Properties

Label 2320.2.j.c.289.4
Level $2320$
Weight $2$
Character 2320.289
Analytic conductor $18.525$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(289,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,3,0,0,0,6,0,0,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.4
Root \(-0.780776 + 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 2320.289
Dual form 2320.2.j.c.289.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{3} +(-0.280776 + 2.21837i) q^{5} -3.46410i q^{7} +3.56155 q^{9} -0.972638i q^{11} -4.43674i q^{13} +(-0.719224 + 5.68247i) q^{15} -2.00000 q^{17} -3.46410i q^{19} -8.87348i q^{21} -3.46410i q^{23} +(-4.84233 - 1.24573i) q^{25} +1.43845 q^{27} +(4.12311 - 3.46410i) q^{29} -7.90084i q^{31} -2.49146i q^{33} +(7.68466 + 0.972638i) q^{35} +7.12311 q^{37} -11.3649i q^{39} +8.87348i q^{41} -5.43845 q^{43} +(-1.00000 + 7.90084i) q^{45} +11.6847 q^{47} -5.00000 q^{49} -5.12311 q^{51} +4.43674i q^{53} +(2.15767 + 0.273094i) q^{55} -8.87348i q^{57} +1.12311 q^{59} -1.94528i q^{61} -12.3376i q^{63} +(9.84233 + 1.24573i) q^{65} +12.3376i q^{67} -8.87348i q^{69} +2.24621 q^{71} -7.12311 q^{73} +(-12.4039 - 3.19101i) q^{75} -3.36932 q^{77} +14.8290i q^{79} -7.00000 q^{81} -10.3923i q^{83} +(0.561553 - 4.43674i) q^{85} +(10.5616 - 8.87348i) q^{87} +8.87348i q^{89} -15.3693 q^{91} -20.2384i q^{93} +(7.68466 + 0.972638i) q^{95} +8.24621 q^{97} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 3 q^{5} + 6 q^{9} - 7 q^{15} - 8 q^{17} - 7 q^{25} + 14 q^{27} + 6 q^{35} + 12 q^{37} - 30 q^{43} - 4 q^{45} + 22 q^{47} - 20 q^{49} - 4 q^{51} + 21 q^{55} - 12 q^{59} + 27 q^{65} - 24 q^{71}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155 1.47891 0.739457 0.673204i \(-0.235083\pi\)
0.739457 + 0.673204i \(0.235083\pi\)
\(4\) 0 0
\(5\) −0.280776 + 2.21837i −0.125567 + 0.992085i
\(6\) 0 0
\(7\) 3.46410i 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 0.972638i 0.293261i −0.989191 0.146631i \(-0.953157\pi\)
0.989191 0.146631i \(-0.0468429\pi\)
\(12\) 0 0
\(13\) 4.43674i 1.23053i −0.788320 0.615265i \(-0.789049\pi\)
0.788320 0.615265i \(-0.210951\pi\)
\(14\) 0 0
\(15\) −0.719224 + 5.68247i −0.185703 + 1.46721i
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 8.87348i 1.93635i
\(22\) 0 0
\(23\) 3.46410i 0.722315i −0.932505 0.361158i \(-0.882382\pi\)
0.932505 0.361158i \(-0.117618\pi\)
\(24\) 0 0
\(25\) −4.84233 1.24573i −0.968466 0.249146i
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 4.12311 3.46410i 0.765641 0.643268i
\(30\) 0 0
\(31\) 7.90084i 1.41903i −0.704689 0.709516i \(-0.748913\pi\)
0.704689 0.709516i \(-0.251087\pi\)
\(32\) 0 0
\(33\) 2.49146i 0.433708i
\(34\) 0 0
\(35\) 7.68466 + 0.972638i 1.29894 + 0.164406i
\(36\) 0 0
\(37\) 7.12311 1.17103 0.585516 0.810661i \(-0.300892\pi\)
0.585516 + 0.810661i \(0.300892\pi\)
\(38\) 0 0
\(39\) 11.3649i 1.81985i
\(40\) 0 0
\(41\) 8.87348i 1.38580i 0.721031 + 0.692902i \(0.243668\pi\)
−0.721031 + 0.692902i \(0.756332\pi\)
\(42\) 0 0
\(43\) −5.43845 −0.829355 −0.414678 0.909968i \(-0.636106\pi\)
−0.414678 + 0.909968i \(0.636106\pi\)
\(44\) 0 0
\(45\) −1.00000 + 7.90084i −0.149071 + 1.17779i
\(46\) 0 0
\(47\) 11.6847 1.70438 0.852191 0.523230i \(-0.175273\pi\)
0.852191 + 0.523230i \(0.175273\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) −5.12311 −0.717378
\(52\) 0 0
\(53\) 4.43674i 0.609433i 0.952443 + 0.304717i \(0.0985617\pi\)
−0.952443 + 0.304717i \(0.901438\pi\)
\(54\) 0 0
\(55\) 2.15767 + 0.273094i 0.290940 + 0.0368240i
\(56\) 0 0
\(57\) 8.87348i 1.17532i
\(58\) 0 0
\(59\) 1.12311 0.146216 0.0731079 0.997324i \(-0.476708\pi\)
0.0731079 + 0.997324i \(0.476708\pi\)
\(60\) 0 0
\(61\) 1.94528i 0.249067i −0.992215 0.124534i \(-0.960257\pi\)
0.992215 0.124534i \(-0.0397434\pi\)
\(62\) 0 0
\(63\) 12.3376i 1.55439i
\(64\) 0 0
\(65\) 9.84233 + 1.24573i 1.22079 + 0.154514i
\(66\) 0 0
\(67\) 12.3376i 1.50728i 0.657290 + 0.753638i \(0.271703\pi\)
−0.657290 + 0.753638i \(0.728297\pi\)
\(68\) 0 0
\(69\) 8.87348i 1.06824i
\(70\) 0 0
\(71\) 2.24621 0.266576 0.133288 0.991077i \(-0.457446\pi\)
0.133288 + 0.991077i \(0.457446\pi\)
\(72\) 0 0
\(73\) −7.12311 −0.833696 −0.416848 0.908976i \(-0.636865\pi\)
−0.416848 + 0.908976i \(0.636865\pi\)
\(74\) 0 0
\(75\) −12.4039 3.19101i −1.43228 0.368466i
\(76\) 0 0
\(77\) −3.36932 −0.383969
\(78\) 0 0
\(79\) 14.8290i 1.66840i 0.551464 + 0.834199i \(0.314070\pi\)
