Properties

Label 1305.2.f.i.289.3
Level $1305$
Weight $2$
Character 1305.289
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(289,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,-4,-3,0,0,-12,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(1.28078 - 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 1305.289
Dual form 1305.2.f.i.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} +(0.280776 - 2.21837i) q^{5} +3.46410i q^{7} -3.00000 q^{8} +(0.280776 - 2.21837i) q^{10} +0.972638i q^{11} -4.43674i q^{13} +3.46410i q^{14} -1.00000 q^{16} -2.00000 q^{17} -3.46410i q^{19} +(-0.280776 + 2.21837i) q^{20} +0.972638i q^{22} -3.46410i q^{23} +(-4.84233 - 1.24573i) q^{25} -4.43674i q^{26} -3.46410i q^{28} +(-4.12311 - 3.46410i) q^{29} -7.90084i q^{31} +5.00000 q^{32} -2.00000 q^{34} +(7.68466 + 0.972638i) q^{35} -7.12311 q^{37} -3.46410i q^{38} +(-0.842329 + 6.65511i) q^{40} +8.87348i q^{41} -5.43845 q^{43} -0.972638i q^{44} -3.46410i q^{46} -11.6847 q^{47} -5.00000 q^{49} +(-4.84233 - 1.24573i) q^{50} +4.43674i q^{52} -4.43674i q^{53} +(2.15767 + 0.273094i) q^{55} -10.3923i q^{56} +(-4.12311 - 3.46410i) q^{58} +1.12311 q^{59} +1.94528i q^{61} -7.90084i q^{62} +7.00000 q^{64} +(-9.84233 - 1.24573i) q^{65} -12.3376i q^{67} +2.00000 q^{68} +(7.68466 + 0.972638i) q^{70} +2.24621 q^{71} +7.12311 q^{73} -7.12311 q^{74} +3.46410i q^{76} -3.36932 q^{77} +14.8290i q^{79} +(-0.280776 + 2.21837i) q^{80} +8.87348i q^{82} -10.3923i q^{83} +(-0.561553 + 4.43674i) q^{85} -5.43845 q^{86} -2.91791i q^{88} +8.87348i q^{89} +15.3693 q^{91} +3.46410i q^{92} -11.6847 q^{94} +(-7.68466 - 0.972638i) q^{95} -8.24621 q^{97} -5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{4} - 3 q^{5} - 12 q^{8} - 3 q^{10} - 4 q^{16} - 8 q^{17} + 3 q^{20} - 7 q^{25} + 20 q^{32} - 8 q^{34} + 6 q^{35} - 12 q^{37} + 9 q^{40} - 30 q^{43} - 22 q^{47} - 20 q^{49} - 7 q^{50}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.280776 2.21837i 0.125567 0.992085i
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 0.280776 2.21837i 0.0887893 0.701510i
\(11\) 0.972638i 0.293261i 0.989191 + 0.146631i \(0.0468429\pi\)
−0.989191 + 0.146631i \(0.953157\pi\)
\(12\) 0 0
\(13\) 4.43674i 1.23053i −0.788320 0.615265i \(-0.789049\pi\)
0.788320 0.615265i \(-0.210951\pi\)
\(14\) 3.46410i 0.925820i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) −0.280776 + 2.21837i −0.0627835 + 0.496043i
\(21\) 0 0
\(22\) 0.972638i 0.207367i
\(23\) 3.46410i 0.722315i −0.932505 0.361158i \(-0.882382\pi\)
0.932505 0.361158i \(-0.117618\pi\)
\(24\) 0 0
\(25\) −4.84233 1.24573i −0.968466 0.249146i
\(26\) 4.43674i 0.870116i
\(27\) 0 0
\(28\) 3.46410i 0.654654i
\(29\) −4.12311 3.46410i −0.765641 0.643268i
\(30\) 0 0
\(31\) 7.90084i 1.41903i −0.704689 0.709516i \(-0.748913\pi\)
0.704689 0.709516i \(-0.251087\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 7.68466 + 0.972638i 1.29894 + 0.164406i
\(36\) 0 0
\(37\) −7.12311 −1.17103 −0.585516 0.810661i \(-0.699108\pi\)
−0.585516 + 0.810661i \(0.699108\pi\)
\(38\) 3.46410i 0.561951i
\(39\) 0 0
\(40\) −0.842329 + 6.65511i −0.133184 + 1.05227i
\(41\) 8.87348i 1.38580i 0.721031 + 0.692902i \(0.243668\pi\)
−0.721031 + 0.692902i \(0.756332\pi\)
\(42\) 0 0
\(43\) −5.43845 −0.829355 −0.414678 0.909968i \(-0.636106\pi\)
−0.414678 + 0.909968i \(0.636106\pi\)
\(44\) 0.972638i 0.146631i
\(45\) 0 0
\(46\) 3.46410i 0.510754i
\(47\) −11.6847 −1.70438 −0.852191 0.523230i \(-0.824727\pi\)
−0.852191 + 0.523230i \(0.824727\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) −4.84233 1.24573i −0.684809 0.176173i
\(51\) 0 0
\(52\) 4.43674i 0.615265i
\(53\) 4.43674i 0.609433i −0.952443 0.304717i \(-0.901438\pi\)
0.952443 0.304717i \(-0.0985617\pi\)
\(54\) 0 0
\(55\) 2.15767 + 0.273094i 0.290940 + 0.0368240i
\(56\) 10.3923i 1.38873i
\(57\) 0 0
\(58\) −4.12311 3.46410i −0.541390 0.454859i
\(59\) 1.12311 0.146216 0.0731079 0.997324i \(-0.476708\pi\)
0.0731079 + 0.997324i \(0.476708\pi\)
\(60\) 0 0
\(61\) 1.94528i 0.249067i 0.992215 + 0.124534i \(0.0397434\pi\)
−0.992215 + 0.124534i \(0.960257\pi\)
\(62\) 7.90084i 1.00341i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −9.84233 1.24573i −1.22079 0.154514i
\(66\) 0 0
\(67\) 12.3376i 1.50728i −0.657290 0.753638i \(-0.728297\pi\)
0.657290 0.753638i \(-0.271703\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 7.68466 + 0.972638i 0.918492 + 0.116252i
\(71\) 2.24621 0.266576 0.133288 0.991077i \(-0.457446\pi\)
0.133288 + 0.991077i \(0.457446\pi\)
\(72\) 0 0
\(73\) 7.12311 0.833696 0.416848 0.908976i \(-0.363135\pi\)
0.416848 + 0.908976i \(0.363135\pi\)
\(74\) −7.12311 −0.828044
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) −3.36932 −0.383969
\(78\) 0 0
\(79\) 14.8290i 1.66840i 0.551464 + 0.834199i \(0.314070\pi\)
−0.551464 + 0.834199i \(0.685930\pi\)
\(80\) −0.280776 + 2.21837i −0.0313918 + 0.248021i
\(81\) 0 0
\(82\) 8.87348i 0.979912i
