Properties

Label 2320.2
Level 2320
Weight 2
Dimension 82232
Nonzero newspaces 52
Sturm bound 645120
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 52 \)
Sturm bound: \(645120\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2320))\).

Total New Old
Modular forms 164416 83692 80724
Cusp forms 158145 82232 75913
Eisenstein series 6271 1460 4811

Trace form

\( 82232 q - 104 q^{2} - 80 q^{3} - 96 q^{4} - 194 q^{5} - 288 q^{6} - 72 q^{7} - 80 q^{8} - 20 q^{9} - 152 q^{10} - 220 q^{11} - 112 q^{12} - 120 q^{13} - 112 q^{14} - 82 q^{15} - 336 q^{16} - 216 q^{17}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2320))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2320.2.a \(\chi_{2320}(1, \cdot)\) 2320.2.a.a 1 1
2320.2.a.b 1
2320.2.a.c 1
2320.2.a.d 1
2320.2.a.e 1
2320.2.a.f 1
2320.2.a.g 1
2320.2.a.h 1
2320.2.a.i 2
2320.2.a.j 2
2320.2.a.k 2
2320.2.a.l 3
2320.2.a.m 3
2320.2.a.n 3
2320.2.a.o 3
2320.2.a.p 3
2320.2.a.q 3
2320.2.a.r 3
2320.2.a.s 3
2320.2.a.t 3
2320.2.a.u 5
2320.2.a.v 5
2320.2.a.w 5
2320.2.d \(\chi_{2320}(929, \cdot)\) 2320.2.d.a 2 1
2320.2.d.b 2
2320.2.d.c 4
2320.2.d.d 4
2320.2.d.e 4
2320.2.d.f 4
2320.2.d.g 6
2320.2.d.h 10
2320.2.d.i 10
2320.2.d.j 16
2320.2.d.k 22
2320.2.e \(\chi_{2320}(1449, \cdot)\) None 0 1
2320.2.f \(\chi_{2320}(1161, \cdot)\) None 0 1
2320.2.g \(\chi_{2320}(1681, \cdot)\) 2320.2.g.a 2 1
2320.2.g.b 2
2320.2.g.c 2
2320.2.g.d 4
2320.2.g.e 4
2320.2.g.f 4
2320.2.g.g 4
2320.2.g.h 4
2320.2.g.i 6
2320.2.g.j 14
2320.2.g.k 14
2320.2.j \(\chi_{2320}(289, \cdot)\) 2320.2.j.a 4 1
2320.2.j.b 4
2320.2.j.c 4
2320.2.j.d 8
2320.2.j.e 8
2320.2.j.f 16
2320.2.j.g 22
2320.2.j.h 22
2320.2.k \(\chi_{2320}(2089, \cdot)\) None 0 1
2320.2.p \(\chi_{2320}(521, \cdot)\) None 0 1
2320.2.q \(\chi_{2320}(99, \cdot)\) n/a 712 2
2320.2.t \(\chi_{2320}(347, \cdot)\) n/a 712 2
2320.2.u \(\chi_{2320}(713, \cdot)\) None 0 2
2320.2.w \(\chi_{2320}(17, \cdot)\) n/a 176 2
2320.2.z \(\chi_{2320}(523, \cdot)\) n/a 672 2
2320.2.bb \(\chi_{2320}(331, \cdot)\) n/a 480 2
2320.2.bc \(\chi_{2320}(191, \cdot)\) n/a 120 2
2320.2.bf \(\chi_{2320}(1101, \cdot)\) n/a 480 2
2320.2.bh \(\chi_{2320}(581, \cdot)\) n/a 448 2
2320.2.bi \(\chi_{2320}(1351, \cdot)\) None 0 2
2320.2.bl \(\chi_{2320}(853, \cdot)\) n/a 712 2
2320.2.bo \(\chi_{2320}(1103, \cdot)\) n/a 168 2
2320.2.bp \(\chi_{2320}(1623, \cdot)\) None 0 2
2320.2.bq \(\chi_{2320}(1293, \cdot)\) n/a 712 2
2320.2.bs \(\chi_{2320}(133, \cdot)\) n/a 712 2
2320.2.bu \(\chi_{2320}(407, \cdot)\) None 0 2
2320.2.bv \(\chi_{2320}(463, \cdot)\) n/a 180 2