−0.551464 + 0.834199i \(0.685930\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 10.3923i 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) 0 0
\(85\) 0.561553 4.43674i 0.0609090 0.481232i
\(86\) 0 0
\(87\) 10.5616 8.87348i 1.13232 0.951337i
\(88\) 0 0
\(89\) 8.87348i 0.940587i 0.882510 + 0.470293i \(0.155852\pi\)
−0.882510 + 0.470293i \(0.844148\pi\)
\(90\) 0 0
\(91\) −15.3693 −1.61114
\(92\) 0 0
\(93\) 20.2384i 2.09863i
\(94\) 0 0
\(95\) 7.68466 + 0.972638i 0.788429 + 0.0997906i
\(96\) 0 0
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 6.92820i 0.689382i 0.938716 + 0.344691i \(0.112016\pi\)
−0.938716 + 0.344691i \(0.887984\pi\)
\(102\) 0 0
\(103\) 1.51883i 0.149654i 0.997197 + 0.0748272i \(0.0238405\pi\)
−0.997197 + 0.0748272i \(0.976159\pi\)
\(104\) 0 0
\(105\) 19.6847 + 2.49146i 1.92103 + 0.243142i
\(106\) 0 0
\(107\) 14.2829i 1.38078i −0.723439 0.690388i \(-0.757440\pi\)
0.723439 0.690388i \(-0.242560\pi\)
\(108\) 0 0
\(109\) −5.68466 −0.544492 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(110\) 0 0
\(111\) 18.2462 1.73185
\(112\) 0 0
\(113\) 5.36932 0.505103 0.252551 0.967583i \(-0.418730\pi\)
0.252551 + 0.967583i \(0.418730\pi\)
\(114\) 0 0
\(115\) 7.68466 + 0.972638i 0.716598 + 0.0906990i
\(116\) 0 0
\(117\) 15.8017i 1.46087i
\(118\) 0 0
\(119\) 6.92820i 0.635107i
\(120\) 0 0
\(121\) 10.0540 0.913998
\(122\) 0 0
\(123\) 22.7299i 2.04948i
\(124\) 0 0
\(125\) 4.12311 10.3923i 0.368782 0.929516i
\(126\) 0 0
\(127\) 2.24621 0.199319 0.0996595 0.995022i \(-0.468225\pi\)
0.0996595 + 0.995022i \(0.468225\pi\)
\(128\) 0 0
\(129\) −13.9309 −1.22654
\(130\) 0 0
\(131\) 14.2829i 1.24790i 0.781465 + 0.623949i \(0.214473\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) −0.403882 + 3.19101i −0.0347606 + 0.274638i
\(136\) 0 0
\(137\) 13.3693 1.14222 0.571109 0.820874i \(-0.306513\pi\)
0.571109 + 0.820874i \(0.306513\pi\)
\(138\) 0 0
\(139\) −19.3693 −1.64288 −0.821442 0.570292i \(-0.806830\pi\)
−0.821442 + 0.570292i \(0.806830\pi\)
\(140\) 0 0
\(141\) 29.9309 2.52063
\(142\) 0 0
\(143\) −4.31534 −0.360867
\(144\) 0 0
\(145\) 6.52699 + 10.1192i 0.542037 + 0.840355i
\(146\) 0 0
\(147\) −12.8078 −1.05637
\(148\) 0 0
\(149\) −13.6847 −1.12109 −0.560545 0.828124i \(-0.689408\pi\)
−0.560545 + 0.828124i \(0.689408\pi\)
\(150\) 0 0
\(151\) −15.3693 −1.25074 −0.625369 0.780329i \(-0.715051\pi\)
−0.625369 + 0.780329i \(0.715051\pi\)
\(152\) 0 0
\(153\) −7.12311 −0.575869
\(154\) 0 0
\(155\) 17.5270 + 2.21837i 1.40780 + 0.178184i
\(156\) 0 0
\(157\) 22.4924 1.79509 0.897545 0.440922i \(-0.145349\pi\)
0.897545 + 0.440922i \(0.145349\pi\)
\(158\) 0 0
\(159\) 11.3649i 0.901299i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) 5.43845 0.425972 0.212986 0.977055i \(-0.431681\pi\)
0.212986 + 0.977055i \(0.431681\pi\)
\(164\) 0 0
\(165\) 5.52699 + 0.699544i 0.430275 + 0.0544594i
\(166\) 0 0
\(167\) 8.44703i 0.653651i −0.945085 0.326825i \(-0.894021\pi\)
0.945085 0.326825i \(-0.105979\pi\)
\(168\) 0 0
\(169\) −6.68466 −0.514204
\(170\) 0 0
\(171\) 12.3376i 0.943478i
\(172\) 0 0
\(173\) 10.8188i 0.822535i −0.911515 0.411267i \(-0.865086\pi\)
0.911515 0.411267i \(-0.134914\pi\)
\(174\) 0 0
\(175\) −4.31534 + 16.7743i −0.326209 + 1.26802i
\(176\) 0 0
\(177\) 2.87689 0.216241
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −13.6847 −1.01717 −0.508586 0.861011i \(-0.669832\pi\)
−0.508586 + 0.861011i \(0.669832\pi\)
\(182\) 0 0
\(183\) 4.98293i 0.368349i
\(184\) 0 0
\(185\) −2.00000 + 15.8017i −0.147043 + 1.16176i
\(186\) 0 0
\(187\) 1.94528i 0.142253i
\(188\) 0 0
\(189\) 4.98293i 0.362455i
\(190\) 0 0
\(191\) 3.46410i 0.250654i 0.992116 + 0.125327i \(0.0399979\pi\)
−0.992116 + 0.125327i \(0.960002\pi\)
\(192\) 0 0
\(193\) 8.24621 0.593575 0.296788 0.954944i \(-0.404085\pi\)
0.296788 + 0.954944i \(0.404085\pi\)
\(194\) 0 0
\(195\) 25.2116 + 3.19101i 1.80544 + 0.228513i
\(196\) 0 0
\(197\) 10.8188i 0.770804i 0.922749 + 0.385402i \(0.125937\pi\)
−0.922749 + 0.385402i \(0.874063\pi\)
\(198\) 0 0
\(199\) 15.3693 1.08950 0.544751 0.838598i \(-0.316624\pi\)
0.544751 + 0.838598i \(0.316624\pi\)
\(200\) 0 0
\(201\) 31.6034i 2.22913i
\(202\) 0 0
\(203\) −12.0000 14.2829i −0.842235 1.00246i
\(204\) 0 0
\(205\) −19.6847 2.49146i −1.37484 0.174011i
\(206\) 0 0
\(207\) 12.3376i 0.857521i
\(208\) 0 0
\(209\) −3.36932 −0.233061
\(210\) 0 0
\(211\) 14.8290i 1.02087i −0.859915 0.510437i \(-0.829484\pi\)
0.859915 0.510437i \(-0.170516\pi\)
\(212\) 0 0
\(213\) 5.75379 0.394243
\(214\) 0 0
