822\) −34.2462 −1.19447
\(823\) −21.7538 −0.758289 −0.379145 0.925337i \(-0.623782\pi\)
−0.379145 + 0.925337i \(0.623782\pi\)
\(824\) 4.55648i 0.158732i
\(825\) −3.10370 12.0645i −0.108057 0.420032i
\(826\) 3.89055i 0.135370i
\(827\) −15.0540 −0.523478 −0.261739 0.965139i \(-0.584296\pi\)
−0.261739 + 0.965139i \(0.584296\pi\)
\(828\) 12.3376i 0.428761i
\(829\) 23.5828i 0.819064i −0.912296 0.409532i \(-0.865692\pi\)
0.912296 0.409532i \(-0.134308\pi\)
\(830\) −23.0540 + 2.91791i −0.800215 + 0.101282i
\(831\) 27.7128i 0.961347i
\(832\) 31.0572i 1.07671i
\(833\) 10.0000 0.346479
\(834\) −49.6155 −1.71805
\(835\) −18.7386 + 2.37173i −0.648477 + 0.0820770i
\(836\) 3.36932 0.116530
\(837\) 11.3649i 0.392830i
\(838\) 14.2462 0.492127
\(839\) 18.7196i 0.646272i 0.946352 + 0.323136i \(0.104737\pi\)
−0.946352 + 0.323136i \(0.895263\pi\)
\(840\) −59.0540 + 7.47439i −2.03756 + 0.257891i
\(841\) 5.00000 + 28.5657i 0.172414 + 0.985025i
\(842\) 37.4392i 1.29024i
\(843\) −35.0540 −1.20732
\(844\) 14.8290i 0.510437i
\(845\) 1.87689 + 14.8290i 0.0645671 + 0.510135i
\(846\) −41.6155 −1.43077
\(847\) 34.8280i 1.19670i
\(848\) 4.43674i 0.152358i
\(849\) 36.5863i 1.25564i
\(850\) 9.68466 2.49146i 0.332181 0.0854565i
\(851\) 24.6752i 0.845854i
\(852\) −5.75379 −0.197122
\(853\) 37.8617 1.29636 0.648181 0.761487i \(-0.275530\pi\)
0.648181 + 0.761487i \(0.275530\pi\)
\(854\) 6.73863 0.230591
\(855\) −27.3693 + 3.46410i −0.936011 + 0.118470i
\(856\) 42.8486i 1.46453i
\(857\) 20.2384i 0.691331i 0.938358 + 0.345666i \(0.112347\pi\)
−0.938358 + 0.345666i \(0.887653\pi\)
\(858\) −11.0540 −0.377376
\(859\) 52.2682i 1.78337i 0.452657 + 0.891685i \(0.350476\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(860\) 1.52699 + 12.0645i 0.0520698 + 0.411396i
\(861\) 78.7386 2.68341
\(862\) 8.63068 0.293962
\(863\) 15.3752i 0.523379i 0.965152 + 0.261689i \(0.0842796\pi\)
−0.965152 + 0.261689i \(0.915720\pi\)
\(864\) −7.19224 −0.244685
\(865\) 24.0000 3.03765i 0.816024 0.103283i
\(866\) 16.8769 0.573500
\(867\) 33.3002 1.13093
\(868\) 27.3693 0.928975
\(869\) 14.4233 0.489277
\(870\) −16.7192 + 25.9209i −0.566835 + 0.878801i
\(871\) −54.7386 −1.85475
\(872\) 17.0540 0.577520
\(873\) 29.3693 0.994001
\(874\) −12.0000 −0.405906
\(875\) 36.0000 14.2829i 1.21702 0.482849i
\(876\) −18.2462 −0.616482
\(877\) 41.0230i 1.38525i −0.721298 0.692625i \(-0.756454\pi\)
0.721298 0.692625i \(-0.243546\pi\)
\(878\) 15.3693 0.518689
\(879\) −3.50758 −0.118308
\(880\) 2.15767 0.273094i 0.0727351 0.00920599i
\(881\) 45.4598i 1.53158i 0.643092 + 0.765789i \(0.277651\pi\)
−0.643092 + 0.765789i \(0.722349\pi\)
\(882\) −17.8078 −0.599619
\(883\) 35.9204i 1.20882i −0.796675 0.604408i \(-0.793410\pi\)
0.796675 0.604408i \(-0.206590\pi\)
\(884\) 8.87348i 0.298447i
\(885\) −0.807764 6.38202i −0.0271527 0.214529i
\(886\) −4.00000 −0.134383
