Properties

Label 725.2.c.f.376.7
Level $725$
Weight $2$
Character 725.376
Analytic conductor $5.789$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(376,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.376"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,8,0,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 376.7
Root \(-2.21837 - 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 725.376
Dual form 725.2.c.f.376.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.56155i q^{3} +1.00000 q^{4} -2.56155 q^{6} -3.46410 q^{7} +3.00000i q^{8} -3.56155 q^{9} +0.972638i q^{11} +2.56155i q^{12} -4.43674 q^{13} -3.46410i q^{14} -1.00000 q^{16} -2.00000i q^{17} -3.56155i q^{18} -3.46410i q^{19} -8.87348i q^{21} -0.972638 q^{22} +3.46410 q^{23} -7.68466 q^{24} -4.43674i q^{26} -1.43845i q^{27} -3.46410 q^{28} +(-4.12311 + 3.46410i) q^{29} +7.90084i q^{31} +5.00000i q^{32} -2.49146 q^{33} +2.00000 q^{34} -3.56155 q^{36} +7.12311i q^{37} +3.46410 q^{38} -11.3649i q^{39} +8.87348i q^{41} +8.87348 q^{42} -5.43845i q^{43} +0.972638i q^{44} +3.46410i q^{46} -11.6847i q^{47} -2.56155i q^{48} +5.00000 q^{49} +5.12311 q^{51} -4.43674 q^{52} +4.43674 q^{53} +1.43845 q^{54} -10.3923i q^{56} +8.87348 q^{57} +(-3.46410 - 4.12311i) q^{58} +1.12311 q^{59} -1.94528i q^{61} -7.90084 q^{62} +12.3376 q^{63} -7.00000 q^{64} -2.49146i q^{66} +12.3376 q^{67} -2.00000i q^{68} +8.87348i q^{69} -2.24621 q^{71} -10.6847i q^{72} +7.12311i q^{73} -7.12311 q^{74} -3.46410i q^{76} -3.36932i q^{77} +11.3649 q^{78} +14.8290i q^{79} -7.00000 q^{81} -8.87348 q^{82} +10.3923 q^{83} -8.87348i q^{84} +5.43845 q^{86} +(-8.87348 - 10.5616i) q^{87} -2.91791 q^{88} -8.87348i q^{89} +15.3693 q^{91} +3.46410 q^{92} -20.2384 q^{93} +11.6847 q^{94} -12.8078 q^{96} +8.24621i q^{97} +5.00000i q^{98} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 4 q^{6} - 12 q^{9} - 8 q^{16} - 12 q^{24} + 16 q^{34} - 12 q^{36} + 40 q^{49} + 8 q^{51} + 28 q^{54} - 24 q^{59} - 56 q^{64} + 48 q^{71} - 24 q^{74} - 56 q^{81} + 60 q^{86} + 24 q^{91} + 44 q^{94}+ \cdots - 20 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 2.56155i 1.47891i 0.673204 + 0.739457i \(0.264917\pi\)
−0.673204 + 0.739457i \(0.735083\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.56155 −1.04575
\(7\) −3.46410 −1.30931 −0.654654 0.755929i \(-0.727186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) 0.972638i 0.293261i 0.989191 + 0.146631i \(0.0468429\pi\)
−0.989191 + 0.146631i \(0.953157\pi\)
\(12\) 2.56155i 0.739457i
\(13\) −4.43674 −1.23053 −0.615265 0.788320i \(-0.710951\pi\)
−0.615265 + 0.788320i \(0.710951\pi\)
\(14\) 3.46410i 0.925820i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 3.56155i 0.839466i
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 8.87348i 1.93635i
\(22\) −0.972638 −0.207367
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) −7.68466 −1.56862
\(25\) 0 0
\(26\) 4.43674i 0.870116i
\(27\) 1.43845i 0.276829i
\(28\) −3.46410 −0.654654
\(29\) −4.12311 + 3.46410i −0.765641 + 0.643268i
\(30\) 0 0
\(31\) 7.90084i 1.41903i 0.704689 + 0.709516i \(0.251087\pi\)
−0.704689 + 0.709516i \(0.748913\pi\)
\(32\) 5.00000i 0.883883i
\(33\) −2.49146 −0.433708
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −3.56155 −0.593592
\(37\) 7.12311i 1.17103i 0.810661 + 0.585516i \(0.199108\pi\)
−0.810661 + 0.585516i \(0.800892\pi\)
\(38\) 3.46410 0.561951
\(39\) 11.3649i 1.81985i
\(40\) 0 0
\(41\) 8.87348i 1.38580i 0.721031 + 0.692902i \(0.243668\pi\)
−0.721031 + 0.692902i \(0.756332\pi\)
\(42\) 8.87348 1.36921
\(43\) 5.43845i 0.829355i −0.909968 0.414678i \(-0.863894\pi\)
0.909968 0.414678i \(-0.136106\pi\)
\(44\) 0.972638i 0.146631i
\(45\) 0 0
\(46\) 3.46410i 0.510754i
\(47\) 11.6847i 1.70438i −0.523230 0.852191i \(-0.675273\pi\)
0.523230 0.852191i \(-0.324727\pi\)
\(48\) 2.56155i 0.369728i
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 5.12311 0.717378
\(52\) −4.43674 −0.615265
\(53\) 4.43674 0.609433 0.304717 0.952443i \(-0.401438\pi\)
0.304717 + 0.952443i \(0.401438\pi\)
\(54\) 1.43845 0.195748
\(55\) 0 0
\(56\) 10.3923i 1.38873i
\(57\) 8.87348 1.17532
\(58\) −3.46410 4.12311i −0.454859 0.541390i
\(59\) 1.12311 0.146216 0.0731079 0.997324i \(-0.476708\pi\)
0.0731079 + 0.997324i \(0.476708\pi\)
\(60\) 0 0
\(61\) 1.94528i 0.249067i −0.992215 0.124534i \(-0.960257\pi\)
0.992215 0.124534i \(-0.0397434\pi\)
\(62\) −7.90084 −1.00341
\(63\) 12.3376 1.55439
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 2.49146i 0.306678i
\(67\) 12.3376 1.50728 0.753638 0.657290i \(-0.228297\pi\)
0.753638 + 0.657290i \(0.228297\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 8.87348i 1.06824i
\(70\) 0 0
\(71\) −2.24621 −0.266576 −0.133288 0.991077i \(-0.542554\pi\)
−0.133288 + 0.991077i \(0.542554\pi\)
\(72\) 10.6847i 1.25920i
\(73\) 7.12311i 0.833696i 0.908976 + 0.416848i \(0.136865\pi\)
−0.908976 + 0.416848i \(0.863135\pi\)