\(215\) 1.52699 12.0645i 0.104140 0.822791i
\(216\) 0 0
\(217\) −27.3693 −1.85795
\(218\) 0 0
\(219\) −18.2462 −1.23296
\(220\) 0 0
\(221\) 8.87348i 0.596895i
\(222\) 0 0
\(223\) 12.3376i 0.826186i −0.910689 0.413093i \(-0.864449\pi\)
0.910689 0.413093i \(-0.135551\pi\)
\(224\) 0 0
\(225\) −17.2462 4.43674i −1.14975 0.295783i
\(226\) 0 0
\(227\) 12.3376i 0.818874i 0.912338 + 0.409437i \(0.134275\pi\)
−0.912338 + 0.409437i \(0.865725\pi\)
\(228\) 0 0
\(229\) 15.8017i 1.04420i −0.852883 0.522102i \(-0.825148\pi\)
0.852883 0.522102i \(-0.174852\pi\)
\(230\) 0 0
\(231\) −8.63068 −0.567857
\(232\) 0 0
\(233\) 2.49146i 0.163221i 0.996664 + 0.0816106i \(0.0260064\pi\)
−0.996664 + 0.0816106i \(0.973994\pi\)
\(234\) 0 0
\(235\) −3.28078 + 25.9209i −0.214014 + 1.69089i
\(236\) 0 0
\(237\) 37.9854i 2.46742i
\(238\) 0 0
\(239\) −13.1231 −0.848863 −0.424432 0.905460i \(-0.639526\pi\)
−0.424432 + 0.905460i \(0.639526\pi\)
\(240\) 0 0
\(241\) −1.68466 −0.108518 −0.0542592 0.998527i \(-0.517280\pi\)
−0.0542592 + 0.998527i \(0.517280\pi\)
\(242\) 0 0
\(243\) −22.2462 −1.42710
\(244\) 0 0
\(245\) 1.40388 11.0918i 0.0896907 0.708632i
\(246\) 0 0
\(247\) −15.3693 −0.977926
\(248\) 0 0
\(249\) 26.6204i 1.68700i
\(250\) 0 0
\(251\) 16.7743i 1.05879i 0.848377 + 0.529393i \(0.177580\pi\)
−0.848377 + 0.529393i \(0.822420\pi\)
\(252\) 0 0
\(253\) −3.36932 −0.211827
\(254\) 0 0
\(255\) 1.43845 11.3649i 0.0900791 0.711700i
\(256\) 0 0
\(257\) 11.3649i 0.708926i −0.935070 0.354463i \(-0.884664\pi\)
0.935070 0.354463i \(-0.115336\pi\)
\(258\) 0 0
\(259\) 24.6752i 1.53324i
\(260\) 0 0
\(261\) 14.6847 12.3376i 0.908958 0.763677i
\(262\) 0 0
\(263\) −3.68466 −0.227206 −0.113603 0.993526i \(-0.536239\pi\)
−0.113603 + 0.993526i \(0.536239\pi\)
\(264\) 0 0
\(265\) −9.84233 1.24573i −0.604609 0.0765247i
\(266\) 0 0
\(267\) 22.7299i 1.39105i
\(268\) 0 0
\(269\) 15.8017i 0.963446i 0.876324 + 0.481723i \(0.159989\pi\)
−0.876324 + 0.481723i \(0.840011\pi\)
\(270\) 0 0
\(271\) 14.8290i 0.900800i 0.892827 + 0.450400i \(0.148719\pi\)
−0.892827 + 0.450400i \(0.851281\pi\)
\(272\) 0 0
\(273\) −39.3693 −2.38274
\(274\) 0 0
\(275\) −1.21165 + 4.70983i −0.0730650 + 0.284014i
\(276\) 0 0
\(277\) 10.8188i 0.650036i 0.945708 + 0.325018i \(0.105370\pi\)
−0.945708 + 0.325018i \(0.894630\pi\)
\(278\) 0 0
\(279\) 28.1393i 1.68465i
\(280\) 0 0
\(281\) 13.6847 0.816358 0.408179 0.912902i \(-0.366164\pi\)
0.408179 + 0.912902i \(0.366164\pi\)
\(282\) 0 0
\(283\) 14.2829i 0.849028i −0.905421 0.424514i \(-0.860445\pi\)
0.905421 0.424514i \(-0.139555\pi\)
\(284\) 0 0
\(285\) 19.6847 + 2.49146i 1.16602 + 0.147582i
\(286\) 0 0
\(287\) 30.7386 1.81444
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 21.1231 1.23826
\(292\) 0 0
\(293\) 1.36932 0.0799963 0.0399982 0.999200i \(-0.487265\pi\)
0.0399982 + 0.999200i \(0.487265\pi\)
\(294\) 0 0
\(295\) −0.315342 + 2.49146i −0.0183599 + 0.145059i
\(296\) 0 0
\(297\) 1.39909i 0.0811833i
\(298\) 0 0
\(299\) −15.3693 −0.888831
\(300\) 0 0
\(301\) 18.8393i 1.08588i
\(302\) 0 0
\(303\) 17.7470i 1.01954i
\(304\) 0 0
\(305\) 4.31534 + 0.546188i 0.247096 + 0.0312746i
\(306\) 0 0
\(307\) −3.19224 −0.182191 −0.0910953 0.995842i \(-0.529037\pi\)
−0.0910953 + 0.995842i \(0.529037\pi\)
\(308\) 0 0
\(309\) 3.89055i 0.221326i
\(310\) 0 0
\(311\) 0.426450i 0.0241818i −0.999927 0.0120909i \(-0.996151\pi\)
0.999927 0.0120909i \(-0.00384874\pi\)
\(312\) 0 0
\(313\) 2.49146i 0.140826i 0.997518 + 0.0704129i \(0.0224317\pi\)
−0.997518 + 0.0704129i \(0.977568\pi\)
\(314\) 0 0
\(315\) 27.3693 + 3.46410i 1.54209 + 0.195180i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −3.36932 4.01029i −0.188646 0.224533i
\(320\) 0 0
\(321\) 36.5863i 2.04205i
\(322\) 0 0
\(323\) 6.92820i 0.385496i
\(324\) 0 0
\(325\) −5.52699 + 21.4842i −0.306582 + 1.19173i
\(326\) 0 0
\(327\) −14.5616 −0.805256
\(328\) 0 0
\(329\) 40.4768i 2.23156i
\(330\) 0 0
\(331\) 5.95557i 0.327347i −0.986515 0.163674i \(-0.947666\pi\)
0.986515 0.163674i \(-0.0523344\pi\)
\(332\) 0 0
\(333\) 25.3693 1.39023
\(334\) 0 0
\(335\) −27.3693 3.46410i −1.49535 0.189264i
\(336\) 0 0
\(337\) 3.75379 0.204482 0.102241 0.994760i \(-0.467399\pi\)
0.102241 + 0.994760i \(0.467399\pi\)
\(338\) 0 0
\(339\) 13.7538 0.747003
\(340\) 0 0
\(341\) −7.68466 −0.416148
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 19.6847 + 2.49146i 1.05979 + 0.134136i
\(346\) 0 0
\(347\) 26.1940i 1.40617i 0.711107 + 0.703083i \(0.248194\pi\)