\(83\) 10.3923i 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) 0 0
\(85\) −0.561553 + 4.43674i −0.0609090 + 0.481232i
\(86\) −5.43845 −0.586443
\(87\) 0 0
\(88\) 2.91791i 0.311051i
\(89\) 8.87348i 0.940587i 0.882510 + 0.470293i \(0.155852\pi\)
−0.882510 + 0.470293i \(0.844148\pi\)
\(90\) 0 0
\(91\) 15.3693 1.61114
\(92\) 3.46410i 0.361158i
\(93\) 0 0
\(94\) −11.6847 −1.20518
\(95\) −7.68466 0.972638i −0.788429 0.0997906i
\(96\) 0 0
\(97\) −8.24621 −0.837276 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(98\) −5.00000 −0.505076
\(99\) 0 0
\(100\) 4.84233 + 1.24573i 0.484233 + 0.124573i
\(101\) 6.92820i 0.689382i 0.938716 + 0.344691i \(0.112016\pi\)
−0.938716 + 0.344691i \(0.887984\pi\)
\(102\) 0 0
\(103\) 1.51883i 0.149654i −0.997197 0.0748272i \(-0.976159\pi\)
0.997197 0.0748272i \(-0.0238405\pi\)
\(104\) 13.3102i 1.30517i
\(105\) 0 0
\(106\) 4.43674i 0.430934i
\(107\) 14.2829i 1.38078i −0.723439 0.690388i \(-0.757440\pi\)
0.723439 0.690388i \(-0.242560\pi\)
\(108\) 0 0
\(109\) −5.68466 −0.544492 −0.272246 0.962228i \(-0.587766\pi\)
−0.272246 + 0.962228i \(0.587766\pi\)
\(110\) 2.15767 + 0.273094i 0.205726 + 0.0260385i
\(111\) 0 0
\(112\) 3.46410i 0.327327i
\(113\) 5.36932 0.505103 0.252551 0.967583i \(-0.418730\pi\)
0.252551 + 0.967583i \(0.418730\pi\)
\(114\) 0 0
\(115\) −7.68466 0.972638i −0.716598 0.0906990i
\(116\) 4.12311 + 3.46410i 0.382821 + 0.321634i
\(117\) 0 0
\(118\) 1.12311 0.103390
\(119\) 6.92820i 0.635107i
\(120\) 0 0
\(121\) 10.0540 0.913998
\(122\) 1.94528i 0.176117i
\(123\) 0 0
\(124\) 7.90084i 0.709516i
\(125\) −4.12311 + 10.3923i −0.368782 + 0.929516i
\(126\) 0 0
\(127\) 2.24621 0.199319 0.0996595 0.995022i \(-0.468225\pi\)
0.0996595 + 0.995022i \(0.468225\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) −9.84233 1.24573i −0.863229 0.109258i
\(131\) 14.2829i 1.24790i −0.781465 0.623949i \(-0.785527\pi\)
0.781465 0.623949i \(-0.214473\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 12.3376i 1.06580i
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 13.3693 1.14222 0.571109 0.820874i \(-0.306513\pi\)
0.571109 + 0.820874i \(0.306513\pi\)
\(138\) 0 0
\(139\) 19.3693 1.64288 0.821442 0.570292i \(-0.193170\pi\)
0.821442 + 0.570292i \(0.193170\pi\)
\(140\) −7.68466 0.972638i −0.649472 0.0822029i
\(141\) 0 0
\(142\) 2.24621 0.188498
\(143\) 4.31534 0.360867
\(144\) 0 0
\(145\) −8.84233 + 8.17394i −0.734315 + 0.678808i
\(146\) 7.12311 0.589512
\(147\) 0 0
\(148\) 7.12311 0.585516
\(149\) 13.6847 1.12109 0.560545 0.828124i \(-0.310592\pi\)
0.560545 + 0.828124i \(0.310592\pi\)
\(150\) 0 0
\(151\) 15.3693 1.25074 0.625369 0.780329i \(-0.284949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(152\) 10.3923i 0.842927i
\(153\) 0 0
\(154\) −3.36932 −0.271507
\(155\) −17.5270 2.21837i −1.40780 0.178184i
\(156\) 0 0
\(157\) −22.4924 −1.79509 −0.897545 0.440922i \(-0.854651\pi\)
−0.897545 + 0.440922i \(0.854651\pi\)
\(158\) 14.8290i 1.17974i
\(159\) 0 0
\(160\) 1.40388 11.0918i 0.110987 0.876888i
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 5.43845 0.425972 0.212986 0.977055i \(-0.431681\pi\)
0.212986 + 0.977055i \(0.431681\pi\)
\(164\) 8.87348i 0.692902i
\(165\) 0 0
\(166\) 10.3923i 0.806599i
\(167\) 8.44703i 0.653651i −0.945085 0.326825i \(-0.894021\pi\)
0.945085 0.326825i \(-0.105979\pi\)
\(168\) 0 0
\(169\) −6.68466 −0.514204
\(170\) −0.561553 + 4.43674i −0.0430691 + 0.340282i
\(171\) 0 0
\(172\) 5.43845 0.414678
\(173\) 10.8188i 0.822535i 0.911515 + 0.411267i \(0.134914\pi\)
−0.911515 + 0.411267i \(0.865086\pi\)
\(174\) 0 0
\(175\) 4.31534 16.7743i 0.326209 1.26802i
\(176\) 0.972638i 0.0733153i
\(177\) 0 0
\(178\) 8.87348i 0.665095i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −13.6847 −1.01717 −0.508586 0.861011i \(-0.669832\pi\)
−0.508586 + 0.861011i \(0.669832\pi\)
\(182\) 15.3693 1.13925
\(183\) 0 0
\(184\) 10.3923i 0.766131i
\(185\) −2.00000 + 15.8017i −0.147043 + 1.16176i
\(186\) 0 0
\(187\) 1.94528i 0.142253i
\(188\) 11.6847 0.852191
\(189\) 0 0
\(190\) −7.68466 0.972638i −0.557504 0.0705626i
\(191\) 3.46410i 0.250654i −0.992116 0.125327i \(-0.960002\pi\)
0.992116 0.125327i \(-0.0399979\pi\)
\(192\) 0 0
\(193\) −8.24621 −0.593575 −0.296788 0.954944i \(-0.595915\pi\)
−0.296788 + 0.954944i \(0.595915\pi\)
\(194\) −8.24621 −0.592043
\(195\) 0 0
\(196\) 5.00000 0.357143
\(197\) 10.8188i 0.770804i −0.922749 0.385402i \(-0.874063\pi\)
0.922749 0.385402i \(-0.125937\pi\)
\(198\) 0 0
\(199\) −15.3693 −1.08950 −0.544751 0.838598i \(-0.683376\pi\)
−0.544751 + 0.838598i \(0.683376\pi\)
\(200\) 14.5270 + 3.73720i 1.02721 + 0.264260i
\(201\) 0 0
\(202\) 6.92820i 0.487467i
\(203\) 12.0000 14.2829i 0.842235 1.00246i
\(204\) 0 0
\(205\) 19.6847 + 2.49146i 1.37484 + 0.174011i
\(206\) 1.51883i 0.105822i
\(207\) 0 0
\(208\) 4.43674i 0.307633i
\(209\) 3.36932 0.233061
\(210\) 0 0
\(211\) 14.8290i 1.02087i −0.859915 0.510437i \(-0.829484\pi\)
0.859915 0.510437i \(-0.170516\pi\)