\(74\) −7.12311 −0.828044
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 3.36932i 0.383969i
\(78\) 11.3649 1.28683
\(79\) 14.8290i 1.66840i 0.551464 + 0.834199i \(0.314070\pi\)
−0.551464 + 0.834199i \(0.685930\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) −8.87348 −0.979912
\(83\) 10.3923 1.14070 0.570352 0.821401i \(-0.306807\pi\)
0.570352 + 0.821401i \(0.306807\pi\)
\(84\) 8.87348i 0.968176i
\(85\) 0 0
\(86\) 5.43845 0.586443
\(87\) −8.87348 10.5616i −0.951337 1.13232i
\(88\) −2.91791 −0.311051
\(89\) 8.87348i 0.940587i −0.882510 0.470293i \(-0.844148\pi\)
0.882510 0.470293i \(-0.155852\pi\)
\(90\) 0 0
\(91\) 15.3693 1.61114
\(92\) 3.46410 0.361158
\(93\) −20.2384 −2.09863
\(94\) 11.6847 1.20518
\(95\) 0 0
\(96\) −12.8078 −1.30719
\(97\) 8.24621i 0.837276i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(98\) 5.00000i 0.505076i
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 6.92820i 0.689382i 0.938716 + 0.344691i \(0.112016\pi\)
−0.938716 + 0.344691i \(0.887984\pi\)
\(102\) 5.12311i 0.507263i
\(103\) −1.51883 −0.149654 −0.0748272 0.997197i \(-0.523841\pi\)
−0.0748272 + 0.997197i \(0.523841\pi\)
\(104\) 13.3102i 1.30517i
\(105\) 0 0
\(106\) 4.43674i 0.430934i
\(107\) −14.2829 −1.38078 −0.690388 0.723439i \(-0.742560\pi\)
−0.690388 + 0.723439i \(0.742560\pi\)
\(108\) 1.43845i 0.138415i
\(109\) 5.68466 0.544492 0.272246 0.962228i \(-0.412234\pi\)
0.272246 + 0.962228i \(0.412234\pi\)
\(110\) 0 0
\(111\) −18.2462 −1.73185
\(112\) 3.46410 0.327327
\(113\) 5.36932i 0.505103i −0.967583 0.252551i \(-0.918730\pi\)
0.967583 0.252551i \(-0.0812697\pi\)
\(114\) 8.87348i 0.831077i
\(115\) 0 0
\(116\) −4.12311 + 3.46410i −0.382821 + 0.321634i
\(117\) 15.8017 1.46087
\(118\) 1.12311i 0.103390i
\(119\) 6.92820i 0.635107i
\(120\) 0 0
\(121\) 10.0540 0.913998
\(122\) 1.94528 0.176117
\(123\) −22.7299 −2.04948
\(124\) 7.90084i 0.709516i
\(125\) 0 0
\(126\) 12.3376i 1.09912i
\(127\) 2.24621i 0.199319i −0.995022 0.0996595i \(-0.968225\pi\)
0.995022 0.0996595i \(-0.0317754\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 13.9309 1.22654
\(130\) 0 0
\(131\) 14.2829i 1.24790i −0.781465 0.623949i \(-0.785527\pi\)
0.781465 0.623949i \(-0.214473\pi\)
\(132\) −2.49146 −0.216854
\(133\) 12.0000i 1.04053i
\(134\) 12.3376i 1.06580i
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 13.3693i 1.14222i 0.820874 + 0.571109i \(0.193487\pi\)
−0.820874 + 0.571109i \(0.806513\pi\)
\(138\) −8.87348 −0.755361
\(139\) −19.3693 −1.64288 −0.821442 0.570292i \(-0.806830\pi\)
−0.821442 + 0.570292i \(0.806830\pi\)
\(140\) 0 0
\(141\) 29.9309 2.52063
\(142\) 2.24621i 0.188498i
\(143\) 4.31534i 0.360867i
\(144\) 3.56155 0.296796
\(145\) 0 0
\(146\) −7.12311 −0.589512
\(147\) 12.8078i 1.05637i
\(148\) 7.12311i 0.585516i
\(149\) 13.6847 1.12109 0.560545 0.828124i \(-0.310592\pi\)
0.560545 + 0.828124i \(0.310592\pi\)
\(150\) 0 0
\(151\) 15.3693 1.25074 0.625369 0.780329i \(-0.284949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(152\) 10.3923 0.842927
\(153\) 7.12311i 0.575869i
\(154\) 3.36932 0.271507
\(155\) 0 0
\(156\) 11.3649i 0.909924i
\(157\) 22.4924i 1.79509i 0.440922 + 0.897545i \(0.354651\pi\)
−0.440922 + 0.897545i \(0.645349\pi\)
\(158\) −14.8290 −1.17974
\(159\) 11.3649i 0.901299i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 7.00000i 0.549972i
\(163\) 5.43845i 0.425972i 0.977055 + 0.212986i \(0.0683189\pi\)
−0.977055 + 0.212986i \(0.931681\pi\)
\(164\) 8.87348i 0.692902i
\(165\) 0 0
\(166\) 10.3923i 0.806599i
\(167\) −8.44703 −0.653651 −0.326825 0.945085i \(-0.605979\pi\)
−0.326825 + 0.945085i \(0.605979\pi\)
\(168\) 26.6204 2.05381
\(169\) 6.68466 0.514204
\(170\) 0 0
\(171\) 12.3376i 0.943478i
\(172\) 5.43845i 0.414678i
\(173\) −10.8188 −0.822535 −0.411267 0.911515i \(-0.634914\pi\)
−0.411267 + 0.911515i \(0.634914\pi\)
\(174\) 10.5616 8.87348i 0.800669 0.672697i
\(175\) 0 0
\(176\) 0.972638i 0.0733153i
\(177\) 2.87689i 0.216241i
\(178\) 8.87348 0.665095
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −13.6847 −1.01717 −0.508586 0.861011i \(-0.669832\pi\)
−0.508586 + 0.861011i \(0.669832\pi\)
\(182\) 15.3693i 1.13925i
\(183\) 4.98293 0.368349
\(184\) 10.3923i 0.766131i
\(185\) 0 0
\(186\) 20.2384i 1.48395i
\(187\) 1.94528 0.142253
\(188\) 11.6847i 0.852191i
\(189\) 4.98293i 0.362455i
\(190\) 0 0
\(191\) 3.46410i 0.250654i −0.992116 0.125327i \(-0.960002\pi\)
0.992116 0.125327i \(-0.0399979\pi\)
\(192\) 17.9309i 1.29405i
\(193\) 8.24621i 0.593575i −0.954944 0.296788i \(-0.904085\pi\)
0.954944 0.296788i \(-0.0959153\pi\)
\(194\) −8.24621 −0.592043
\(195\) 0 0
\(196\) 5.00000 0.357143
\(197\) −10.8188 −0.770804 −0.385402 0.922749i \(-0.625937\pi\)
−0.385402 + 0.922749i \(0.625937\pi\)
\(198\) 3.46410 0.246183
\(199\) 15.3693 1.08950 0.544751 0.838598i \(-0.316624\pi\)
0.544751 + 0.838598i \(0.316624\pi\)
\(200\) 0 0