−0.711107 + 0.703083i \(0.751806\pi\)
\(348\) 0 0
\(349\) 10.3153 0.552168 0.276084 0.961134i \(-0.410963\pi\)
0.276084 + 0.961134i \(0.410963\pi\)
\(350\) 0 0
\(351\) 6.38202i 0.340647i
\(352\) 0 0
\(353\) 17.7470i 0.944575i 0.881444 + 0.472288i \(0.156572\pi\)
−0.881444 + 0.472288i \(0.843428\pi\)
\(354\) 0 0
\(355\) −0.630683 + 4.98293i −0.0334732 + 0.264466i
\(356\) 0 0
\(357\) 17.7470i 0.939269i
\(358\) 0 0
\(359\) 21.7572i 1.14830i −0.818749 0.574152i \(-0.805332\pi\)
0.818749 0.574152i \(-0.194668\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) 25.7538 1.35172
\(364\) 0 0
\(365\) 2.00000 15.8017i 0.104685 0.827098i
\(366\) 0 0
\(367\) 28.4924 1.48729 0.743646 0.668573i \(-0.233095\pi\)
0.743646 + 0.668573i \(0.233095\pi\)
\(368\) 0 0
\(369\) 31.6034i 1.64521i
\(370\) 0 0
\(371\) 15.3693 0.797935
\(372\) 0 0
\(373\) 36.0401i 1.86609i −0.359765 0.933043i \(-0.617143\pi\)
0.359765 0.933043i \(-0.382857\pi\)
\(374\) 0 0
\(375\) 10.5616 26.6204i 0.545396 1.37467i
\(376\) 0 0
\(377\) −15.3693 18.2931i −0.791560 0.942145i
\(378\) 0 0
\(379\) 0.426450i 0.0219053i 0.999940 + 0.0109526i \(0.00348640\pi\)
−0.999940 + 0.0109526i \(0.996514\pi\)
\(380\) 0 0
\(381\) 5.75379 0.294776
\(382\) 0 0
\(383\) 17.3205i 0.885037i −0.896759 0.442518i \(-0.854085\pi\)
0.896759 0.442518i \(-0.145915\pi\)
\(384\) 0 0
\(385\) 0.946025 7.47439i 0.0482139 0.380930i
\(386\) 0 0
\(387\) −19.3693 −0.984598
\(388\) 0 0
\(389\) 10.8188i 0.548533i −0.961654 0.274266i \(-0.911565\pi\)
0.961654 0.274266i \(-0.0884350\pi\)
\(390\) 0 0
\(391\) 6.92820i 0.350374i
\(392\) 0 0
\(393\) 36.5863i 1.84553i
\(394\) 0 0
\(395\) −32.8963 4.16365i −1.65519 0.209496i
\(396\) 0 0
\(397\) 0.546188i 0.0274124i 0.999906 + 0.0137062i \(0.00436295\pi\)
−0.999906 + 0.0137062i \(0.995637\pi\)
\(398\) 0 0
\(399\) −30.7386 −1.53886
\(400\) 0 0
\(401\) 15.9309 0.795550 0.397775 0.917483i \(-0.369783\pi\)
0.397775 + 0.917483i \(0.369783\pi\)
\(402\) 0 0
\(403\) −35.0540 −1.74616
\(404\) 0 0
\(405\) 1.96543 15.5286i 0.0976632 0.771622i
\(406\) 0 0
\(407\) 6.92820i 0.343418i
\(408\) 0 0
\(409\) 3.89055i 0.192375i 0.995363 + 0.0961877i \(0.0306649\pi\)
−0.995363 + 0.0961877i \(0.969335\pi\)
\(410\) 0 0
\(411\) 34.2462 1.68924
\(412\) 0 0
\(413\) 3.89055i 0.191442i
\(414\) 0 0
\(415\) 23.0540 + 2.91791i 1.13168 + 0.143235i
\(416\) 0 0
\(417\) −49.6155 −2.42968
\(418\) 0 0
\(419\) −14.2462 −0.695973 −0.347986 0.937500i \(-0.613134\pi\)
−0.347986 + 0.937500i \(0.613134\pi\)
\(420\) 0 0
\(421\) 37.4392i 1.82467i 0.409439 + 0.912337i \(0.365724\pi\)
−0.409439 + 0.912337i \(0.634276\pi\)
\(422\) 0 0
\(423\) 41.6155 2.02342
\(424\) 0 0
\(425\) 9.68466 + 2.49146i 0.469775 + 0.120854i
\(426\) 0 0
\(427\) −6.73863 −0.326105
\(428\) 0 0
\(429\) −11.0540 −0.533691
\(430\) 0 0
\(431\) −8.63068 −0.415725 −0.207863 0.978158i \(-0.566651\pi\)
−0.207863 + 0.978158i \(0.566651\pi\)
\(432\) 0 0
\(433\) 16.8769 0.811052 0.405526 0.914084i \(-0.367088\pi\)
0.405526 + 0.914084i \(0.367088\pi\)
\(434\) 0 0
\(435\) 16.7192 + 25.9209i 0.801625 + 1.24281i
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) −15.3693 −0.733537 −0.366769 0.930312i \(-0.619536\pi\)
−0.366769 + 0.930312i \(0.619536\pi\)
\(440\) 0 0
\(441\) −17.8078 −0.847989
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) −19.6847 2.49146i −0.933142 0.118107i
\(446\) 0 0
\(447\) −35.0540 −1.65800
\(448\) 0 0
\(449\) 17.7470i 0.837531i 0.908094 + 0.418765i \(0.137537\pi\)
−0.908094 + 0.418765i \(0.862463\pi\)
\(450\) 0 0
\(451\) 8.63068 0.406403
\(452\) 0 0
\(453\) −39.3693 −1.84973
\(454\) 0 0
\(455\) 4.31534 34.0948i 0.202306 1.59839i
\(456\) 0 0
\(457\) 3.89055i 0.181992i 0.995851 + 0.0909962i \(0.0290051\pi\)
−0.995851 + 0.0909962i \(0.970995\pi\)
\(458\) 0 0
\(459\) −2.87689 −0.134282
\(460\) 0 0
\(461\) 34.6410i 1.61339i −0.590966 0.806696i \(-0.701253\pi\)
0.590966 0.806696i \(-0.298747\pi\)
\(462\) 0 0
\(463\) 7.35465i 0.341800i −0.985288 0.170900i \(-0.945333\pi\)
0.985288 0.170900i \(-0.0546675\pi\)
\(464\) 0 0
\(465\) 44.8963 + 5.68247i 2.08202 + 0.263518i
\(466\) 0 0
\(467\) 8.31534 0.384788 0.192394 0.981318i \(-0.438375\pi\)
0.192394 + 0.981318i \(0.438375\pi\)
\(468\) 0 0
\(469\) 42.7386 1.97349
\(470\) 0 0
\(471\) 57.6155 2.65478
\(472\) 0 0
\(473\) 5.28964i 0.243218i
\(474\) 0 0
\(475\) −4.31534 + 16.7743i −0.198001 + 0.769659i
\(476\) 0 0
\(477\) 15.8017i 0.723509i
\(478\) 0 0
\(479\) 2.91791i 0.133323i −0.997776 0.0666614i \(-0.978765\pi\)