\(212\) 4.43674i 0.304717i
\(213\) 0 0
\(214\) 14.2829i 0.976356i
\(215\) −1.52699 + 12.0645i −0.104140 + 0.822791i
\(216\) 0 0
\(217\) 27.3693 1.85795
\(218\) −5.68466 −0.385014
\(219\) 0 0
\(220\) −2.15767 0.273094i −0.145470 0.0184120i
\(221\) 8.87348i 0.596895i
\(222\) 0 0
\(223\) 12.3376i 0.826186i 0.910689 + 0.413093i \(0.135551\pi\)
−0.910689 + 0.413093i \(0.864449\pi\)
\(224\) 17.3205i 1.15728i
\(225\) 0 0
\(226\) 5.36932 0.357162
\(227\) 12.3376i 0.818874i 0.912338 + 0.409437i \(0.134275\pi\)
−0.912338 + 0.409437i \(0.865725\pi\)
\(228\) 0 0
\(229\) 15.8017i 1.04420i 0.852883 + 0.522102i \(0.174852\pi\)
−0.852883 + 0.522102i \(0.825148\pi\)
\(230\) −7.68466 0.972638i −0.506711 0.0641339i
\(231\) 0 0
\(232\) 12.3693 + 10.3923i 0.812085 + 0.682288i
\(233\) 2.49146i 0.163221i −0.996664 0.0816106i \(-0.973994\pi\)
0.996664 0.0816106i \(-0.0260064\pi\)
\(234\) 0 0
\(235\) −3.28078 + 25.9209i −0.214014 + 1.69089i
\(236\) −1.12311 −0.0731079
\(237\) 0 0
\(238\) 6.92820i 0.449089i
\(239\) −13.1231 −0.848863 −0.424432 0.905460i \(-0.639526\pi\)
−0.424432 + 0.905460i \(0.639526\pi\)
\(240\) 0 0
\(241\) −1.68466 −0.108518 −0.0542592 0.998527i \(-0.517280\pi\)
−0.0542592 + 0.998527i \(0.517280\pi\)
\(242\) 10.0540 0.646294
\(243\) 0 0
\(244\) 1.94528i 0.124534i
\(245\) −1.40388 + 11.0918i −0.0896907 + 0.708632i
\(246\) 0 0
\(247\) −15.3693 −0.977926
\(248\) 23.7025i 1.50511i
\(249\) 0 0
\(250\) −4.12311 + 10.3923i −0.260768 + 0.657267i
\(251\) 16.7743i 1.05879i −0.848377 0.529393i \(-0.822420\pi\)
0.848377 0.529393i \(-0.177580\pi\)
\(252\) 0 0
\(253\) 3.36932 0.211827
\(254\) 2.24621 0.140940
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 11.3649i 0.708926i 0.935070 + 0.354463i \(0.115336\pi\)
−0.935070 + 0.354463i \(0.884664\pi\)
\(258\) 0 0
\(259\) 24.6752i 1.53324i
\(260\) 9.84233 + 1.24573i 0.610395 + 0.0772570i
\(261\) 0 0
\(262\) 14.2829i 0.882398i
\(263\) 3.68466 0.227206 0.113603 0.993526i \(-0.463761\pi\)
0.113603 + 0.993526i \(0.463761\pi\)
\(264\) 0 0
\(265\) −9.84233 1.24573i −0.604609 0.0765247i
\(266\) 12.0000 0.735767
\(267\) 0 0
\(268\) 12.3376i 0.753638i
\(269\) 15.8017i 0.963446i 0.876324 + 0.481723i \(0.159989\pi\)
−0.876324 + 0.481723i \(0.840011\pi\)
\(270\) 0 0
\(271\) 14.8290i 0.900800i 0.892827 + 0.450400i \(0.148719\pi\)
−0.892827 + 0.450400i \(0.851281\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 13.3693 0.807670
\(275\) 1.21165 4.70983i 0.0730650 0.284014i
\(276\) 0 0
\(277\) 10.8188i 0.650036i 0.945708 + 0.325018i \(0.105370\pi\)
−0.945708 + 0.325018i \(0.894630\pi\)
\(278\) 19.3693 1.16169
\(279\) 0 0
\(280\) −23.0540 2.91791i −1.37774 0.174379i
\(281\) −13.6847 −0.816358 −0.408179 0.912902i \(-0.633836\pi\)
−0.408179 + 0.912902i \(0.633836\pi\)
\(282\) 0 0
\(283\) 14.2829i 0.849028i 0.905421 + 0.424514i \(0.139555\pi\)
−0.905421 + 0.424514i \(0.860445\pi\)
\(284\) −2.24621 −0.133288
\(285\) 0 0
\(286\) 4.31534 0.255171
\(287\) −30.7386 −1.81444
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −8.84233 + 8.17394i −0.519239 + 0.479990i
\(291\) 0 0
\(292\) −7.12311 −0.416848
\(293\) 1.36932 0.0799963 0.0399982 0.999200i \(-0.487265\pi\)
0.0399982 + 0.999200i \(0.487265\pi\)
\(294\) 0 0
\(295\) 0.315342 2.49146i 0.0183599 0.145059i
\(296\) 21.3693 1.24207
\(297\) 0 0
\(298\) 13.6847 0.792731
\(299\) −15.3693 −0.888831
\(300\) 0 0
\(301\) 18.8393i 1.08588i
\(302\) 15.3693 0.884405
\(303\) 0 0
\(304\) 3.46410i 0.198680i
\(305\) 4.31534 + 0.546188i 0.247096 + 0.0312746i
\(306\) 0 0
\(307\) −3.19224 −0.182191 −0.0910953 0.995842i \(-0.529037\pi\)
−0.0910953 + 0.995842i \(0.529037\pi\)
\(308\) 3.36932 0.191985
\(309\) 0 0
\(310\) −17.5270 2.21837i −0.995466 0.125995i
\(311\) 0.426450i 0.0241818i 0.999927 + 0.0120909i \(0.00384874\pi\)
−0.999927 + 0.0120909i \(0.996151\pi\)
\(312\) 0 0
\(313\) 2.49146i 0.140826i 0.997518 + 0.0704129i \(0.0224317\pi\)
−0.997518 + 0.0704129i \(0.977568\pi\)
\(314\) −22.4924 −1.26932
\(315\) 0 0
\(316\) 14.8290i 0.834199i
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 3.36932 4.01029i 0.188646 0.224533i
\(320\) 1.96543 15.5286i 0.109871 0.868074i
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 6.92820i 0.385496i
\(324\) 0 0
\(325\) −5.52699 + 21.4842i −0.306582 + 1.19173i
\(326\) 5.43845 0.301208
\(327\) 0 0
\(328\) 26.6204i 1.46987i
\(329\) 40.4768i 2.23156i
\(330\) 0 0
\(331\) 5.95557i 0.327347i −0.986515 0.163674i \(-0.947666\pi\)
0.986515 0.163674i \(-0.0523344\pi\)
\(332\) 10.3923i 0.570352i
\(333\) 0 0
\(334\) 8.44703i 0.462201i
\(335\) −27.3693 3.46410i −1.49535 0.189264i
\(336\) 0 0
\(337\) −3.75379 −0.204482 −0.102241 0.994760i \(-0.532601\pi\)
−0.102241 + 0.994760i \(0.532601\pi\)
\(338\) −6.68466 −0.363597
\(339\) 0 0
\(340\) 0.561553 4.43674i 0.0304545 0.240616i
\(341\) 7.68466 0.416148
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 16.3153 0.879664
\(345\) 0 0
\(346\) 10.8188i 0.581620i