\(201\) 31.6034i 2.22913i
\(202\) −6.92820 −0.487467
\(203\) 14.2829 12.0000i 1.00246 0.842235i
\(204\) 5.12311 0.358689
\(205\) 0 0
\(206\) 1.51883i 0.105822i
\(207\) −12.3376 −0.857521
\(208\) 4.43674 0.307633
\(209\) 3.36932 0.233061
\(210\) 0 0
\(211\) 14.8290i 1.02087i 0.859915 + 0.510437i \(0.170516\pi\)
−0.859915 + 0.510437i \(0.829484\pi\)
\(212\) 4.43674 0.304717
\(213\) 5.75379i 0.394243i
\(214\) 14.2829i 0.976356i
\(215\) 0 0
\(216\) 4.31534 0.293622
\(217\) 27.3693i 1.85795i
\(218\) 5.68466i 0.385014i
\(219\) −18.2462 −1.23296
\(220\) 0 0
\(221\) 8.87348i 0.596895i
\(222\) 18.2462i 1.22461i
\(223\) 12.3376 0.826186 0.413093 0.910689i \(-0.364449\pi\)
0.413093 + 0.910689i \(0.364449\pi\)
\(224\) 17.3205i 1.15728i
\(225\) 0 0
\(226\) 5.36932 0.357162
\(227\) 12.3376 0.818874 0.409437 0.912338i \(-0.365725\pi\)
0.409437 + 0.912338i \(0.365725\pi\)
\(228\) 8.87348 0.587661
\(229\) 15.8017i 1.04420i 0.852883 + 0.522102i \(0.174852\pi\)
−0.852883 + 0.522102i \(0.825148\pi\)
\(230\) 0 0
\(231\) 8.63068 0.567857
\(232\) −10.3923 12.3693i −0.682288 0.812085i
\(233\) 2.49146 0.163221 0.0816106 0.996664i \(-0.473994\pi\)
0.0816106 + 0.996664i \(0.473994\pi\)
\(234\) 15.8017i 1.03299i
\(235\) 0 0
\(236\) 1.12311 0.0731079
\(237\) −37.9854 −2.46742
\(238\) −6.92820 −0.449089
\(239\) −13.1231 −0.848863 −0.424432 0.905460i \(-0.639526\pi\)
−0.424432 + 0.905460i \(0.639526\pi\)
\(240\) 0 0
\(241\) −1.68466 −0.108518 −0.0542592 0.998527i \(-0.517280\pi\)
−0.0542592 + 0.998527i \(0.517280\pi\)
\(242\) 10.0540i 0.646294i
\(243\) 22.2462i 1.42710i
\(244\) 1.94528i 0.124534i
\(245\) 0 0
\(246\) 22.7299i 1.44920i
\(247\) 15.3693i 0.977926i
\(248\) −23.7025 −1.50511
\(249\) 26.6204i 1.68700i
\(250\) 0 0
\(251\) 16.7743i 1.05879i −0.848377 0.529393i \(-0.822420\pi\)
0.848377 0.529393i \(-0.177580\pi\)
\(252\) 12.3376 0.777195
\(253\) 3.36932i 0.211827i
\(254\) 2.24621 0.140940
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 11.3649 0.708926 0.354463 0.935070i \(-0.384664\pi\)
0.354463 + 0.935070i \(0.384664\pi\)
\(258\) 13.9309i 0.867298i
\(259\) 24.6752i 1.53324i
\(260\) 0 0
\(261\) 14.6847 12.3376i 0.908958 0.763677i
\(262\) 14.2829 0.882398
\(263\) 3.68466i 0.227206i −0.993526 0.113603i \(-0.963761\pi\)
0.993526 0.113603i \(-0.0362392\pi\)
\(264\) 7.47439i 0.460017i
\(265\) 0 0
\(266\) −12.0000 −0.735767
\(267\) 22.7299 1.39105
\(268\) 12.3376 0.753638
\(269\) 15.8017i 0.963446i −0.876324 0.481723i \(-0.840011\pi\)
0.876324 0.481723i \(-0.159989\pi\)
\(270\) 0 0
\(271\) 14.8290i 0.900800i −0.892827 0.450400i \(-0.851281\pi\)
0.892827 0.450400i \(-0.148719\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 39.3693i 2.38274i
\(274\) −13.3693 −0.807670
\(275\) 0 0
\(276\) 8.87348i 0.534121i
\(277\) −10.8188 −0.650036 −0.325018 0.945708i \(-0.605370\pi\)
−0.325018 + 0.945708i \(0.605370\pi\)
\(278\) 19.3693i 1.16169i
\(279\) 28.1393i 1.68465i
\(280\) 0 0
\(281\) 13.6847 0.816358 0.408179 0.912902i \(-0.366164\pi\)
0.408179 + 0.912902i \(0.366164\pi\)
\(282\) 29.9309i 1.78236i
\(283\) 14.2829 0.849028 0.424514 0.905421i \(-0.360445\pi\)
0.424514 + 0.905421i \(0.360445\pi\)
\(284\) −2.24621 −0.133288
\(285\) 0 0
\(286\) 4.31534 0.255171
\(287\) 30.7386i 1.81444i
\(288\) 17.8078i 1.04933i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −21.1231 −1.23826
\(292\) 7.12311i 0.416848i
\(293\) 1.36932i 0.0799963i −0.999200 0.0399982i \(-0.987265\pi\)
0.999200 0.0399982i \(-0.0127352\pi\)
\(294\) −12.8078 −0.746964
\(295\) 0 0
\(296\) −21.3693 −1.24207
\(297\) 1.39909 0.0811833
\(298\) 13.6847i 0.792731i
\(299\) −15.3693 −0.888831
\(300\) 0 0
\(301\) 18.8393i 1.08588i
\(302\) 15.3693i 0.884405i
\(303\) −17.7470 −1.01954
\(304\) 3.46410i 0.198680i
\(305\) 0 0
\(306\) −7.12311 −0.407201
\(307\) 3.19224i 0.182191i 0.995842 + 0.0910953i \(0.0290368\pi\)
−0.995842 + 0.0910953i \(0.970963\pi\)
\(308\) 3.36932i 0.191985i
\(309\) 3.89055i 0.221326i
\(310\) 0 0
\(311\) 0.426450i 0.0241818i 0.999927 + 0.0120909i \(0.00384874\pi\)
−0.999927 + 0.0120909i \(0.996151\pi\)
\(312\) 34.0948 1.93024
\(313\) 2.49146 0.140826 0.0704129 0.997518i \(-0.477568\pi\)
0.0704129 + 0.997518i \(0.477568\pi\)
\(314\) −22.4924 −1.26932
\(315\) 0 0
\(316\) 14.8290i 0.834199i
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) −11.3649 −0.637314
\(319\) −3.36932 4.01029i −0.188646 0.224533i
\(320\) 0 0
\(321\) 36.5863i 2.04205i
\(322\) 12.0000i 0.668734i
\(323\) −6.92820 −0.385496
\(324\) −7.00000 −0.388889
\(325\) 0 0
\(326\) −5.43845 −0.301208
\(327\) 14.5616i 0.805256i
\(328\) −26.6204 −1.46987
\(329\) 40.4768i 2.23156i
\(330\) 0 0
\(331\) 5.95557i 0.327347i 0.986515 + 0.163674i \(0.0523344\pi\)
−0.986515 + 0.163674i \(0.947666\pi\)
\(332\) 10.3923 0.570352
\(333\) 25.3693i 1.39023i
\(334\) 8.44703i 0.462201i
\(335\) 0 0
\(336\) 8.87348i 0.484088i
\(337\) 3.75379i 0.204482i 0.994760 + 0.102241i \(0.0326013\pi\)