0.997776 0.0666614i \(-0.0212347\pi\)
\(480\) 0 0
\(481\) 31.6034i 1.44099i
\(482\) 0 0
\(483\) −30.7386 −1.39866
\(484\) 0 0
\(485\) −2.31534 + 18.2931i −0.105134 + 0.830649i
\(486\) 0 0
\(487\) 32.0298i 1.45141i 0.688006 + 0.725705i \(0.258486\pi\)
−0.688006 + 0.725705i \(0.741514\pi\)
\(488\) 0 0
\(489\) 13.9309 0.629976
\(490\) 0 0
\(491\) 29.5384i 1.33305i 0.745484 + 0.666524i \(0.232218\pi\)
−0.745484 + 0.666524i \(0.767782\pi\)
\(492\) 0 0
\(493\) −8.24621 + 6.92820i −0.371391 + 0.312031i
\(494\) 0 0
\(495\) 7.68466 + 0.972638i 0.345400 + 0.0437168i
\(496\) 0 0
\(497\) 7.78110i 0.349030i
\(498\) 0 0
\(499\) 4.63068 0.207298 0.103649 0.994614i \(-0.466948\pi\)
0.103649 + 0.994614i \(0.466948\pi\)
\(500\) 0 0
\(501\) 21.6375i 0.966693i
\(502\) 0 0
\(503\) −4.94602 −0.220532 −0.110266 0.993902i \(-0.535170\pi\)
−0.110266 + 0.993902i \(0.535170\pi\)
\(504\) 0 0
\(505\) −15.3693 1.94528i −0.683926 0.0865636i
\(506\) 0 0
\(507\) −17.1231 −0.760464
\(508\) 0 0
\(509\) −29.0540 −1.28779 −0.643897 0.765112i \(-0.722684\pi\)
−0.643897 + 0.765112i \(0.722684\pi\)
\(510\) 0 0
\(511\) 24.6752i 1.09156i
\(512\) 0 0
\(513\) 4.98293i 0.220002i
\(514\) 0 0
\(515\) −3.36932 0.426450i −0.148470 0.0187916i
\(516\) 0 0
\(517\) 11.3649i 0.499830i
\(518\) 0 0
\(519\) 27.7128i 1.21646i
\(520\) 0 0
\(521\) 22.3153 0.977653 0.488826 0.872381i \(-0.337425\pi\)
0.488826 + 0.872381i \(0.337425\pi\)
\(522\) 0 0
\(523\) 26.1940i 1.14538i 0.819771 + 0.572692i \(0.194101\pi\)
−0.819771 + 0.572692i \(0.805899\pi\)
\(524\) 0 0
\(525\) −11.0540 + 42.9683i −0.482435 + 1.87529i
\(526\) 0 0
\(527\) 15.8017i 0.688332i
\(528\) 0 0
\(529\) 11.0000 0.478261
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 39.3693 1.70527
\(534\) 0 0
\(535\) 31.6847 + 4.01029i 1.36985 + 0.173380i
\(536\) 0 0
\(537\) 30.7386 1.32647
\(538\) 0 0
\(539\) 4.86319i 0.209472i
\(540\) 0 0
\(541\) 38.5316i 1.65660i 0.560284 + 0.828301i \(0.310692\pi\)
−0.560284 + 0.828301i \(0.689308\pi\)
\(542\) 0 0
\(543\) −35.0540 −1.50431
\(544\) 0 0
\(545\) 1.59612 12.6107i 0.0683702 0.540182i
\(546\) 0 0
\(547\) 7.35465i 0.314462i 0.987562 + 0.157231i \(0.0502568\pi\)
−0.987562 + 0.157231i \(0.949743\pi\)
\(548\) 0 0
\(549\) 6.92820i 0.295689i
\(550\) 0 0
\(551\) −12.0000 14.2829i −0.511217 0.608470i
\(552\) 0 0
\(553\) 51.3693 2.18445
\(554\) 0 0
\(555\) −5.12311 + 40.4768i −0.217464 + 1.71815i
\(556\) 0 0
\(557\) 6.92820i 0.293557i 0.989169 + 0.146779i \(0.0468905\pi\)
−0.989169 + 0.146779i \(0.953109\pi\)
\(558\) 0 0
\(559\) 24.1290i 1.02055i
\(560\) 0 0
\(561\) 4.98293i 0.210379i
\(562\) 0 0
\(563\) 15.6847 0.661030 0.330515 0.943801i \(-0.392778\pi\)
0.330515 + 0.943801i \(0.392778\pi\)
\(564\) 0 0
\(565\) −1.50758 + 11.9111i −0.0634243 + 0.501105i
\(566\) 0 0
\(567\) 24.2487i 1.01835i
\(568\) 0 0
\(569\) 3.89055i 0.163100i 0.996669 + 0.0815502i \(0.0259871\pi\)
−0.996669 + 0.0815502i \(0.974013\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 8.87348i 0.370695i
\(574\) 0 0
\(575\) −4.31534 + 16.7743i −0.179962 + 0.699538i
\(576\) 0 0
\(577\) −44.2462 −1.84199 −0.920997 0.389570i \(-0.872624\pi\)
−0.920997 + 0.389570i \(0.872624\pi\)
\(578\) 0 0
\(579\) 21.1231 0.877846
\(580\) 0 0
\(581\) −36.0000 −1.49353
\(582\) 0 0
\(583\) 4.31534 0.178723
\(584\) 0 0
\(585\) 35.0540 + 4.43674i 1.44930 + 0.183437i
\(586\) 0 0
\(587\) 13.4300i 0.554314i 0.960825 + 0.277157i \(0.0893921\pi\)
−0.960825 + 0.277157i \(0.910608\pi\)
\(588\) 0 0
\(589\) −27.3693 −1.12773
\(590\) 0 0
\(591\) 27.7128i 1.13995i
\(592\) 0 0
\(593\) 6.38202i 0.262078i 0.991377 + 0.131039i \(0.0418313\pi\)
−0.991377 + 0.131039i \(0.958169\pi\)
\(594\) 0 0
\(595\) −15.3693 1.94528i −0.630081 0.0797485i
\(596\) 0 0
\(597\) 39.3693 1.61128
\(598\) 0 0
\(599\) 0.972638i 0.0397409i 0.999803 + 0.0198705i \(0.00632538\pi\)
−0.999803 + 0.0198705i \(0.993675\pi\)
\(600\) 0 0
\(601\) 8.87348i 0.361957i −0.983487 0.180978i \(-0.942074\pi\)
0.983487 0.180978i \(-0.0579264\pi\)
\(602\) 0 0
\(603\) 43.9409i 1.78941i
\(604\) 0 0
\(605\) −2.82292 + 22.3034i −0.114768 + 0.906764i
\(606\) 0 0
\(607\) −0.177081 −0.00718749 −0.00359375 0.999994i \(-0.501144\pi\)
−0.00359375 + 0.999994i \(0.501144\pi\)
\(608\) 0 0
\(609\) −30.7386 36.5863i −1.24559 1.48255i
\(610\) 0 0
\(611\) 51.8418i 2.09729i
\(612\) 0 0
\(613\) 14.4026i 0.581715i 0.956766 + 0.290858i \(0.0939406\pi\)
−0.956766 + 0.290858i \(0.906059\pi\)
\(614\) 0 0