\(347\) 26.1940i 1.40617i 0.711107 + 0.703083i \(0.248194\pi\)
−0.711107 + 0.703083i \(0.751806\pi\)
\(348\) 0 0
\(349\) 10.3153 0.552168 0.276084 0.961134i \(-0.410963\pi\)
0.276084 + 0.961134i \(0.410963\pi\)
\(350\) 4.31534 16.7743i 0.230665 0.896625i
\(351\) 0 0
\(352\) 4.86319i 0.259209i
\(353\) 17.7470i 0.944575i −0.881444 0.472288i \(-0.843428\pi\)
0.881444 0.472288i \(-0.156572\pi\)
\(354\) 0 0
\(355\) 0.630683 4.98293i 0.0334732 0.264466i
\(356\) 8.87348i 0.470293i
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 21.7572i 1.14830i 0.818749 + 0.574152i \(0.194668\pi\)
−0.818749 + 0.574152i \(0.805332\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) −13.6847 −0.719250
\(363\) 0 0
\(364\) −15.3693 −0.805571
\(365\) 2.00000 15.8017i 0.104685 0.827098i
\(366\) 0 0
\(367\) 28.4924 1.48729 0.743646 0.668573i \(-0.233095\pi\)
0.743646 + 0.668573i \(0.233095\pi\)
\(368\) 3.46410i 0.180579i
\(369\) 0 0
\(370\) −2.00000 + 15.8017i −0.103975 + 0.821490i
\(371\) 15.3693 0.797935
\(372\) 0 0
\(373\) 36.0401i 1.86609i −0.359765 0.933043i \(-0.617143\pi\)
0.359765 0.933043i \(-0.382857\pi\)
\(374\) 1.94528i 0.100588i
\(375\) 0 0
\(376\) 35.0540 1.80777
\(377\) −15.3693 + 18.2931i −0.791560 + 0.942145i
\(378\) 0 0
\(379\) 0.426450i 0.0219053i 0.999940 + 0.0109526i \(0.00348640\pi\)
−0.999940 + 0.0109526i \(0.996514\pi\)
\(380\) 7.68466 + 0.972638i 0.394215 + 0.0498953i
\(381\) 0 0
\(382\) 3.46410i 0.177239i
\(383\) 17.3205i 0.885037i −0.896759 0.442518i \(-0.854085\pi\)
0.896759 0.442518i \(-0.145915\pi\)
\(384\) 0 0
\(385\) −0.946025 + 7.47439i −0.0482139 + 0.380930i
\(386\) −8.24621 −0.419721
\(387\) 0 0
\(388\) 8.24621 0.418638
\(389\) 10.8188i 0.548533i −0.961654 0.274266i \(-0.911565\pi\)
0.961654 0.274266i \(-0.0884350\pi\)
\(390\) 0 0
\(391\) 6.92820i 0.350374i
\(392\) 15.0000 0.757614
\(393\) 0 0
\(394\) 10.8188i 0.545041i
\(395\) 32.8963 + 4.16365i 1.65519 + 0.209496i
\(396\) 0 0
\(397\) 0.546188i 0.0274124i 0.999906 + 0.0137062i \(0.00436295\pi\)
−0.999906 + 0.0137062i \(0.995637\pi\)
\(398\) −15.3693 −0.770394
\(399\) 0 0
\(400\) 4.84233 + 1.24573i 0.242116 + 0.0622866i
\(401\) −15.9309 −0.795550 −0.397775 0.917483i \(-0.630217\pi\)
−0.397775 + 0.917483i \(0.630217\pi\)
\(402\) 0 0
\(403\) −35.0540 −1.74616
\(404\) 6.92820i 0.344691i
\(405\) 0 0
\(406\) 12.0000 14.2829i 0.595550 0.708846i
\(407\) 6.92820i 0.343418i
\(408\) 0 0
\(409\) 3.89055i 0.192375i −0.995363 0.0961877i \(-0.969335\pi\)
0.995363 0.0961877i \(-0.0306649\pi\)
\(410\) 19.6847 + 2.49146i 0.972156 + 0.123045i
\(411\) 0 0
\(412\) 1.51883i 0.0748272i
\(413\) 3.89055i 0.191442i
\(414\) 0 0
\(415\) −23.0540 2.91791i −1.13168 0.143235i
\(416\) 22.1837i 1.08765i
\(417\) 0 0
\(418\) 3.36932 0.164799
\(419\) −14.2462 −0.695973 −0.347986 0.937500i \(-0.613134\pi\)
−0.347986 + 0.937500i \(0.613134\pi\)
\(420\) 0 0
\(421\) 37.4392i 1.82467i −0.409439 0.912337i \(-0.634276\pi\)
0.409439 0.912337i \(-0.365724\pi\)
\(422\) 14.8290i 0.721867i
\(423\) 0 0
\(424\) 13.3102i 0.646401i
\(425\) 9.68466 + 2.49146i 0.469775 + 0.120854i
\(426\) 0 0
\(427\) −6.73863 −0.326105
\(428\) 14.2829i 0.690388i
\(429\) 0 0
\(430\) −1.52699 + 12.0645i −0.0736379 + 0.581801i
\(431\) −8.63068 −0.415725 −0.207863 0.978158i \(-0.566651\pi\)
−0.207863 + 0.978158i \(0.566651\pi\)
\(432\) 0 0
\(433\) −16.8769 −0.811052 −0.405526 0.914084i \(-0.632912\pi\)
−0.405526 + 0.914084i \(0.632912\pi\)
\(434\) 27.3693 1.31377
\(435\) 0 0
\(436\) 5.68466 0.272246
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 15.3693 0.733537 0.366769 0.930312i \(-0.380464\pi\)
0.366769 + 0.930312i \(0.380464\pi\)
\(440\) −6.47301 0.819281i −0.308589 0.0390577i
\(441\) 0 0
\(442\) 8.87348i 0.422068i
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) 19.6847 + 2.49146i 0.933142 + 0.118107i
\(446\) 12.3376i 0.584201i
\(447\) 0 0
\(448\) 24.2487i 1.14564i
\(449\) 17.7470i 0.837531i 0.908094 + 0.418765i \(0.137537\pi\)
−0.908094 + 0.418765i \(0.862463\pi\)
\(450\) 0 0
\(451\) −8.63068 −0.406403
\(452\) −5.36932 −0.252551
\(453\) 0 0
\(454\) 12.3376i 0.579031i
\(455\) 4.31534 34.0948i 0.202306 1.59839i
\(456\) 0 0
\(457\) 3.89055i 0.181992i 0.995851 + 0.0909962i \(0.0290051\pi\)
−0.995851 + 0.0909962i \(0.970995\pi\)
\(458\) 15.8017i 0.738364i
\(459\) 0 0
\(460\) 7.68466 + 0.972638i 0.358299 + 0.0453495i
\(461\) 34.6410i 1.61339i −0.590966 0.806696i \(-0.701253\pi\)
0.590966 0.806696i \(-0.298747\pi\)
\(462\) 0 0
\(463\) 7.35465i 0.341800i 0.985288 + 0.170900i \(0.0546675\pi\)
−0.985288 + 0.170900i \(0.945333\pi\)
\(464\) 4.12311 + 3.46410i 0.191410 + 0.160817i
\(465\) 0 0
\(466\) 2.49146i 0.115415i
\(467\) −8.31534 −0.384788 −0.192394 0.981318i \(-0.561625\pi\)
−0.192394 + 0.981318i \(0.561625\pi\)
\(468\) 0 0
\(469\) 42.7386 1.97349
\(470\) −3.28078 + 25.9209i −0.151331 + 1.19564i
\(471\) 0 0
\(472\) −3.36932 −0.155085
\(473\) 5.28964i 0.243218i
\(474\) 0 0
\(475\) −4.31534 + 16.7743i −0.198001 + 0.769659i