−0.994760 + 0.102241i \(0.967399\pi\)
\(338\) 6.68466i 0.363597i
\(339\) 13.7538 0.747003
\(340\) 0 0
\(341\) −7.68466 −0.416148
\(342\) −12.3376 −0.667140
\(343\) 6.92820 0.374088
\(344\) 16.3153 0.879664
\(345\) 0 0
\(346\) 10.8188i 0.581620i
\(347\) 26.1940 1.40617 0.703083 0.711107i \(-0.251806\pi\)
0.703083 + 0.711107i \(0.251806\pi\)
\(348\) −8.87348 10.5616i −0.475668 0.566159i
\(349\) −10.3153 −0.552168 −0.276084 0.961134i \(-0.589037\pi\)
−0.276084 + 0.961134i \(0.589037\pi\)
\(350\) 0 0
\(351\) 6.38202i 0.340647i
\(352\) −4.86319 −0.259209
\(353\) 17.7470 0.944575 0.472288 0.881444i \(-0.343428\pi\)
0.472288 + 0.881444i \(0.343428\pi\)
\(354\) −2.87689 −0.152905
\(355\) 0 0
\(356\) 8.87348i 0.470293i
\(357\) −17.7470 −0.939269
\(358\) 12.0000i 0.634220i
\(359\) 21.7572i 1.14830i −0.818749 0.574152i \(-0.805332\pi\)
0.818749 0.574152i \(-0.194668\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 13.6847i 0.719250i
\(363\) 25.7538i 1.35172i
\(364\) 15.3693 0.805571
\(365\) 0 0
\(366\) 4.98293i 0.260462i
\(367\) 28.4924i 1.48729i −0.668573 0.743646i \(-0.733095\pi\)
0.668573 0.743646i \(-0.266905\pi\)
\(368\) −3.46410 −0.180579
\(369\) 31.6034i 1.64521i
\(370\) 0 0
\(371\) −15.3693 −0.797935
\(372\) −20.2384 −1.04931
\(373\) −36.0401 −1.86609 −0.933043 0.359765i \(-0.882857\pi\)
−0.933043 + 0.359765i \(0.882857\pi\)
\(374\) 1.94528i 0.100588i
\(375\) 0 0
\(376\) 35.0540 1.80777
\(377\) 18.2931 15.3693i 0.942145 0.791560i
\(378\) −4.98293 −0.256294
\(379\) 0.426450i 0.0219053i 0.999940 + 0.0109526i \(0.00348640\pi\)
−0.999940 + 0.0109526i \(0.996514\pi\)
\(380\) 0 0
\(381\) 5.75379 0.294776
\(382\) 3.46410 0.177239
\(383\) 17.3205 0.885037 0.442518 0.896759i \(-0.354085\pi\)
0.442518 + 0.896759i \(0.354085\pi\)
\(384\) −7.68466 −0.392156
\(385\) 0 0
\(386\) 8.24621 0.419721
\(387\) 19.3693i 0.984598i
\(388\) 8.24621i 0.418638i
\(389\) 10.8188i 0.548533i 0.961654 + 0.274266i \(0.0884350\pi\)
−0.961654 + 0.274266i \(0.911565\pi\)
\(390\) 0 0
\(391\) 6.92820i 0.350374i
\(392\) 15.0000i 0.757614i
\(393\) 36.5863 1.84553
\(394\) 10.8188i 0.545041i
\(395\) 0 0
\(396\) 3.46410i 0.174078i
\(397\) −0.546188 −0.0274124 −0.0137062 0.999906i \(-0.504363\pi\)
−0.0137062 + 0.999906i \(0.504363\pi\)
\(398\) 15.3693i 0.770394i
\(399\) −30.7386 −1.53886
\(400\) 0 0
\(401\) 15.9309 0.795550 0.397775 0.917483i \(-0.369783\pi\)
0.397775 + 0.917483i \(0.369783\pi\)
\(402\) −31.6034 −1.57623
\(403\) 35.0540i 1.74616i
\(404\) 6.92820i 0.344691i
\(405\) 0 0
\(406\) 12.0000 + 14.2829i 0.595550 + 0.708846i
\(407\) −6.92820 −0.343418
\(408\) 15.3693i 0.760895i
\(409\) 3.89055i 0.192375i −0.995363 0.0961877i \(-0.969335\pi\)
0.995363 0.0961877i \(-0.0306649\pi\)
\(410\) 0 0
\(411\) −34.2462 −1.68924
\(412\) −1.51883 −0.0748272
\(413\) −3.89055 −0.191442
\(414\) 12.3376i 0.606359i
\(415\) 0 0
\(416\) 22.1837i 1.08765i
\(417\) 49.6155i 2.42968i
\(418\) 3.36932i 0.164799i
\(419\) −14.2462 −0.695973 −0.347986 0.937500i \(-0.613134\pi\)
−0.347986 + 0.937500i \(0.613134\pi\)
\(420\) 0 0
\(421\) 37.4392i 1.82467i 0.409439 + 0.912337i \(0.365724\pi\)
−0.409439 + 0.912337i \(0.634276\pi\)
\(422\) −14.8290 −0.721867
\(423\) 41.6155i 2.02342i
\(424\) 13.3102i 0.646401i
\(425\) 0 0
\(426\) 5.75379 0.278772
\(427\) 6.73863i 0.326105i
\(428\) −14.2829 −0.690388
\(429\) 11.0540 0.533691
\(430\) 0 0
\(431\) 8.63068 0.415725 0.207863 0.978158i \(-0.433349\pi\)
0.207863 + 0.978158i \(0.433349\pi\)
\(432\) 1.43845i 0.0692073i
\(433\) 16.8769i 0.811052i −0.914084 0.405526i \(-0.867088\pi\)
0.914084 0.405526i \(-0.132912\pi\)
\(434\) 27.3693 1.31377
\(435\) 0 0
\(436\) 5.68466 0.272246
\(437\) 12.0000i 0.574038i
\(438\) 18.2462i 0.871838i
\(439\) −15.3693 −0.733537 −0.366769 0.930312i \(-0.619536\pi\)
−0.366769 + 0.930312i \(0.619536\pi\)
\(440\) 0 0
\(441\) −17.8078 −0.847989
\(442\) −8.87348 −0.422068
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) −18.2462 −0.865927
\(445\) 0 0
\(446\) 12.3376i 0.584201i
\(447\) 35.0540i 1.65800i
\(448\) 24.2487 1.14564
\(449\) 17.7470i 0.837531i −0.908094 0.418765i \(-0.862463\pi\)
0.908094 0.418765i \(-0.137537\pi\)
\(450\) 0 0
\(451\) −8.63068 −0.406403
\(452\) 5.36932i 0.252551i
\(453\) 39.3693i 1.84973i
\(454\) 12.3376i 0.579031i
\(455\) 0 0
\(456\) 26.6204i 1.24662i
\(457\) −3.89055 −0.181992 −0.0909962 0.995851i \(-0.529005\pi\)
−0.0909962 + 0.995851i \(0.529005\pi\)
\(458\) −15.8017 −0.738364
\(459\) −2.87689 −0.134282
\(460\) 0 0
\(461\) 34.6410i 1.61339i −0.590966 0.806696i \(-0.701253\pi\)
0.590966 0.806696i \(-0.298747\pi\)
\(462\) 8.63068i 0.401536i
\(463\) 7.35465 0.341800 0.170900 0.985288i \(-0.445333\pi\)
0.170900 + 0.985288i \(0.445333\pi\)
\(464\) 4.12311 3.46410i 0.191410 0.160817i
\(465\) 0 0
\(466\) 2.49146i 0.115415i
\(467\) 8.31534i 0.384788i −0.981318 0.192394i \(-0.938375\pi\)
0.981318 0.192394i \(-0.0616252\pi\)
\(468\) 15.8017 0.730433