\(615\) −50.4233 6.38202i −2.03326 0.257348i
\(616\) 0 0
\(617\) 13.3693 0.538228 0.269114 0.963108i \(-0.413269\pi\)
0.269114 + 0.963108i \(0.413269\pi\)
\(618\) 0 0
\(619\) 10.9385i 0.439655i −0.975539 0.219828i \(-0.929451\pi\)
0.975539 0.219828i \(-0.0705495\pi\)
\(620\) 0 0
\(621\) 4.98293i 0.199958i
\(622\) 0 0
\(623\) 30.7386 1.23152
\(624\) 0 0
\(625\) 21.8963 + 12.0645i 0.875852 + 0.482579i
\(626\) 0 0
\(627\) −8.63068 −0.344676
\(628\) 0 0
\(629\) −14.2462 −0.568034
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 37.9854i 1.50978i
\(634\) 0 0
\(635\) −0.630683 + 4.98293i −0.0250279 + 0.197741i
\(636\) 0 0
\(637\) 22.1837i 0.878950i
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) 4.98293i 0.196814i 0.995146 + 0.0984069i \(0.0313747\pi\)
−0.995146 + 0.0984069i \(0.968625\pi\)
\(642\) 0 0
\(643\) 35.0675i 1.38293i 0.722412 + 0.691463i \(0.243033\pi\)
−0.722412 + 0.691463i \(0.756967\pi\)
\(644\) 0 0
\(645\) 3.91146 30.9038i 0.154014 1.21684i
\(646\) 0 0
\(647\) 48.9239i 1.92340i −0.274111 0.961698i \(-0.588384\pi\)
0.274111 0.961698i \(-0.411616\pi\)
\(648\) 0 0
\(649\) 1.09238i 0.0428795i
\(650\) 0 0
\(651\) −70.1080 −2.74775
\(652\) 0 0
\(653\) −28.7386 −1.12463 −0.562315 0.826923i \(-0.690089\pi\)
−0.562315 + 0.826923i \(0.690089\pi\)
\(654\) 0 0
\(655\) −31.6847 4.01029i −1.23802 0.156695i
\(656\) 0 0
\(657\) −25.3693 −0.989751
\(658\) 0 0
\(659\) 35.6137i 1.38731i 0.720307 + 0.693655i \(0.244001\pi\)
−0.720307 + 0.693655i \(0.755999\pi\)
\(660\) 0 0
\(661\) −24.7386 −0.962221 −0.481111 0.876660i \(-0.659766\pi\)
−0.481111 + 0.876660i \(0.659766\pi\)
\(662\) 0 0
\(663\) 22.7299i 0.882756i
\(664\) 0 0
\(665\) 3.36932 26.6204i 0.130657 1.03230i
\(666\) 0 0
\(667\) −12.0000 14.2829i −0.464642 0.553034i
\(668\) 0 0
\(669\) 31.6034i 1.22186i
\(670\) 0 0
\(671\) −1.89205 −0.0730418
\(672\) 0 0
\(673\) 29.1119i 1.12218i 0.827754 + 0.561091i \(0.189618\pi\)
−0.827754 + 0.561091i \(0.810382\pi\)
\(674\) 0 0
\(675\) −6.96543 1.79192i −0.268100 0.0689710i
\(676\) 0 0
\(677\) −13.3693 −0.513825 −0.256912 0.966435i \(-0.582705\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(678\) 0 0
\(679\) 28.5657i 1.09625i
\(680\) 0 0
\(681\) 31.6034i 1.21104i
\(682\) 0 0
\(683\) 16.2281i 0.620952i 0.950581 + 0.310476i \(0.100488\pi\)
−0.950581 + 0.310476i \(0.899512\pi\)
\(684\) 0 0
\(685\) −3.75379 + 29.6581i −0.143425 + 1.13318i
\(686\) 0 0
\(687\) 40.4768i 1.54429i
\(688\) 0 0
\(689\) 19.6847 0.749926
\(690\) 0 0
\(691\) −18.7386 −0.712851 −0.356426 0.934324i \(-0.616005\pi\)
−0.356426 + 0.934324i \(0.616005\pi\)
\(692\) 0 0
\(693\) −12.0000 −0.455842
\(694\) 0 0
\(695\) 5.43845 42.9683i 0.206292 1.62988i
\(696\) 0 0
\(697\) 17.7470i 0.672214i
\(698\) 0 0
\(699\) 6.38202i 0.241390i
\(700\) 0 0
\(701\) −50.8078 −1.91898 −0.959491 0.281738i \(-0.909089\pi\)
−0.959491 + 0.281738i \(0.909089\pi\)
\(702\) 0 0
\(703\) 24.6752i 0.930641i
\(704\) 0 0
\(705\) −8.40388 + 66.3977i −0.316509 + 2.50068i
\(706\) 0 0
\(707\) 24.0000 0.902613
\(708\) 0 0
\(709\) −6.31534 −0.237178 −0.118589 0.992943i \(-0.537837\pi\)
−0.118589 + 0.992943i \(0.537837\pi\)
\(710\) 0 0
\(711\) 52.8144i 1.98070i
\(712\) 0 0
\(713\) −27.3693 −1.02499
\(714\) 0 0
\(715\) 1.21165 9.57302i 0.0453130 0.358011i
\(716\) 0 0
\(717\) −33.6155 −1.25539
\(718\) 0 0
\(719\) −26.2462 −0.978819 −0.489409 0.872054i \(-0.662788\pi\)
−0.489409 + 0.872054i \(0.662788\pi\)
\(720\) 0 0
\(721\) 5.26137 0.195944
\(722\) 0 0
\(723\) −4.31534 −0.160489
\(724\) 0 0
\(725\) −24.2808 + 11.6380i −0.901765 + 0.432226i
\(726\) 0 0
\(727\) 4.49242 0.166615 0.0833074 0.996524i \(-0.473452\pi\)
0.0833074 + 0.996524i \(0.473452\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) 10.8769 0.402296
\(732\) 0 0
\(733\) −16.8769 −0.623362 −0.311681 0.950187i \(-0.600892\pi\)
−0.311681 + 0.950187i \(0.600892\pi\)
\(734\) 0 0
\(735\) 3.59612 28.4124i 0.132645 1.04801i
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) 27.5931i 1.01503i −0.861644 0.507514i \(-0.830565\pi\)
0.861644 0.507514i \(-0.169435\pi\)
\(740\) 0 0
\(741\) −39.3693 −1.44627
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) 3.84233 30.3576i 0.140772 1.11222i
\(746\) 0 0
\(747\) 37.0127i 1.35423i
\(748\) 0 0
\(749\) −49.4773 −1.80786
\(750\) 0 0
\(751\) 6.50175i 0.237252i −0.992939 0.118626i \(-0.962151\pi\)
0.992939 0.118626i \(-0.0378490\pi\)
\(752\) 0 0
\(753\) 42.9683i 1.56585i
\(754\) 0 0