\(476\) 6.92820i 0.317554i
\(477\) 0 0
\(478\) −13.1231 −0.600237
\(479\) 2.91791i 0.133323i 0.997776 + 0.0666614i \(0.0212347\pi\)
−0.997776 + 0.0666614i \(0.978765\pi\)
\(480\) 0 0
\(481\) 31.6034i 1.44099i
\(482\) −1.68466 −0.0767341
\(483\) 0 0
\(484\) −10.0540 −0.456999
\(485\) −2.31534 + 18.2931i −0.105134 + 0.830649i
\(486\) 0 0
\(487\) 32.0298i 1.45141i −0.688006 0.725705i \(-0.741514\pi\)
0.688006 0.725705i \(-0.258486\pi\)
\(488\) 5.83583i 0.264176i
\(489\) 0 0
\(490\) −1.40388 + 11.0918i −0.0634209 + 0.501079i
\(491\) 29.5384i 1.33305i −0.745484 0.666524i \(-0.767782\pi\)
0.745484 0.666524i \(-0.232218\pi\)
\(492\) 0 0
\(493\) 8.24621 + 6.92820i 0.371391 + 0.312031i
\(494\) −15.3693 −0.691498
\(495\) 0 0
\(496\) 7.90084i 0.354758i
\(497\) 7.78110i 0.349030i
\(498\) 0 0
\(499\) −4.63068 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(500\) 4.12311 10.3923i 0.184391 0.464758i
\(501\) 0 0
\(502\) 16.7743i 0.748675i
\(503\) 4.94602 0.220532 0.110266 0.993902i \(-0.464830\pi\)
0.110266 + 0.993902i \(0.464830\pi\)
\(504\) 0 0
\(505\) 15.3693 + 1.94528i 0.683926 + 0.0865636i
\(506\) 3.36932 0.149784
\(507\) 0 0
\(508\) −2.24621 −0.0996595
\(509\) 29.0540 1.28779 0.643897 0.765112i \(-0.277316\pi\)
0.643897 + 0.765112i \(0.277316\pi\)
\(510\) 0 0
\(511\) 24.6752i 1.09156i
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 11.3649i 0.501286i
\(515\) −3.36932 0.426450i −0.148470 0.0187916i
\(516\) 0 0
\(517\) 11.3649i 0.499830i
\(518\) 24.6752i 1.08416i
\(519\) 0 0
\(520\) 29.5270 + 3.73720i 1.29484 + 0.163887i
\(521\) −22.3153 −0.977653 −0.488826 0.872381i \(-0.662575\pi\)
−0.488826 + 0.872381i \(0.662575\pi\)
\(522\) 0 0
\(523\) 26.1940i 1.14538i −0.819771 0.572692i \(-0.805899\pi\)
0.819771 0.572692i \(-0.194101\pi\)
\(524\) 14.2829i 0.623949i
\(525\) 0 0
\(526\) 3.68466 0.160659
\(527\) 15.8017i 0.688332i
\(528\) 0 0
\(529\) 11.0000 0.478261
\(530\) −9.84233 1.24573i −0.427523 0.0541111i
\(531\) 0 0
\(532\) −12.0000 −0.520266
\(533\) 39.3693 1.70527
\(534\) 0 0
\(535\) −31.6847 4.01029i −1.36985 0.173380i
\(536\) 37.0127i 1.59871i
\(537\) 0 0
\(538\) 15.8017i 0.681259i
\(539\) 4.86319i 0.209472i
\(540\) 0 0
\(541\) 38.5316i 1.65660i −0.560284 0.828301i \(-0.689308\pi\)
0.560284 0.828301i \(-0.310692\pi\)
\(542\) 14.8290i 0.636962i
\(543\) 0 0
\(544\) −10.0000 −0.428746
\(545\) −1.59612 + 12.6107i −0.0683702 + 0.540182i
\(546\) 0 0
\(547\) 7.35465i 0.314462i −0.987562 0.157231i \(-0.949743\pi\)
0.987562 0.157231i \(-0.0502568\pi\)
\(548\) −13.3693 −0.571109
\(549\) 0 0
\(550\) 1.21165 4.70983i 0.0516648 0.200828i
\(551\) −12.0000 + 14.2829i −0.511217 + 0.608470i
\(552\) 0 0
\(553\) −51.3693 −2.18445
\(554\) 10.8188i 0.459645i
\(555\) 0 0
\(556\) −19.3693 −0.821442
\(557\) 6.92820i 0.293557i −0.989169 0.146779i \(-0.953109\pi\)
0.989169 0.146779i \(-0.0468905\pi\)
\(558\) 0 0
\(559\) 24.1290i 1.02055i
\(560\) −7.68466 0.972638i −0.324736 0.0411015i
\(561\) 0 0
\(562\) −13.6847 −0.577252
\(563\) −15.6847 −0.661030 −0.330515 0.943801i \(-0.607222\pi\)
−0.330515 + 0.943801i \(0.607222\pi\)
\(564\) 0 0
\(565\) 1.50758 11.9111i 0.0634243 0.501105i
\(566\) 14.2829i 0.600353i
\(567\) 0 0
\(568\) −6.73863 −0.282747
\(569\) 3.89055i 0.163100i 0.996669 + 0.0815502i \(0.0259871\pi\)
−0.996669 + 0.0815502i \(0.974013\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −4.31534 −0.180433
\(573\) 0 0
\(574\) −30.7386 −1.28301
\(575\) −4.31534 + 16.7743i −0.179962 + 0.699538i
\(576\) 0 0
\(577\) 44.2462 1.84199 0.920997 0.389570i \(-0.127376\pi\)
0.920997 + 0.389570i \(0.127376\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 8.84233 8.17394i 0.367158 0.339404i
\(581\) 36.0000 1.49353
\(582\) 0 0
\(583\) 4.31534 0.178723
\(584\) −21.3693 −0.884269
\(585\) 0 0
\(586\) 1.36932 0.0565660
\(587\) 13.4300i 0.554314i 0.960825 + 0.277157i \(0.0893921\pi\)
−0.960825 + 0.277157i \(0.910608\pi\)
\(588\) 0 0
\(589\) −27.3693 −1.12773
\(590\) 0.315342 2.49146i 0.0129824 0.102572i
\(591\) 0 0
\(592\) 7.12311 0.292758
\(593\) 6.38202i 0.262078i −0.991377 0.131039i \(-0.958169\pi\)
0.991377 0.131039i \(-0.0418313\pi\)
\(594\) 0 0
\(595\) −15.3693 1.94528i −0.630081 0.0797485i
\(596\) −13.6847 −0.560545
\(597\) 0 0
\(598\) −15.3693 −0.628498
\(599\) 0.972638i 0.0397409i −0.999803 0.0198705i \(-0.993675\pi\)
0.999803 0.0198705i \(-0.00632538\pi\)
\(600\) 0 0
\(601\) 8.87348i 0.361957i 0.983487 + 0.180978i \(0.0579264\pi\)
−0.983487 + 0.180978i \(0.942074\pi\)
\(602\) 18.8393i 0.767834i
\(603\) 0 0
\(604\) −15.3693 −0.625369
\(605\) 2.82292 22.3034i 0.114768 0.906764i
\(606\) 0 0
\(607\) −0.177081 −0.00718749 −0.00359375 0.999994i \(-0.501144\pi\)
−0.00359375 + 0.999994i \(0.501144\pi\)
\(608\) 17.3205i 0.702439i
\(609\) 0 0
\(610\) 4.31534 + 0.546188i 0.174723 + 0.0221145i
\(611\) 51.8418i 2.09729i
\(612\) 0 0
\(613\) 14.4026i 0.581715i 0.956766 + 0.290858i \(0.0939406\pi\)