\(469\) −42.7386 −1.97349
\(470\) 0 0
\(471\) −57.6155 −2.65478
\(472\) 3.36932i 0.155085i
\(473\) 5.28964 0.243218
\(474\) 37.9854i 1.74473i
\(475\) 0 0
\(476\) 6.92820i 0.317554i
\(477\) −15.8017 −0.723509
\(478\) 13.1231i 0.600237i
\(479\) 2.91791i 0.133323i −0.997776 0.0666614i \(-0.978765\pi\)
0.997776 0.0666614i \(-0.0212347\pi\)
\(480\) 0 0
\(481\) 31.6034i 1.44099i
\(482\) 1.68466i 0.0767341i
\(483\) 30.7386i 1.39866i
\(484\) 10.0540 0.456999
\(485\) 0 0
\(486\) 22.2462 1.00911
\(487\) 32.0298 1.45141 0.725705 0.688006i \(-0.241514\pi\)
0.725705 + 0.688006i \(0.241514\pi\)
\(488\) 5.83583 0.264176
\(489\) −13.9309 −0.629976
\(490\) 0 0
\(491\) 29.5384i 1.33305i −0.745484 0.666524i \(-0.767782\pi\)
0.745484 0.666524i \(-0.232218\pi\)
\(492\) −22.7299 −1.02474
\(493\) 6.92820 + 8.24621i 0.312031 + 0.371391i
\(494\) −15.3693 −0.691498
\(495\) 0 0
\(496\) 7.90084i 0.354758i
\(497\) 7.78110 0.349030
\(498\) −26.6204 −1.19289
\(499\) 4.63068 0.207298 0.103649 0.994614i \(-0.466948\pi\)
0.103649 + 0.994614i \(0.466948\pi\)
\(500\) 0 0
\(501\) 21.6375i 0.966693i
\(502\) 16.7743 0.748675
\(503\) 4.94602i 0.220532i −0.993902 0.110266i \(-0.964830\pi\)
0.993902 0.110266i \(-0.0351703\pi\)
\(504\) 37.0127i 1.64868i
\(505\) 0 0
\(506\) −3.36932 −0.149784
\(507\) 17.1231i 0.760464i
\(508\) 2.24621i 0.0996595i
\(509\) 29.0540 1.28779 0.643897 0.765112i \(-0.277316\pi\)
0.643897 + 0.765112i \(0.277316\pi\)
\(510\) 0 0
\(511\) 24.6752i 1.09156i
\(512\) 11.0000i 0.486136i
\(513\) −4.98293 −0.220002
\(514\) 11.3649i 0.501286i
\(515\) 0 0
\(516\) 13.9309 0.613272
\(517\) 11.3649 0.499830
\(518\) 24.6752 1.08416
\(519\) 27.7128i 1.21646i
\(520\) 0 0
\(521\) 22.3153 0.977653 0.488826 0.872381i \(-0.337425\pi\)
0.488826 + 0.872381i \(0.337425\pi\)
\(522\) 12.3376 + 14.6847i 0.540001 + 0.642730i
\(523\) −26.1940 −1.14538 −0.572692 0.819771i \(-0.694101\pi\)
−0.572692 + 0.819771i \(0.694101\pi\)
\(524\) 14.2829i 0.623949i
\(525\) 0 0
\(526\) 3.68466 0.160659
\(527\) 15.8017 0.688332
\(528\) 2.49146 0.108427
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 12.0000i 0.520266i
\(533\) 39.3693i 1.70527i
\(534\) 22.7299i 0.983618i
\(535\) 0 0
\(536\) 37.0127i 1.59871i
\(537\) 30.7386i 1.32647i
\(538\) 15.8017 0.681259
\(539\) 4.86319i 0.209472i
\(540\) 0 0
\(541\) 38.5316i 1.65660i 0.560284 + 0.828301i \(0.310692\pi\)
−0.560284 + 0.828301i \(0.689308\pi\)
\(542\) 14.8290 0.636962
\(543\) 35.0540i 1.50431i
\(544\) 10.0000 0.428746
\(545\) 0 0
\(546\) −39.3693 −1.68485
\(547\) 7.35465 0.314462 0.157231 0.987562i \(-0.449743\pi\)
0.157231 + 0.987562i \(0.449743\pi\)
\(548\) 13.3693i 0.571109i
\(549\) 6.92820i 0.295689i
\(550\) 0 0
\(551\) 12.0000 + 14.2829i 0.511217 + 0.608470i
\(552\) −26.6204 −1.13304
\(553\) 51.3693i 2.18445i
\(554\) 10.8188i 0.459645i
\(555\) 0 0
\(556\) −19.3693 −0.821442
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) 28.1393 1.19123
\(559\) 24.1290i 1.02055i
\(560\) 0 0
\(561\) 4.98293i 0.210379i
\(562\) 13.6847i 0.577252i
\(563\) 15.6847i 0.661030i 0.943801 + 0.330515i \(0.107222\pi\)
−0.943801 + 0.330515i \(0.892778\pi\)
\(564\) 29.9309 1.26032
\(565\) 0 0
\(566\) 14.2829i 0.600353i
\(567\) 24.2487 1.01835
\(568\) 6.73863i 0.282747i
\(569\) 3.89055i 0.163100i −0.996669 0.0815502i \(-0.974013\pi\)
0.996669 0.0815502i \(-0.0259871\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 4.31534i 0.180433i
\(573\) 8.87348 0.370695
\(574\) 30.7386 1.28301
\(575\) 0 0
\(576\) 24.9309 1.03879
\(577\) 44.2462i 1.84199i −0.389570 0.920997i \(-0.627376\pi\)
0.389570 0.920997i \(-0.372624\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 21.1231 0.877846
\(580\) 0 0
\(581\) −36.0000 −1.49353
\(582\) 21.1231i 0.875581i
\(583\) 4.31534i 0.178723i
\(584\) −21.3693 −0.884269
\(585\) 0 0
\(586\) 1.36932 0.0565660
\(587\) 13.4300 0.554314 0.277157 0.960825i \(-0.410608\pi\)
0.277157 + 0.960825i \(0.410608\pi\)
\(588\) 12.8078i 0.528183i
\(589\) 27.3693 1.12773
\(590\) 0 0
\(591\) 27.7128i 1.13995i
\(592\) 7.12311i 0.292758i
\(593\) 6.38202 0.262078 0.131039 0.991377i \(-0.458169\pi\)
0.131039 + 0.991377i \(0.458169\pi\)
\(594\) 1.39909i 0.0574053i
\(595\) 0 0
\(596\) 13.6847 0.560545
\(597\) 39.3693i 1.61128i
\(598\) 15.3693i 0.628498i
\(599\) 0.972638i 0.0397409i 0.999803 + 0.0198705i \(0.00632538\pi\)
−0.999803 + 0.0198705i \(0.993675\pi\)
\(600\) 0 0
\(601\) 8.87348i 0.361957i −0.983487 0.180978i \(-0.942074\pi\)
0.983487 0.180978i \(-0.0579264\pi\)
\(602\) −18.8393 −0.767834
\(603\) −43.9409 −1.78941
\(604\) 15.3693 0.625369
\(605\) 0 0
\(606\) 17.7470i 0.720921i
\(607\) 0.177081i 0.00718749i 0.999994 + 0.00359375i \(0.00114393\pi\)
−0.999994 + 0.00359375i \(0.998856\pi\)
\(608\) 17.3205 0.702439
\(609\) 30.7386 + 36.5863i 1.24559 + 1.48255i
\(610\) 0 0
\(611\) 51.8418i 2.09729i
\(612\) 7.12311i 0.287934i
\(613\) 14.4026 0.581715 0.290858 0.956766i \(-0.406059\pi\)