\(887\) −3.68466 −0.123719 −0.0618594 0.998085i \(-0.519703\pi\)
−0.0618594 + 0.998085i \(0.519703\pi\)
\(888\) 54.7386 1.83691
\(889\) 7.78110i 0.260970i
\(890\) −19.6847 + 2.49146i −0.659831 + 0.0835141i
\(891\) 6.80847i 0.228092i
\(892\) 12.3376i 0.413093i
\(893\) 40.4768i 1.35451i
\(894\) 35.0540 1.17238
\(895\) 3.36932 + 26.6204i 0.112624 + 0.889823i
\(896\) 10.3923i 0.347183i
\(897\) −39.3693 −1.31450
\(898\) 17.7470i 0.592224i
\(899\) 27.3693 32.5760i 0.912818 1.08647i
\(900\) 17.2462 4.43674i 0.574874 0.147891i
\(901\) 8.87348i 0.295618i
\(902\) −8.63068 −0.287370
\(903\) 48.2579i 1.60592i
\(904\) −16.1080 −0.535742
\(905\) 3.84233 + 30.3576i 0.127723 + 1.00912i
\(906\) −39.3693 −1.30796
\(907\) −40.4924 −1.34453 −0.672264 0.740311i \(-0.734678\pi\)
−0.672264 + 0.740311i \(0.734678\pi\)
\(908\) 12.3376i 0.409437i
\(909\) 24.6752i 0.818423i
\(910\) −4.31534 34.0948i −0.143052 1.13023i
\(911\) 9.84612i 0.326216i 0.986608 + 0.163108i \(0.0521520\pi\)
−0.986608 + 0.163108i \(0.947848\pi\)
\(912\) 8.87348i 0.293830i
\(913\) −10.1080 −0.334524
\(914\) 3.89055i 0.128688i
\(915\) −11.0540 + 1.39909i −0.365433 + 0.0462524i
\(916\) 15.8017i 0.522102i
\(917\) 49.4773 1.63388
\(918\) 2.87689 0.0949517
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 23.0540 2.91791i 0.760067 0.0962008i
\(921\) −8.17708 −0.269444
\(922\) 34.6410i 1.14084i
\(923\) 9.96585i 0.328030i
\(924\) −8.63068 −0.283929
\(925\) −34.4924 + 8.87348i −1.13410 + 0.291758i
\(926\) 7.35465i 0.241689i
\(927\) 5.40938i 0.177667i
\(928\) 20.6155 + 17.3205i 0.676738 + 0.568574i
\(929\) 48.7386 1.59906 0.799531 0.600624i \(-0.205081\pi\)
0.799531 + 0.600624i \(0.205081\pi\)
\(930\) 44.8963 5.68247i 1.47221 0.186336i
\(931\) 17.3205i 0.567657i
\(932\) 2.49146i 0.0816106i
\(933\) 1.09238i 0.0357628i
\(934\) −8.31534 −0.272086
\(935\) 4.31534 0.546188i 0.141127 0.0178622i
\(936\) 47.4050i 1.54948i
\(937\) 31.6034i 1.03244i 0.856457 + 0.516218i \(0.172661\pi\)
−0.856457 + 0.516218i \(0.827339\pi\)
\(938\) 42.7386 1.39547
\(939\) 6.38202i 0.208269i
\(940\) −3.28078 25.9209i −0.107007 0.845446i
\(941\) 32.4233 1.05697 0.528485 0.848943i \(-0.322760\pi\)
0.528485 + 0.848943i \(0.322760\pi\)
\(942\) −57.6155 −1.87722
\(943\) −30.7386 −1.00099
\(944\) 1.12311 0.0365540
\(945\) 11.0540 1.39909i 0.359586 0.0455123i
\(946\) 5.28964i 0.171981i
\(947\) 23.6847 0.769648 0.384824 0.922990i \(-0.374262\pi\)
0.384824 + 0.922990i \(0.374262\pi\)
\(948\) 37.9854i 1.23371i
\(949\) 31.6034i 1.02589i
\(950\) 4.31534 + 16.7743i 0.140008 + 0.544231i
\(951\) −5.12311 −0.166128
\(952\) 20.7846i 0.673633i
\(953\) 10.2726i 0.332761i −0.986062 0.166381i \(-0.946792\pi\)
0.986062 0.166381i \(-0.0532080\pi\)
\(954\) 15.8017i 0.511598i
\(955\) 7.68466 0.972638i 0.248670 0.0314738i
\(956\) −13.1231 −0.424432
\(957\) −8.63068 + 10.2726i −0.278990 + 0.332065i