−0.956766 + 0.290858i \(0.906059\pi\)
\(614\) −3.19224 −0.128828
\(615\) 0 0
\(616\) 10.1080 0.407261
\(617\) 13.3693 0.538228 0.269114 0.963108i \(-0.413269\pi\)
0.269114 + 0.963108i \(0.413269\pi\)
\(618\) 0 0
\(619\) 10.9385i 0.439655i −0.975539 0.219828i \(-0.929451\pi\)
0.975539 0.219828i \(-0.0705495\pi\)
\(620\) 17.5270 + 2.21837i 0.703901 + 0.0890919i
\(621\) 0 0
\(622\) 0.426450i 0.0170991i
\(623\) −30.7386 −1.23152
\(624\) 0 0
\(625\) 21.8963 + 12.0645i 0.875852 + 0.482579i
\(626\) 2.49146i 0.0995789i
\(627\) 0 0
\(628\) 22.4924 0.897545
\(629\) 14.2462 0.568034
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 44.4871i 1.76960i
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) 0.630683 4.98293i 0.0250279 0.197741i
\(636\) 0 0
\(637\) 22.1837i 0.878950i
\(638\) 3.36932 4.01029i 0.133393 0.158769i
\(639\) 0 0
\(640\) −0.842329 + 6.65511i −0.0332960 + 0.263066i
\(641\) 4.98293i 0.196814i 0.995146 + 0.0984069i \(0.0313747\pi\)
−0.995146 + 0.0984069i \(0.968625\pi\)
\(642\) 0 0
\(643\) 35.0675i 1.38293i −0.722412 0.691463i \(-0.756967\pi\)
0.722412 0.691463i \(-0.243033\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 6.92820i 0.272587i
\(647\) 48.9239i 1.92340i −0.274111 0.961698i \(-0.588384\pi\)
0.274111 0.961698i \(-0.411616\pi\)
\(648\) 0 0
\(649\) 1.09238i 0.0428795i
\(650\) −5.52699 + 21.4842i −0.216786 + 0.842678i
\(651\) 0 0
\(652\) −5.43845 −0.212986
\(653\) −28.7386 −1.12463 −0.562315 0.826923i \(-0.690089\pi\)
−0.562315 + 0.826923i \(0.690089\pi\)
\(654\) 0 0
\(655\) −31.6847 4.01029i −1.23802 0.156695i
\(656\) 8.87348i 0.346451i
\(657\) 0 0
\(658\) 40.4768i 1.57795i
\(659\) 35.6137i 1.38731i −0.720307 0.693655i \(-0.755999\pi\)
0.720307 0.693655i \(-0.244001\pi\)
\(660\) 0 0
\(661\) −24.7386 −0.962221 −0.481111 0.876660i \(-0.659766\pi\)
−0.481111 + 0.876660i \(0.659766\pi\)
\(662\) 5.95557i 0.231470i
\(663\) 0 0
\(664\) 31.1769i 1.20990i
\(665\) 3.36932 26.6204i 0.130657 1.03230i
\(666\) 0 0
\(667\) −12.0000 + 14.2829i −0.464642 + 0.553034i
\(668\) 8.44703i 0.326825i
\(669\) 0 0
\(670\) −27.3693 3.46410i −1.05737 0.133830i
\(671\) −1.89205 −0.0730418
\(672\) 0 0
\(673\) 29.1119i 1.12218i 0.827754 + 0.561091i \(0.189618\pi\)
−0.827754 + 0.561091i \(0.810382\pi\)
\(674\) −3.75379 −0.144591
\(675\) 0 0
\(676\) 6.68466 0.257102
\(677\) −13.3693 −0.513825 −0.256912 0.966435i \(-0.582705\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(678\) 0 0
\(679\) 28.5657i 1.09625i
\(680\) 1.68466 13.3102i 0.0646037 0.510424i
\(681\) 0 0
\(682\) 7.68466 0.294261
\(683\) 16.2281i 0.620952i 0.950581 + 0.310476i \(0.100488\pi\)
−0.950581 + 0.310476i \(0.899512\pi\)
\(684\) 0 0
\(685\) 3.75379 29.6581i 0.143425 1.13318i
\(686\) 6.92820i 0.264520i
\(687\) 0 0
\(688\) 5.43845 0.207339
\(689\) −19.6847 −0.749926
\(690\) 0 0
\(691\) 18.7386 0.712851 0.356426 0.934324i \(-0.383995\pi\)
0.356426 + 0.934324i \(0.383995\pi\)
\(692\) 10.8188i 0.411267i
\(693\) 0 0
\(694\) 26.1940i 0.994310i
\(695\) 5.43845 42.9683i 0.206292 1.62988i
\(696\) 0 0
\(697\) 17.7470i 0.672214i
\(698\) 10.3153 0.390441
\(699\) 0 0
\(700\) −4.31534 + 16.7743i −0.163105 + 0.634010i
\(701\) 50.8078 1.91898 0.959491 0.281738i \(-0.0909109\pi\)
0.959491 + 0.281738i \(0.0909109\pi\)
\(702\) 0 0
\(703\) 24.6752i 0.930641i
\(704\) 6.80847i 0.256604i
\(705\) 0 0
\(706\) 17.7470i 0.667916i
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) −6.31534 −0.237178 −0.118589 0.992943i \(-0.537837\pi\)
−0.118589 + 0.992943i \(0.537837\pi\)
\(710\) 0.630683 4.98293i 0.0236691 0.187006i
\(711\) 0 0
\(712\) 26.6204i 0.997643i
\(713\) −27.3693 −1.02499
\(714\) 0 0
\(715\) 1.21165 9.57302i 0.0453130 0.358011i
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 21.7572i 0.811973i
\(719\) −26.2462 −0.978819 −0.489409 0.872054i \(-0.662788\pi\)
−0.489409 + 0.872054i \(0.662788\pi\)
\(720\) 0 0
\(721\) 5.26137 0.195944
\(722\) 7.00000 0.260513
\(723\) 0 0
\(724\) 13.6847 0.508586
\(725\) 15.6501 + 21.9106i 0.581230 + 0.813739i
\(726\) 0 0
\(727\) 4.49242 0.166615 0.0833074 0.996524i \(-0.473452\pi\)
0.0833074 + 0.996524i \(0.473452\pi\)
\(728\) −46.1080 −1.70887
\(729\) 0 0
\(730\) 2.00000 15.8017i 0.0740233 0.584847i
\(731\) 10.8769 0.402296
\(732\) 0 0
\(733\) 16.8769 0.623362 0.311681 0.950187i \(-0.399108\pi\)
0.311681 + 0.950187i \(0.399108\pi\)
\(734\) 28.4924 1.05167
\(735\) 0 0
\(736\) 17.3205i 0.638442i
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) 27.5931i 1.01503i −0.861644 0.507514i \(-0.830565\pi\)
0.861644 0.507514i \(-0.169435\pi\)
\(740\) 2.00000 15.8017i 0.0735215 0.580881i
\(741\) 0 0
\(742\) 15.3693 0.564225
\(743\) −32.0000 −1.17397 −0.586983 0.809599i \(-0.699684\pi\)
−0.586983 + 0.809599i \(0.699684\pi\)
\(744\) 0 0
\(745\) 3.84233 30.3576i 0.140772 1.11222i
\(746\) 36.0401i 1.31952i
\(747\) 0 0
\(748\) 1.94528i 0.0711263i
\(749\) 49.4773 1.80786
\(750\) 0 0
\(751\) 6.50175i 0.237252i −0.992939 0.118626i \(-0.962151\pi\)