0.290858 + 0.956766i \(0.406059\pi\)
\(614\) −3.19224 −0.128828
\(615\) 0 0
\(616\) 10.1080 0.407261
\(617\) 13.3693i 0.538228i 0.963108 + 0.269114i \(0.0867309\pi\)
−0.963108 + 0.269114i \(0.913269\pi\)
\(618\) 3.89055 0.156501
\(619\) 10.9385i 0.439655i −0.975539 0.219828i \(-0.929451\pi\)
0.975539 0.219828i \(-0.0705495\pi\)
\(620\) 0 0
\(621\) 4.98293i 0.199958i
\(622\) −0.426450 −0.0170991
\(623\) 30.7386i 1.23152i
\(624\) 11.3649i 0.454962i
\(625\) 0 0
\(626\) 2.49146i 0.0995789i
\(627\) 8.63068i 0.344676i
\(628\) 22.4924i 0.897545i
\(629\) 14.2462 0.568034
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −44.4871 −1.76960
\(633\) −37.9854 −1.50978
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) 11.3649i 0.450649i
\(637\) −22.1837 −0.878950
\(638\) 4.01029 3.36932i 0.158769 0.133393i
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) 4.98293i 0.196814i 0.995146 + 0.0984069i \(0.0313747\pi\)
−0.995146 + 0.0984069i \(0.968625\pi\)
\(642\) 36.5863 1.44395
\(643\) −35.0675 −1.38293 −0.691463 0.722412i \(-0.743033\pi\)
−0.691463 + 0.722412i \(0.743033\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 6.92820i 0.272587i
\(647\) −48.9239 −1.92340 −0.961698 0.274111i \(-0.911616\pi\)
−0.961698 + 0.274111i \(0.911616\pi\)
\(648\) 21.0000i 0.824958i
\(649\) 1.09238i 0.0428795i
\(650\) 0 0
\(651\) 70.1080 2.74775
\(652\) 5.43845i 0.212986i
\(653\) 28.7386i 1.12463i 0.826923 + 0.562315i \(0.190089\pi\)
−0.826923 + 0.562315i \(0.809911\pi\)
\(654\) −14.5616 −0.569402
\(655\) 0 0
\(656\) 8.87348i 0.346451i
\(657\) 25.3693i 0.989751i
\(658\) −40.4768 −1.57795
\(659\) 35.6137i 1.38731i 0.720307 + 0.693655i \(0.244001\pi\)
−0.720307 + 0.693655i \(0.755999\pi\)
\(660\) 0 0
\(661\) −24.7386 −0.962221 −0.481111 0.876660i \(-0.659766\pi\)
−0.481111 + 0.876660i \(0.659766\pi\)
\(662\) −5.95557 −0.231470
\(663\) −22.7299 −0.882756
\(664\) 31.1769i 1.20990i
\(665\) 0 0
\(666\) 25.3693 0.983041
\(667\) −14.2829 + 12.0000i −0.553034 + 0.464642i
\(668\) −8.44703 −0.326825
\(669\) 31.6034i 1.22186i
\(670\) 0 0
\(671\) 1.89205 0.0730418
\(672\) 44.3674 1.71151
\(673\) 29.1119 1.12218 0.561091 0.827754i \(-0.310382\pi\)
0.561091 + 0.827754i \(0.310382\pi\)
\(674\) −3.75379 −0.144591
\(675\) 0 0
\(676\) 6.68466 0.257102
\(677\) 13.3693i 0.513825i −0.966435 0.256912i \(-0.917295\pi\)
0.966435 0.256912i \(-0.0827052\pi\)
\(678\) 13.7538i 0.528211i
\(679\) 28.5657i 1.09625i
\(680\) 0 0
\(681\) 31.6034i 1.21104i
\(682\) 7.68466i 0.294261i
\(683\) −16.2281 −0.620952 −0.310476 0.950581i \(-0.600488\pi\)
−0.310476 + 0.950581i \(0.600488\pi\)
\(684\) 12.3376i 0.471739i
\(685\) 0 0
\(686\) 6.92820i 0.264520i
\(687\) −40.4768 −1.54429
\(688\) 5.43845i 0.207339i
\(689\) −19.6847 −0.749926
\(690\) 0 0
\(691\) 18.7386 0.712851 0.356426 0.934324i \(-0.383995\pi\)
0.356426 + 0.934324i \(0.383995\pi\)
\(692\) −10.8188 −0.411267
\(693\) 12.0000i 0.455842i
\(694\) 26.1940i 0.994310i
\(695\) 0 0
\(696\) 31.6847 26.6204i 1.20100 1.00905i
\(697\) 17.7470 0.672214
\(698\) 10.3153i 0.390441i
\(699\) 6.38202i 0.241390i
\(700\) 0 0
\(701\) −50.8078 −1.91898 −0.959491 0.281738i \(-0.909089\pi\)
−0.959491 + 0.281738i \(0.909089\pi\)
\(702\) −6.38202 −0.240874
\(703\) 24.6752 0.930641
\(704\) 6.80847i 0.256604i
\(705\) 0 0
\(706\) 17.7470i 0.667916i
\(707\) 24.0000i 0.902613i
\(708\) 2.87689i 0.108120i
\(709\) 6.31534 0.237178 0.118589 0.992943i \(-0.462163\pi\)
0.118589 + 0.992943i \(0.462163\pi\)
\(710\) 0 0
\(711\) 52.8144i 1.98070i
\(712\) 26.6204 0.997643
\(713\) 27.3693i 1.02499i
\(714\) 17.7470i 0.664163i
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 33.6155i 1.25539i
\(718\) 21.7572 0.811973
\(719\) −26.2462 −0.978819 −0.489409 0.872054i \(-0.662788\pi\)
−0.489409 + 0.872054i \(0.662788\pi\)
\(720\) 0 0
\(721\) 5.26137 0.195944
\(722\) 7.00000i 0.260513i
\(723\) 4.31534i 0.160489i
\(724\) −13.6847 −0.508586
\(725\) 0 0
\(726\) −25.7538 −0.955813
\(727\) 4.49242i 0.166615i −0.996524 0.0833074i \(-0.973452\pi\)
0.996524 0.0833074i \(-0.0265483\pi\)
\(728\) 46.1080i 1.70887i
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) −10.8769 −0.402296
\(732\) 4.98293 0.184174
\(733\) 16.8769i 0.623362i 0.950187 + 0.311681i \(0.100892\pi\)
−0.950187 + 0.311681i \(0.899108\pi\)
\(734\) 28.4924 1.05167
\(735\) 0 0
\(736\) 17.3205i 0.638442i
\(737\) 12.0000i 0.442026i
\(738\) 31.6034 1.16334
\(739\) 27.5931i 1.01503i −0.861644 0.507514i \(-0.830565\pi\)
0.861644 0.507514i \(-0.169435\pi\)
\(740\) 0 0
\(741\) −39.3693 −1.44627
\(742\) 15.3693i 0.564225i
\(743\) 32.0000i 1.17397i 0.809599 + 0.586983i \(0.199684\pi\)
−0.809599 + 0.586983i \(0.800316\pi\)
\(744\) 60.7153i 2.22593i
\(745\) 0 0
\(746\) 36.0401i 1.31952i
\(747\) −37.0127 −1.35423
\(748\) 1.94528 0.0711263
\(749\) 49.4773 1.80786
\(750\) 0 0
\(751\) 6.50175i 0.237252i 0.992939 + 0.118626i \(0.0378490\pi\)