2320.2.bz \(\chi_{2320}(597, \cdot)\) n/a 712 2
2320.2.cb \(\chi_{2320}(679, \cdot)\) None 0 2
2320.2.cc \(\chi_{2320}(349, \cdot)\) n/a 672 2
2320.2.ce \(\chi_{2320}(869, \cdot)\) n/a 712 2
2320.2.ch \(\chi_{2320}(1119, \cdot)\) n/a 180 2
2320.2.cj \(\chi_{2320}(1259, \cdot)\) n/a 712 2
2320.2.ck \(\chi_{2320}(987, \cdot)\) n/a 672 2
2320.2.cn \(\chi_{2320}(737, \cdot)\) n/a 176 2
2320.2.cp \(\chi_{2320}(1177, \cdot)\) None 0 2
2320.2.cq \(\chi_{2320}(1507, \cdot)\) n/a 712 2
2320.2.cs \(\chi_{2320}(1491, \cdot)\) n/a 480 2
2320.2.cu \(\chi_{2320}(81, \cdot)\) n/a 360 6
2320.2.cv \(\chi_{2320}(121, \cdot)\) None 0 6
2320.2.da \(\chi_{2320}(169, \cdot)\) None 0 6
2320.2.db \(\chi_{2320}(129, \cdot)\) n/a 528 6
2320.2.de \(\chi_{2320}(241, \cdot)\) n/a 360 6
2320.2.df \(\chi_{2320}(281, \cdot)\) None 0 6
2320.2.dg \(\chi_{2320}(9, \cdot)\) None 0 6
2320.2.dh \(\chi_{2320}(49, \cdot)\) n/a 528 6
2320.2.dl \(\chi_{2320}(11, \cdot)\) n/a 2880 12
2320.2.dn \(\chi_{2320}(67, \cdot)\) n/a 4272 12
2320.2.do \(\chi_{2320}(97, \cdot)\) n/a 1056 12
2320.2.dq \(\chi_{2320}(73, \cdot)\) None 0 12
2320.2.dt \(\chi_{2320}(83, \cdot)\) n/a 4272 12
2320.2.du \(\chi_{2320}(19, \cdot)\) n/a 4272 12
2320.2.dw \(\chi_{2320}(79, \cdot)\) n/a 1080 12
2320.2.dz \(\chi_{2320}(429, \cdot)\) n/a 4272 12
2320.2.eb \(\chi_{2320}(109, \cdot)\) n/a 4272 12
2320.2.ec \(\chi_{2320}(39, \cdot)\) None 0 12
2320.2.ef \(\chi_{2320}(437, \cdot)\) n/a 4272 12
2320.2.ei \(\chi_{2320}(63, \cdot)\) n/a 1080 12
2320.2.ej \(\chi_{2320}(7, \cdot)\) None 0 12
2320.2.ek \(\chi_{2320}(293, \cdot)\) n/a 4272 12
2320.2.em \(\chi_{2320}(37, \cdot)\) n/a 4272 12
2320.2.eo \(\chi_{2320}(167, \cdot)\) None 0 12
2320.2.ep \(\chi_{2320}(223, \cdot)\) n/a 1080 12
2320.2.et \(\chi_{2320}(77, \cdot)\) n/a 4272 12
2320.2.ev \(\chi_{2320}(311, \cdot)\) None 0 12
2320.2.ew \(\chi_{2320}(341, \cdot)\) n/a 2880 12
2320.2.ey \(\chi_{2320}(141, \cdot)\) n/a 2880 12
2320.2.fb \(\chi_{2320}(31, \cdot)\) n/a 720 12
2320.2.fc \(\chi_{2320}(171, \cdot)\) n/a 2880 12
2320.2.fe \(\chi_{2320}(123, \cdot)\) n/a 4272 12
2320.2.fh \(\chi_{2320}(537, \cdot)\) None 0 12
2320.2.fj \(\chi_{2320}(113, \cdot)\) n/a 1056 12
2320.2.fk \(\chi_{2320}(187, \cdot)\) n/a 4272 12
2320.2.fn \(\chi_{2320}(259, \cdot)\) n/a 4272 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2320))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2320)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(580))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1160))\)\(^{\oplus 2}\)