\(755\) 4.31534 34.0948i 0.157051 1.24084i
\(756\) 0 0
\(757\) 15.7538 0.572581 0.286291 0.958143i \(-0.407578\pi\)
0.286291 + 0.958143i \(0.407578\pi\)
\(758\) 0 0
\(759\) −8.63068 −0.313274
\(760\) 0 0
\(761\) −1.50758 −0.0546496 −0.0273248 0.999627i \(-0.508699\pi\)
−0.0273248 + 0.999627i \(0.508699\pi\)
\(762\) 0 0
\(763\) 19.6922i 0.712907i
\(764\) 0 0
\(765\) 2.00000 15.8017i 0.0723102 0.571311i
\(766\) 0 0
\(767\) 4.98293i 0.179923i
\(768\) 0 0
\(769\) 32.6957i 1.17904i 0.807754 + 0.589519i \(0.200683\pi\)
−0.807754 + 0.589519i \(0.799317\pi\)
\(770\) 0 0
\(771\) 29.1119i 1.04844i
\(772\) 0 0
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 0 0
\(775\) −9.84233 + 38.2585i −0.353547 + 1.37428i
\(776\) 0 0
\(777\) 63.2067i 2.26753i
\(778\) 0 0
\(779\) 30.7386 1.10133
\(780\) 0 0
\(781\) 2.18475i 0.0781765i
\(782\) 0 0
\(783\) 5.93087 4.98293i 0.211952 0.178075i
\(784\) 0 0
\(785\) −6.31534 + 49.8965i −0.225404 + 1.78088i
\(786\) 0 0
\(787\) 12.3376i 0.439787i 0.975524 + 0.219894i \(0.0705710\pi\)
−0.975524 + 0.219894i \(0.929429\pi\)
\(788\) 0 0
\(789\) −9.43845 −0.336018
\(790\) 0 0
\(791\) 18.5999i 0.661335i
\(792\) 0 0
\(793\) −8.63068 −0.306485
\(794\) 0 0
\(795\) −25.2116 3.19101i −0.894165 0.113173i
\(796\) 0 0
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) −23.3693 −0.826747
\(800\) 0 0
\(801\) 31.6034i 1.11665i
\(802\) 0 0
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 3.36932 26.6204i 0.118753 0.938247i
\(806\) 0 0
\(807\) 40.4768i 1.42485i
\(808\) 0 0
\(809\) 31.6034i 1.11112i −0.831478 0.555558i \(-0.812505\pi\)
0.831478 0.555558i \(-0.187495\pi\)
\(810\) 0 0
\(811\) −4.63068 −0.162605 −0.0813026 0.996689i \(-0.525908\pi\)
−0.0813026 + 0.996689i \(0.525908\pi\)
\(812\) 0 0
\(813\) 37.9854i 1.33221i
\(814\) 0 0
\(815\) −1.52699 + 12.0645i −0.0534880 + 0.422601i
\(816\) 0 0
\(817\) 18.8393i 0.659105i
\(818\) 0 0
\(819\) −54.7386 −1.91272
\(820\) 0 0
\(821\) 47.7926 1.66797 0.833987 0.551784i \(-0.186053\pi\)
0.833987 + 0.551784i \(0.186053\pi\)
\(822\) 0 0
\(823\) 21.7538 0.758289 0.379145 0.925337i \(-0.376218\pi\)
0.379145 + 0.925337i \(0.376218\pi\)
\(824\) 0 0
\(825\) −3.10370 + 12.0645i −0.108057 + 0.420032i
\(826\) 0 0
\(827\) 15.0540 0.523478 0.261739 0.965139i \(-0.415704\pi\)
0.261739 + 0.965139i \(0.415704\pi\)
\(828\) 0 0
\(829\) 23.5828i 0.819064i 0.912296 + 0.409532i \(0.134308\pi\)
−0.912296 + 0.409532i \(0.865692\pi\)
\(830\) 0 0
\(831\) 27.7128i 0.961347i
\(832\) 0 0
\(833\) 10.0000 0.346479
\(834\) 0 0
\(835\) 18.7386 + 2.37173i 0.648477 + 0.0820770i
\(836\) 0 0
\(837\) 11.3649i 0.392830i
\(838\) 0 0
\(839\) 18.7196i 0.646272i 0.946352 + 0.323136i \(0.104737\pi\)
−0.946352 + 0.323136i \(0.895263\pi\)
\(840\) 0 0
\(841\) 5.00000 28.5657i 0.172414 0.985025i
\(842\) 0 0
\(843\) 35.0540 1.20732
\(844\) 0 0
\(845\) 1.87689 14.8290i 0.0645671 0.510135i
\(846\) 0 0
\(847\) 34.8280i 1.19670i
\(848\) 0 0
\(849\) 36.5863i 1.25564i
\(850\) 0 0
\(851\) 24.6752i 0.845854i
\(852\) 0 0
\(853\) 37.8617 1.29636 0.648181 0.761487i \(-0.275530\pi\)
0.648181 + 0.761487i \(0.275530\pi\)
\(854\) 0 0
\(855\) 27.3693 + 3.46410i 0.936011 + 0.118470i
\(856\) 0 0
\(857\) 20.2384i 0.691331i −0.938358 0.345666i \(-0.887653\pi\)
0.938358 0.345666i \(-0.112347\pi\)
\(858\) 0 0
\(859\) 52.2682i 1.78337i 0.452657 + 0.891685i \(0.350476\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(860\) 0 0
\(861\) 78.7386 2.68341
\(862\) 0 0
\(863\) 15.3752i 0.523379i 0.965152 + 0.261689i \(0.0842796\pi\)
−0.965152 + 0.261689i \(0.915720\pi\)
\(864\) 0 0
\(865\) 24.0000 + 3.03765i 0.816024 + 0.103283i
\(866\) 0 0
\(867\) −33.3002 −1.13093
\(868\) 0 0
\(869\) 14.4233 0.489277
\(870\) 0 0
\(871\) 54.7386 1.85475
\(872\) 0 0
\(873\) 29.3693 0.994001
\(874\) 0 0
\(875\) −36.0000 14.2829i −1.21702 0.482849i
\(876\) 0 0
\(877\) 41.0230i 1.38525i 0.721298 + 0.692625i \(0.243546\pi\)
−0.721298 + 0.692625i \(0.756454\pi\)
\(878\) 0 0
\(879\) 3.50758 0.118308
\(880\) 0 0
\(881\) 45.4598i 1.53158i −0.643092 0.765789i \(-0.722349\pi\)
0.643092 0.765789i \(-0.277651\pi\)
\(882\) 0 0
\(883\) 35.9204i 1.20882i −0.796675 0.604408i \(-0.793410\pi\)
0.796675 0.604408i \(-0.206590\pi\)
\(884\) 0 0
\(885\) −0.807764 + 6.38202i −0.0271527 + 0.214529i
\(886\) 0 0
\(887\) 3.68466 0.123719 0.0618594 0.998085i \(-0.480297\pi\)
0.0618594 + 0.998085i \(0.480297\pi\)
\(888\) 0 0
\(889\) 7.78110i 0.260970i
\(890\) 0 0
\(891\) 6.80847i 0.228092i
\(892\) 0 0