−0.992939 + 0.118626i \(0.962151\pi\)
\(752\) 11.6847i 0.426096i
\(753\) 42.9683 1.56585
\(754\) 15.3693 + 18.2931i 0.559718 + 0.666197i
\(755\) 0 0
\(756\) 4.98293i 0.181227i
\(757\) 15.7538i 0.572581i 0.958143 + 0.286291i \(0.0924223\pi\)
−0.958143 + 0.286291i \(0.907578\pi\)
\(758\) −0.426450 −0.0154894
\(759\) −8.63068 −0.313274
\(760\) 0 0
\(761\) −1.50758 −0.0546496 −0.0273248 0.999627i \(-0.508699\pi\)
−0.0273248 + 0.999627i \(0.508699\pi\)
\(762\) 5.75379i 0.208438i
\(763\) −19.6922 −0.712907
\(764\) 3.46410i 0.125327i
\(765\) 0 0
\(766\) 17.3205i 0.625815i
\(767\) −4.98293 −0.179923
\(768\) 43.5464i 1.57135i
\(769\) 32.6957i 1.17904i −0.807754 0.589519i \(-0.799317\pi\)
0.807754 0.589519i \(-0.200683\pi\)
\(770\) 0 0
\(771\) 29.1119i 1.04844i
\(772\) 8.24621i 0.296788i
\(773\) 26.0000i 0.935155i −0.883952 0.467578i \(-0.845127\pi\)
0.883952 0.467578i \(-0.154873\pi\)
\(774\) −19.3693 −0.696216
\(775\) 0 0
\(776\) −24.7386 −0.888065
\(777\) 63.2067 2.26753
\(778\) −10.8188 −0.387871
\(779\) 30.7386 1.10133
\(780\) 0 0
\(781\) 2.18475i 0.0781765i
\(782\) 6.92820 0.247752
\(783\) 4.98293 + 5.93087i 0.178075 + 0.211952i
\(784\) −5.00000 −0.178571
\(785\) 0 0
\(786\) 36.5863i 1.30499i
\(787\) 12.3376 0.439787 0.219894 0.975524i \(-0.429429\pi\)
0.219894 + 0.975524i \(0.429429\pi\)
\(788\) −10.8188 −0.385402
\(789\) 9.43845 0.336018
\(790\) 0 0
\(791\) 18.5999i 0.661335i
\(792\) 10.3923 0.369274
\(793\) 8.63068i 0.306485i
\(794\) 0.546188i 0.0193835i
\(795\) 0 0
\(796\) 15.3693 0.544751
\(797\) 34.0000i 1.20434i 0.798367 + 0.602171i \(0.205697\pi\)
−0.798367 + 0.602171i \(0.794303\pi\)
\(798\) 30.7386i 1.08814i
\(799\) −23.3693 −0.826747
\(800\) 0 0
\(801\) 31.6034i 1.11665i
\(802\) 15.9309i 0.562539i
\(803\) −6.92820 −0.244491
\(804\) 31.6034i 1.11456i
\(805\) 0 0
\(806\) 35.0540 1.23472
\(807\) 40.4768 1.42485
\(808\) −20.7846 −0.731200
\(809\) 31.6034i 1.11112i 0.831478 + 0.555558i \(0.187495\pi\)
−0.831478 + 0.555558i \(0.812505\pi\)
\(810\) 0 0
\(811\) 4.63068 0.162605 0.0813026 0.996689i \(-0.474092\pi\)
0.0813026 + 0.996689i \(0.474092\pi\)
\(812\) 14.2829 12.0000i 0.501230 0.421117i
\(813\) 37.9854 1.33221
\(814\) 6.92820i 0.242833i
\(815\) 0 0
\(816\) −5.12311 −0.179345
\(817\) −18.8393 −0.659105
\(818\) 3.89055 0.136030
\(819\) −54.7386 −1.91272
\(820\) 0 0
\(821\) 47.7926 1.66797 0.833987 0.551784i \(-0.186053\pi\)
0.833987 + 0.551784i \(0.186053\pi\)
\(822\) 34.2462i 1.19447i
\(823\) 21.7538i 0.758289i 0.925337 + 0.379145i \(0.123782\pi\)
−0.925337 + 0.379145i \(0.876218\pi\)
\(824\) 4.55648i 0.158732i
\(825\) 0 0
\(826\) 3.89055i 0.135370i
\(827\) 15.0540i 0.523478i −0.965139 0.261739i \(-0.915704\pi\)
0.965139 0.261739i \(-0.0842960\pi\)
\(828\) −12.3376 −0.428761
\(829\) 23.5828i 0.819064i −0.912296 0.409532i \(-0.865692\pi\)
0.912296 0.409532i \(-0.134308\pi\)
\(830\) 0 0
\(831\) 27.7128i 0.961347i
\(832\) 31.0572 1.07671
\(833\) 10.0000i 0.346479i
\(834\) 49.6155 1.71805
\(835\) 0 0
\(836\) 3.36932 0.116530
\(837\) 11.3649 0.392830
\(838\) 14.2462i 0.492127i
\(839\) 18.7196i 0.646272i 0.946352 + 0.323136i \(0.104737\pi\)
−0.946352 + 0.323136i \(0.895263\pi\)
\(840\) 0 0
\(841\) 5.00000 28.5657i 0.172414 0.985025i
\(842\) −37.4392 −1.29024
\(843\) 35.0540i 1.20732i
\(844\) 14.8290i 0.510437i
\(845\) 0 0
\(846\) −41.6155 −1.43077
\(847\) −34.8280 −1.19670
\(848\) −4.43674 −0.152358
\(849\) 36.5863i 1.25564i
\(850\) 0 0
\(851\) 24.6752i 0.845854i
\(852\) 5.75379i 0.197122i
\(853\) 37.8617i 1.29636i −0.761487 0.648181i \(-0.775530\pi\)
0.761487 0.648181i \(-0.224470\pi\)
\(854\) −6.73863 −0.230591
\(855\) 0 0
\(856\) 42.8486i 1.46453i
\(857\) 20.2384 0.691331 0.345666 0.938358i \(-0.387653\pi\)
0.345666 + 0.938358i \(0.387653\pi\)
\(858\) 11.0540i 0.377376i
\(859\) 52.2682i 1.78337i 0.452657 + 0.891685i \(0.350476\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(860\) 0 0
\(861\) 78.7386 2.68341
\(862\) 8.63068i 0.293962i
\(863\) −15.3752 −0.523379 −0.261689 0.965152i \(-0.584280\pi\)
−0.261689 + 0.965152i \(0.584280\pi\)
\(864\) 7.19224 0.244685
\(865\) 0 0
\(866\) 16.8769 0.573500
\(867\) 33.3002i 1.13093i
\(868\) 27.3693i 0.928975i
\(869\) −14.4233 −0.489277
\(870\) 0 0
\(871\) −54.7386 −1.85475
\(872\) 17.0540i 0.577520i
\(873\) 29.3693i 0.994001i
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) −18.2462 −0.616482
\(877\) −41.0230 −1.38525 −0.692625 0.721298i \(-0.743546\pi\)
−0.692625 + 0.721298i \(0.743546\pi\)
\(878\) 15.3693i 0.518689i
\(879\) 3.50758 0.118308
\(880\) 0 0
\(881\) 45.4598i 1.53158i −0.643092 0.765789i \(-0.722349\pi\)
0.643092 0.765789i \(-0.277651\pi\)
\(882\) 17.8078i 0.599619i
\(883\) 35.9204 1.20882 0.604408 0.796675i \(-0.293410\pi\)
0.604408 + 0.796675i \(0.293410\pi\)
\(884\) 8.87348i 0.298447i
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) 3.68466i 0.123719i −0.998085 0.0618594i \(-0.980297\pi\)