\(958\) 2.91791i 0.0942735i
\(959\) 46.3127i 1.49551i
\(960\) 5.03457 + 39.7773i 0.162490 + 1.28381i
\(961\) −31.4233 −1.01365
\(962\) 31.6034i 1.01893i
\(963\) 50.8691i 1.63924i
\(964\) 1.68466 0.0542592
\(965\) −2.31534 18.2931i −0.0745335 0.588877i
\(966\) 30.7386 0.988999
\(967\) 45.9309 1.47704 0.738519 0.674233i \(-0.235526\pi\)
0.738519 + 0.674233i \(0.235526\pi\)
\(968\) −30.1619 −0.969441
\(969\) 17.7470i 0.570114i
\(970\) −2.31534 18.2931i −0.0743411 0.587358i
\(971\) 45.8862i 1.47256i 0.676678 + 0.736279i \(0.263419\pi\)
−0.676678 + 0.736279i \(0.736581\pi\)
\(972\) −22.2462 −0.713548
\(973\) 67.0973i 2.15104i
\(974\) 32.0298i 1.02630i
\(975\) 14.1577 + 55.0328i 0.453408 + 1.76246i
\(976\) 1.94528i 0.0622668i
\(977\) 6.38202i 0.204179i −0.994775 0.102089i \(-0.967447\pi\)
0.994775 0.102089i \(-0.0325528\pi\)
\(978\) 13.9309 0.445460
\(979\) −8.63068 −0.275838
\(980\) −1.40388 11.0918i −0.0448454 0.354316i
\(981\) −20.2462 −0.646412
\(982\) 29.5384i 0.942607i
\(983\) 27.0540 0.862888 0.431444 0.902140i \(-0.358004\pi\)
0.431444 + 0.902140i \(0.358004\pi\)
\(984\) 68.1897i 2.17381i
\(985\) −24.0000 + 3.03765i −0.764704 + 0.0967876i
\(986\) −8.24621 6.92820i −0.262613 0.220639i
\(987\) 103.684i 3.30028i
\(988\) −15.3693 −0.488963
\(989\) 18.8393i 0.599056i
\(990\) −7.68466 + 0.972638i −0.244234 + 0.0309125i
\(991\) −30.7386 −0.976445 −0.488222 0.872719i \(-0.662355\pi\)
−0.488222 + 0.872719i \(0.662355\pi\)
\(992\) 39.5042i 1.25426i
\(993\) 15.2555i 0.484118i
\(994\) 7.78110i 0.246802i
\(995\) 4.31534 + 34.0948i 0.136806 + 1.08088i
\(996\) 26.6204i 0.843501i
\(997\) 59.6155 1.88804 0.944021 0.329884i \(-0.107010\pi\)
0.944021 + 0.329884i \(0.107010\pi\)
\(998\) −4.63068 −0.146582
\(999\) −10.2462 −0.324176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.2.d.c.144.1 yes 4
3.2 odd 2 1305.2.f.e.289.4 4
4.3 odd 2 2320.2.j.c.289.3 4
5.2 odd 4 725.2.c.f.376.8 8
5.3 odd 4 725.2.c.f.376.1 8
5.4 even 2 145.2.d.a.144.4 yes 4
15.14 odd 2 1305.2.f.i.289.3 4
20.19 odd 2 2320.2.j.a.289.2 4
29.28 even 2 145.2.d.a.144.3 4
87.86 odd 2 1305.2.f.i.289.4 4
116.115 odd 2 2320.2.j.a.289.1 4
145.28 odd 4 725.2.c.f.376.7 8
145.57 odd 4 725.2.c.f.376.2 8
145.144 even 2 inner 145.2.d.c.144.2 yes 4
435.434 odd 2 1305.2.f.e.289.3 4
580.579 odd 2 2320.2.j.c.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.a.144.3 4 29.28 even 2
145.2.d.a.144.4 yes 4 5.4 even 2
145.2.d.c.144.1 yes 4 1.1 even 1 trivial
145.2.d.c.144.2 yes 4 145.144 even 2 inner
725.2.c.f.376.1 8 5.3 odd 4
725.2.c.f.376.2 8 145.57 odd 4
725.2.c.f.376.7 8 145.28 odd 4
725.2.c.f.376.8 8 5.2 odd 4
1305.2.f.e.289.3 4 435.434 odd 2
1305.2.f.e.289.4 4 3.2 odd 2
1305.2.f.i.289.3 4 15.14 odd 2
1305.2.f.i.289.4 4 87.86 odd 2
2320.2.j.a.289.1 4 116.115 odd 2
2320.2.j.a.289.2 4 20.19 odd 2
2320.2.j.c.289.3 4 4.3 odd 2
2320.2.j.c.289.4 4 580.579 odd 2