0.992939 0.118626i \(-0.0378490\pi\)
\(752\) 11.6847 0.426096
\(753\) 0 0
\(754\) −15.3693 + 18.2931i −0.559718 + 0.666197i
\(755\) 4.31534 34.0948i 0.157051 1.24084i
\(756\) 0 0
\(757\) −15.7538 −0.572581 −0.286291 0.958143i \(-0.592422\pi\)
−0.286291 + 0.958143i \(0.592422\pi\)
\(758\) 0.426450i 0.0154894i
\(759\) 0 0
\(760\) 23.0540 + 2.91791i 0.836256 + 0.105844i
\(761\) 1.50758 0.0546496 0.0273248 0.999627i \(-0.491301\pi\)
0.0273248 + 0.999627i \(0.491301\pi\)
\(762\) 0 0
\(763\) 19.6922i 0.712907i
\(764\) 3.46410i 0.125327i
\(765\) 0 0
\(766\) 17.3205i 0.625815i
\(767\) 4.98293i 0.179923i
\(768\) 0 0
\(769\) 32.6957i 1.17904i −0.807754 0.589519i \(-0.799317\pi\)
0.807754 0.589519i \(-0.200683\pi\)
\(770\) −0.946025 + 7.47439i −0.0340924 + 0.269358i
\(771\) 0 0
\(772\) 8.24621 0.296788
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 0 0
\(775\) −9.84233 + 38.2585i −0.353547 + 1.37428i
\(776\) 24.7386 0.888065
\(777\) 0 0
\(778\) 10.8188i 0.387871i
\(779\) 30.7386 1.10133
\(780\) 0 0
\(781\) 2.18475i 0.0781765i
\(782\) 6.92820i 0.247752i
\(783\) 0 0
\(784\) 5.00000 0.178571
\(785\) −6.31534 + 49.8965i −0.225404 + 1.78088i
\(786\) 0 0
\(787\) 12.3376i 0.439787i −0.975524 0.219894i \(-0.929429\pi\)
0.975524 0.219894i \(-0.0705710\pi\)
\(788\) 10.8188i 0.385402i
\(789\) 0 0
\(790\) 32.8963 + 4.16365i 1.17040 + 0.148136i
\(791\) 18.5999i 0.661335i
\(792\) 0 0
\(793\) 8.63068 0.306485
\(794\) 0.546188i 0.0193835i
\(795\) 0 0
\(796\) 15.3693 0.544751
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) 23.3693 0.826747
\(800\) −24.2116 6.22866i −0.856011 0.220216i
\(801\) 0 0
\(802\) −15.9309 −0.562539
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 3.36932 26.6204i 0.118753 0.938247i
\(806\) −35.0540 −1.23472
\(807\) 0 0
\(808\) 20.7846i 0.731200i
\(809\) 31.6034i 1.11112i −0.831478 0.555558i \(-0.812505\pi\)
0.831478 0.555558i \(-0.187495\pi\)
\(810\) 0 0
\(811\) 4.63068 0.162605 0.0813026 0.996689i \(-0.474092\pi\)
0.0813026 + 0.996689i \(0.474092\pi\)
\(812\) −12.0000 + 14.2829i −0.421117 + 0.501230i
\(813\) 0 0
\(814\) 6.92820i 0.242833i
\(815\) 1.52699 12.0645i 0.0534880 0.422601i
\(816\) 0 0
\(817\) 18.8393i 0.659105i
\(818\) 3.89055i 0.136030i
\(819\) 0 0
\(820\) −19.6847 2.49146i −0.687418 0.0870057i
\(821\) −47.7926 −1.66797 −0.833987 0.551784i \(-0.813947\pi\)
−0.833987 + 0.551784i \(0.813947\pi\)
\(822\) 0 0
\(823\) 21.7538 0.758289 0.379145 0.925337i \(-0.376218\pi\)
0.379145 + 0.925337i \(0.376218\pi\)
\(824\) 4.55648i 0.158732i
\(825\) 0 0
\(826\) 3.89055i 0.135370i
\(827\) −15.0540 −0.523478 −0.261739 0.965139i \(-0.584296\pi\)
−0.261739 + 0.965139i \(0.584296\pi\)
\(828\) 0 0
\(829\) 23.5828i 0.819064i −0.912296 0.409532i \(-0.865692\pi\)
0.912296 0.409532i \(-0.134308\pi\)
\(830\) −23.0540 2.91791i −0.800215 0.101282i
\(831\) 0 0
\(832\) 31.0572i 1.07671i
\(833\) 10.0000 0.346479
\(834\) 0 0
\(835\) −18.7386 2.37173i −0.648477 0.0820770i
\(836\) −3.36932 −0.116530
\(837\) 0 0
\(838\) −14.2462 −0.492127
\(839\) 18.7196i 0.646272i −0.946352 0.323136i \(-0.895263\pi\)
0.946352 0.323136i \(-0.104737\pi\)
\(840\) 0 0
\(841\) 5.00000 + 28.5657i 0.172414 + 0.985025i
\(842\) 37.4392i 1.29024i
\(843\) 0 0
\(844\) 14.8290i 0.510437i
\(845\) −1.87689 + 14.8290i −0.0645671 + 0.510135i
\(846\) 0 0
\(847\) 34.8280i 1.19670i
\(848\) 4.43674i 0.152358i
\(849\) 0 0
\(850\) 9.68466 + 2.49146i 0.332181 + 0.0854565i
\(851\) 24.6752i 0.845854i
\(852\) 0 0
\(853\) −37.8617 −1.29636 −0.648181 0.761487i \(-0.724470\pi\)
−0.648181 + 0.761487i \(0.724470\pi\)
\(854\) −6.73863 −0.230591
\(855\) 0 0
\(856\) 42.8486i 1.46453i
\(857\) 20.2384i 0.691331i 0.938358 + 0.345666i \(0.112347\pi\)
−0.938358 + 0.345666i \(0.887653\pi\)
\(858\) 0 0
\(859\) 52.2682i 1.78337i 0.452657 + 0.891685i \(0.350476\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(860\) 1.52699 12.0645i 0.0520698 0.411396i
\(861\) 0 0
\(862\) −8.63068 −0.293962
\(863\) 15.3752i 0.523379i 0.965152 + 0.261689i \(0.0842796\pi\)
−0.965152 + 0.261689i \(0.915720\pi\)
\(864\) 0 0
\(865\) 24.0000 + 3.03765i 0.816024 + 0.103283i
\(866\) −16.8769 −0.573500
\(867\) 0 0
\(868\) −27.3693 −0.928975
\(869\) −14.4233 −0.489277
\(870\) 0 0
\(871\) −54.7386 −1.85475
\(872\) 17.0540 0.577520
\(873\) 0 0
\(874\) −12.0000 −0.405906
\(875\) −36.0000 14.2829i −1.21702 0.482849i
\(876\) 0 0
\(877\) 41.0230i 1.38525i 0.721298 + 0.692625i \(0.243546\pi\)
−0.721298 + 0.692625i \(0.756454\pi\)
\(878\) 15.3693 0.518689
\(879\) 0 0
\(880\) −2.15767 0.273094i −0.0727351 0.00920599i
\(881\) 45.4598i 1.53158i −0.643092 0.765789i \(-0.722349\pi\)
0.643092 0.765789i \(-0.277651\pi\)
\(882\) 0 0
\(883\) 35.9204i 1.20882i 0.796675 + 0.604408i \(0.206590\pi\)
−0.796675 + 0.604408i \(0.793410\pi\)
\(884\) 8.87348i 0.298447i
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) −3.68466 −0.123719 −0.0618594 0.998085i \(-0.519703\pi\)
−0.0618594 + 0.998085i \(0.519703\pi\)