\(893\) 40.4768i 1.35451i
\(894\) 0 0
\(895\) −3.36932 + 26.6204i −0.112624 + 0.889823i
\(896\) 0 0
\(897\) −39.3693 −1.31450
\(898\) 0 0
\(899\) −27.3693 32.5760i −0.912818 1.08647i
\(900\) 0 0
\(901\) 8.87348i 0.295618i
\(902\) 0 0
\(903\) 48.2579i 1.60592i
\(904\) 0 0
\(905\) 3.84233 30.3576i 0.127723 1.00912i
\(906\) 0 0
\(907\) 40.4924 1.34453 0.672264 0.740311i \(-0.265322\pi\)
0.672264 + 0.740311i \(0.265322\pi\)
\(908\) 0 0
\(909\) 24.6752i 0.818423i
\(910\) 0 0
\(911\) 9.84612i 0.326216i 0.986608 + 0.163108i \(0.0521520\pi\)
−0.986608 + 0.163108i \(0.947848\pi\)
\(912\) 0 0
\(913\) −10.1080 −0.334524
\(914\) 0 0
\(915\) 11.0540 + 1.39909i 0.365433 + 0.0462524i
\(916\) 0 0
\(917\) 49.4773 1.63388
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) −8.17708 −0.269444
\(922\) 0 0
\(923\) 9.96585i 0.328030i
\(924\) 0 0
\(925\) −34.4924 8.87348i −1.13410 0.291758i
\(926\) 0 0
\(927\) 5.40938i 0.177667i
\(928\) 0 0
\(929\) 48.7386 1.59906 0.799531 0.600624i \(-0.205081\pi\)
0.799531 + 0.600624i \(0.205081\pi\)
\(930\) 0 0
\(931\) 17.3205i 0.567657i
\(932\) 0 0
\(933\) 1.09238i 0.0357628i
\(934\) 0 0
\(935\) −4.31534 0.546188i −0.141127 0.0178622i
\(936\) 0 0
\(937\) 31.6034i 1.03244i −0.856457 0.516218i \(-0.827339\pi\)
0.856457 0.516218i \(-0.172661\pi\)
\(938\) 0 0
\(939\) 6.38202i 0.208269i
\(940\) 0 0
\(941\) 32.4233 1.05697 0.528485 0.848943i \(-0.322760\pi\)
0.528485 + 0.848943i \(0.322760\pi\)
\(942\) 0 0
\(943\) 30.7386 1.00099
\(944\) 0 0
\(945\) 11.0540 + 1.39909i 0.359586 + 0.0455123i
\(946\) 0 0
\(947\) −23.6847 −0.769648 −0.384824 0.922990i \(-0.625738\pi\)
−0.384824 + 0.922990i \(0.625738\pi\)
\(948\) 0 0
\(949\) 31.6034i 1.02589i
\(950\) 0 0
\(951\) 5.12311 0.166128
\(952\) 0 0
\(953\) 10.2726i 0.332761i 0.986062 + 0.166381i \(0.0532080\pi\)
−0.986062 + 0.166381i \(0.946792\pi\)
\(954\) 0 0
\(955\) −7.68466 0.972638i −0.248670 0.0314738i
\(956\) 0 0
\(957\) −8.63068 10.2726i −0.278990 0.332065i
\(958\) 0 0
\(959\) 46.3127i 1.49551i
\(960\) 0 0
\(961\) −31.4233 −1.01365
\(962\) 0 0
\(963\) 50.8691i 1.63924i
\(964\) 0 0
\(965\) −2.31534 + 18.2931i −0.0745335 + 0.588877i
\(966\) 0 0
\(967\) −45.9309 −1.47704 −0.738519 0.674233i \(-0.764474\pi\)
−0.738519 + 0.674233i \(0.764474\pi\)
\(968\) 0 0
\(969\) 17.7470i 0.570114i
\(970\) 0 0
\(971\) 45.8862i 1.47256i 0.676678 + 0.736279i \(0.263419\pi\)
−0.676678 + 0.736279i \(0.736581\pi\)
\(972\) 0 0
\(973\) 67.0973i 2.15104i
\(974\) 0 0
\(975\) −14.1577 + 55.0328i −0.453408 + 1.76246i
\(976\) 0 0
\(977\) 6.38202i 0.204179i 0.994775 + 0.102089i \(0.0325528\pi\)
−0.994775 + 0.102089i \(0.967447\pi\)
\(978\) 0 0
\(979\) 8.63068 0.275838
\(980\) 0 0
\(981\) −20.2462 −0.646412
\(982\) 0 0
\(983\) −27.0540 −0.862888 −0.431444 0.902140i \(-0.641996\pi\)
−0.431444 + 0.902140i \(0.641996\pi\)
\(984\) 0 0
\(985\) −24.0000 3.03765i −0.764704 0.0967876i
\(986\) 0 0
\(987\) 103.684i 3.30028i
\(988\) 0 0
\(989\) 18.8393i 0.599056i
\(990\) 0 0
\(991\) 30.7386 0.976445 0.488222 0.872719i \(-0.337645\pi\)
0.488222 + 0.872719i \(0.337645\pi\)
\(992\) 0 0
\(993\) 15.2555i 0.484118i
\(994\) 0 0
\(995\) −4.31534 + 34.0948i −0.136806 + 1.08088i
\(996\) 0 0
\(997\) 59.6155 1.88804 0.944021 0.329884i \(-0.107010\pi\)
0.944021 + 0.329884i \(0.107010\pi\)
\(998\) 0 0
\(999\) 10.2462 0.324176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.j.c.289.4 4
4.3 odd 2 145.2.d.c.144.2 yes 4
5.4 even 2 2320.2.j.a.289.1 4
12.11 even 2 1305.2.f.e.289.3 4
20.3 even 4 725.2.c.f.376.2 8
20.7 even 4 725.2.c.f.376.7 8
20.19 odd 2 145.2.d.a.144.3 4
29.28 even 2 2320.2.j.a.289.2 4
60.59 even 2 1305.2.f.i.289.4 4
116.115 odd 2 145.2.d.a.144.4 yes 4
145.144 even 2 inner 2320.2.j.c.289.3 4
348.347 even 2 1305.2.f.i.289.3 4
580.347 even 4 725.2.c.f.376.1 8
580.463 even 4 725.2.c.f.376.8 8
580.579 odd 2 145.2.d.c.144.1 yes 4
1740.1739 even 2 1305.2.f.e.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.a.144.3 4 20.19 odd 2
145.2.d.a.144.4 yes 4 116.115 odd 2
145.2.d.c.144.1 yes 4 580.579 odd 2
145.2.d.c.144.2 yes 4 4.3 odd 2
725.2.c.f.376.1 8 580.347 even 4
725.2.c.f.376.2 8 20.3 even 4
725.2.c.f.376.7 8 20.7 even 4
725.2.c.f.376.8 8 580.463 even 4
1305.2.f.e.289.3 4 12.11 even 2
1305.2.f.e.289.4 4 1740.1739 even 2
1305.2.f.i.289.3 4 348.347 even 2
1305.2.f.i.289.4 4 60.59 even 2
2320.2.j.a.289.1 4 5.4 even 2
2320.2.j.a.289.2 4 29.28 even 2
2320.2.j.c.289.3 4 145.144 even 2 inner
2320.2.j.c.289.4 4 1.1 even 1 trivial