0.998085 0.0618594i \(-0.0197030\pi\)
\(888\) 54.7386i 1.83691i
\(889\) 7.78110i 0.260970i
\(890\) 0 0
\(891\) 6.80847i 0.228092i
\(892\) 12.3376 0.413093
\(893\) −40.4768 −1.35451
\(894\) −35.0540 −1.17238
\(895\) 0 0
\(896\) 10.3923i 0.347183i
\(897\) 39.3693i 1.31450i
\(898\) 17.7470 0.592224
\(899\) −27.3693 32.5760i −0.912818 1.08647i
\(900\) 0 0
\(901\) 8.87348i 0.295618i
\(902\) 8.63068i 0.287370i
\(903\) −48.2579 −1.60592
\(904\) 16.1080 0.535742
\(905\) 0 0
\(906\) −39.3693 −1.30796
\(907\) 40.4924i 1.34453i −0.740311 0.672264i \(-0.765322\pi\)
0.740311 0.672264i \(-0.234678\pi\)
\(908\) 12.3376 0.409437
\(909\) 24.6752i 0.818423i
\(910\) 0 0
\(911\) 9.84612i 0.326216i −0.986608 0.163108i \(-0.947848\pi\)
0.986608 0.163108i \(-0.0521520\pi\)
\(912\) −8.87348 −0.293830
\(913\) 10.1080i 0.334524i
\(914\) 3.89055i 0.128688i
\(915\) 0 0
\(916\) 15.8017i 0.522102i
\(917\) 49.4773i 1.63388i
\(918\) 2.87689i 0.0949517i
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) −8.17708 −0.269444
\(922\) 34.6410 1.14084
\(923\) 9.96585 0.328030
\(924\) 8.63068 0.283929
\(925\) 0 0
\(926\) 7.35465i 0.241689i
\(927\) 5.40938 0.177667
\(928\) −17.3205 20.6155i −0.568574 0.676738i
\(929\) −48.7386 −1.59906 −0.799531 0.600624i \(-0.794919\pi\)
−0.799531 + 0.600624i \(0.794919\pi\)
\(930\) 0 0
\(931\) 17.3205i 0.567657i
\(932\) 2.49146 0.0816106
\(933\) −1.09238 −0.0357628
\(934\) 8.31534 0.272086
\(935\) 0 0
\(936\) 47.4050i 1.54948i
\(937\) 31.6034 1.03244 0.516218 0.856457i \(-0.327339\pi\)
0.516218 + 0.856457i \(0.327339\pi\)
\(938\) 42.7386i 1.39547i
\(939\) 6.38202i 0.208269i
\(940\) 0 0
\(941\) 32.4233 1.05697 0.528485 0.848943i \(-0.322760\pi\)
0.528485 + 0.848943i \(0.322760\pi\)
\(942\) 57.6155i 1.87722i
\(943\) 30.7386i 1.00099i
\(944\) −1.12311 −0.0365540
\(945\) 0 0
\(946\) 5.28964i 0.171981i
\(947\) 23.6847i 0.769648i 0.922990 + 0.384824i \(0.125738\pi\)
−0.922990 + 0.384824i \(0.874262\pi\)
\(948\) −37.9854 −1.23371
\(949\) 31.6034i 1.02589i
\(950\) 0 0
\(951\) −5.12311 −0.166128
\(952\) −20.7846 −0.673633
\(953\) 10.2726 0.332761 0.166381 0.986062i \(-0.446792\pi\)
0.166381 + 0.986062i \(0.446792\pi\)
\(954\) 15.8017i 0.511598i
\(955\) 0 0
\(956\) −13.1231 −0.424432
\(957\) 10.2726 8.63068i 0.332065 0.278990i
\(958\) 2.91791 0.0942735
\(959\) 46.3127i 1.49551i
\(960\) 0 0
\(961\) −31.4233 −1.01365
\(962\) 31.6034 1.01893
\(963\) 50.8691 1.63924
\(964\) −1.68466 −0.0542592
\(965\) 0 0
\(966\) 30.7386 0.988999
\(967\) 45.9309i 1.47704i 0.674233 + 0.738519i \(0.264474\pi\)
−0.674233 + 0.738519i \(0.735526\pi\)
\(968\) 30.1619i 0.969441i
\(969\) 17.7470i 0.570114i
\(970\) 0 0
\(971\) 45.8862i 1.47256i −0.676678 0.736279i \(-0.736581\pi\)
0.676678 0.736279i \(-0.263419\pi\)
\(972\) 22.2462i 0.713548i
\(973\) 67.0973 2.15104
\(974\) 32.0298i 1.02630i
\(975\) 0 0
\(976\) 1.94528i 0.0622668i
\(977\) −6.38202 −0.204179 −0.102089 0.994775i \(-0.532553\pi\)
−0.102089 + 0.994775i \(0.532553\pi\)
\(978\) 13.9309i 0.445460i
\(979\) 8.63068 0.275838
\(980\) 0 0
\(981\) −20.2462 −0.646412
\(982\) 29.5384 0.942607
\(983\) 27.0540i 0.862888i −0.902140 0.431444i \(-0.858004\pi\)
0.902140 0.431444i \(-0.141996\pi\)
\(984\) 68.1897i 2.17381i
\(985\) 0 0
\(986\) −8.24621 + 6.92820i −0.262613 + 0.220639i
\(987\) −103.684 −3.30028
\(988\) 15.3693i 0.488963i
\(989\) 18.8393i 0.599056i
\(990\) 0 0
\(991\) −30.7386 −0.976445 −0.488222 0.872719i \(-0.662355\pi\)
−0.488222 + 0.872719i \(0.662355\pi\)
\(992\) −39.5042 −1.25426
\(993\) −15.2555 −0.484118
\(994\) 7.78110i 0.246802i
\(995\) 0 0
\(996\) 26.6204i 0.843501i
\(997\) 59.6155i 1.88804i 0.329884 + 0.944021i \(0.392990\pi\)
−0.329884 + 0.944021i \(0.607010\pi\)
\(998\) 4.63068i 0.146582i
\(999\) 10.2462 0.324176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.c.f.376.7 8
5.2 odd 4 145.2.d.a.144.3 4
5.3 odd 4 145.2.d.c.144.2 yes 4
5.4 even 2 inner 725.2.c.f.376.2 8
15.2 even 4 1305.2.f.i.289.4 4
15.8 even 4 1305.2.f.e.289.3 4
20.3 even 4 2320.2.j.c.289.4 4
20.7 even 4 2320.2.j.a.289.1 4
29.28 even 2 inner 725.2.c.f.376.1 8
145.28 odd 4 145.2.d.a.144.4 yes 4
145.57 odd 4 145.2.d.c.144.1 yes 4
145.144 even 2 inner 725.2.c.f.376.8 8
435.173 even 4 1305.2.f.i.289.3 4
435.347 even 4 1305.2.f.e.289.4 4
580.347 even 4 2320.2.j.c.289.3 4
580.463 even 4 2320.2.j.a.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.a.144.3 4 5.2 odd 4
145.2.d.a.144.4 yes 4 145.28 odd 4
145.2.d.c.144.1 yes 4 145.57 odd 4
145.2.d.c.144.2 yes 4 5.3 odd 4
725.2.c.f.376.1 8 29.28 even 2 inner
725.2.c.f.376.2 8 5.4 even 2 inner
725.2.c.f.376.7 8 1.1 even 1 trivial
725.2.c.f.376.8 8 145.144 even 2 inner
1305.2.f.e.289.3 4 15.8 even 4
1305.2.f.e.289.4 4 435.347 even 4
1305.2.f.i.289.3 4 435.173 even 4
1305.2.f.i.289.4 4 15.2 even 4
2320.2.j.a.289.1 4 20.7 even 4
2320.2.j.a.289.2 4 580.463 even 4
2320.2.j.c.289.3 4 580.347 even 4
2320.2.j.c.289.4 4 20.3 even 4