\(888\) 0 0
\(889\) 7.78110i 0.260970i
\(890\) 19.6847 + 2.49146i 0.659831 + 0.0835141i
\(891\) 0 0
\(892\) 12.3376i 0.413093i
\(893\) 40.4768i 1.35451i
\(894\) 0 0
\(895\) 3.36932 26.6204i 0.112624 0.889823i
\(896\) 10.3923i 0.347183i
\(897\) 0 0
\(898\) 17.7470i 0.592224i
\(899\) −27.3693 + 32.5760i −0.912818 + 1.08647i
\(900\) 0 0
\(901\) 8.87348i 0.295618i
\(902\) −8.63068 −0.287370
\(903\) 0 0
\(904\) −16.1080 −0.535742
\(905\) −3.84233 + 30.3576i −0.127723 + 1.00912i
\(906\) 0 0
\(907\) 40.4924 1.34453 0.672264 0.740311i \(-0.265322\pi\)
0.672264 + 0.740311i \(0.265322\pi\)
\(908\) 12.3376i 0.409437i
\(909\) 0 0
\(910\) 4.31534 34.0948i 0.143052 1.13023i
\(911\) 9.84612i 0.326216i −0.986608 0.163108i \(-0.947848\pi\)
0.986608 0.163108i \(-0.0521520\pi\)
\(912\) 0 0
\(913\) 10.1080 0.334524
\(914\) 3.89055i 0.128688i
\(915\) 0 0
\(916\) 15.8017i 0.522102i
\(917\) 49.4773 1.63388
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 23.0540 + 2.91791i 0.760067 + 0.0962008i
\(921\) 0 0
\(922\) 34.6410i 1.14084i
\(923\) 9.96585i 0.328030i
\(924\) 0 0
\(925\) 34.4924 + 8.87348i 1.13410 + 0.291758i
\(926\) 7.35465i 0.241689i
\(927\) 0 0
\(928\) −20.6155 17.3205i −0.676738 0.568574i
\(929\) −48.7386 −1.59906 −0.799531 0.600624i \(-0.794919\pi\)
−0.799531 + 0.600624i \(0.794919\pi\)
\(930\) 0 0
\(931\) 17.3205i 0.567657i
\(932\) 2.49146i 0.0816106i
\(933\) 0 0
\(934\) −8.31534 −0.272086
\(935\) −4.31534 0.546188i −0.141127 0.0178622i
\(936\) 0 0
\(937\) 31.6034i 1.03244i −0.856457 0.516218i \(-0.827339\pi\)
0.856457 0.516218i \(-0.172661\pi\)
\(938\) 42.7386 1.39547
\(939\) 0 0
\(940\) 3.28078 25.9209i 0.107007 0.845446i
\(941\) −32.4233 −1.05697 −0.528485 0.848943i \(-0.677240\pi\)
−0.528485 + 0.848943i \(0.677240\pi\)
\(942\) 0 0
\(943\) 30.7386 1.00099
\(944\) −1.12311 −0.0365540
\(945\) 0 0
\(946\) 5.28964i 0.171981i
\(947\) 23.6847 0.769648 0.384824 0.922990i \(-0.374262\pi\)
0.384824 + 0.922990i \(0.374262\pi\)
\(948\) 0 0
\(949\) 31.6034i 1.02589i
\(950\) −4.31534 + 16.7743i −0.140008 + 0.544231i
\(951\) 0 0
\(952\) 20.7846i 0.673633i
\(953\) 10.2726i 0.332761i −0.986062 0.166381i \(-0.946792\pi\)
0.986062 0.166381i \(-0.0532080\pi\)
\(954\) 0 0
\(955\) −7.68466 0.972638i −0.248670 0.0314738i
\(956\) 13.1231 0.424432
\(957\) 0 0
\(958\) 2.91791i 0.0942735i
\(959\) 46.3127i 1.49551i
\(960\) 0 0
\(961\) −31.4233 −1.01365
\(962\) 31.6034i 1.01893i
\(963\) 0 0
\(964\) 1.68466 0.0542592
\(965\) −2.31534 + 18.2931i −0.0745335 + 0.588877i
\(966\) 0 0
\(967\) −45.9309 −1.47704 −0.738519 0.674233i \(-0.764474\pi\)
−0.738519 + 0.674233i \(0.764474\pi\)
\(968\) −30.1619 −0.969441
\(969\) 0 0
\(970\) −2.31534 + 18.2931i −0.0743411 + 0.587358i
\(971\) 45.8862i 1.47256i −0.676678 0.736279i \(-0.736581\pi\)
0.676678 0.736279i \(-0.263419\pi\)
\(972\) 0 0
\(973\) 67.0973i 2.15104i
\(974\) 32.0298i 1.02630i
\(975\) 0 0
\(976\) 1.94528i 0.0622668i
\(977\) 6.38202i 0.204179i −0.994775 0.102089i \(-0.967447\pi\)
0.994775 0.102089i \(-0.0325528\pi\)
\(978\) 0 0
\(979\) −8.63068 −0.275838
\(980\) 1.40388 11.0918i 0.0448454 0.354316i
\(981\) 0 0
\(982\) 29.5384i 0.942607i
\(983\) 27.0540 0.862888 0.431444 0.902140i \(-0.358004\pi\)
0.431444 + 0.902140i \(0.358004\pi\)
\(984\) 0 0
\(985\) −24.0000 3.03765i −0.764704 0.0967876i
\(986\) 8.24621 + 6.92820i 0.262613 + 0.220639i
\(987\) 0 0
\(988\) 15.3693 0.488963
\(989\) 18.8393i 0.599056i
\(990\) 0 0
\(991\) −30.7386 −0.976445 −0.488222 0.872719i \(-0.662355\pi\)
−0.488222 + 0.872719i \(0.662355\pi\)
\(992\) 39.5042i 1.25426i
\(993\) 0 0
\(994\) 7.78110i 0.246802i
\(995\) −4.31534 + 34.0948i −0.136806 + 1.08088i
\(996\) 0 0
\(997\) −59.6155 −1.88804 −0.944021 0.329884i \(-0.892990\pi\)
−0.944021 + 0.329884i \(0.892990\pi\)
\(998\) −4.63068 −0.146582
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.f.i.289.3 4
3.2 odd 2 145.2.d.a.144.4 yes 4
5.4 even 2 1305.2.f.e.289.4 4
12.11 even 2 2320.2.j.a.289.2 4
15.2 even 4 725.2.c.f.376.1 8
15.8 even 4 725.2.c.f.376.8 8
15.14 odd 2 145.2.d.c.144.1 yes 4
29.28 even 2 1305.2.f.e.289.3 4
60.59 even 2 2320.2.j.c.289.3 4
87.86 odd 2 145.2.d.c.144.2 yes 4
145.144 even 2 inner 1305.2.f.i.289.4 4
348.347 even 2 2320.2.j.c.289.4 4
435.173 even 4 725.2.c.f.376.2 8
435.347 even 4 725.2.c.f.376.7 8
435.434 odd 2 145.2.d.a.144.3 4
1740.1739 even 2 2320.2.j.a.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.d.a.144.3 4 435.434 odd 2
145.2.d.a.144.4 yes 4 3.2 odd 2
145.2.d.c.144.1 yes 4 15.14 odd 2
145.2.d.c.144.2 yes 4 87.86 odd 2
725.2.c.f.376.1 8 15.2 even 4
725.2.c.f.376.2 8 435.173 even 4
725.2.c.f.376.7 8 435.347 even 4
725.2.c.f.376.8 8 15.8 even 4
1305.2.f.e.289.3 4 29.28 even 2
1305.2.f.e.289.4 4 5.4 even 2
1305.2.f.i.289.3 4 1.1 even 1 trivial
1305.2.f.i.289.4 4 145.144 even 2 inner
2320.2.j.a.289.1 4 1740.1739 even 2
2320.2.j.a.289.2 4 12.11 even 2
2320.2.j.c.289.3 4 60.59 even 2
2320.2.j.c.289.4 4 348.347 even 2