L(s) = 1 | + 2-s − 2.56·3-s − 4-s + (−0.280 − 2.21i)5-s − 2.56·6-s − 3.46i·7-s − 3·8-s + 3.56·9-s + (−0.280 − 2.21i)10-s − 0.972i·11-s + 2.56·12-s + 4.43i·13-s − 3.46i·14-s + (0.719 + 5.68i)15-s − 16-s − 2·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.47·3-s − 0.5·4-s + (−0.125 − 0.992i)5-s − 1.04·6-s − 1.30i·7-s − 1.06·8-s + 1.18·9-s + (−0.0887 − 0.701i)10-s − 0.293i·11-s + 0.739·12-s + 1.23i·13-s − 0.925i·14-s + (0.185 + 1.46i)15-s − 0.250·16-s − 0.485·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.542 + 0.840i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.542 + 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.284357 - 0.521790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.284357 - 0.521790i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.280 + 2.21i)T \) |
| 29 | \( 1 + (-4.12 - 3.46i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 + 2.56T + 3T^{2} \) |
| 7 | \( 1 + 3.46iT - 7T^{2} \) |
| 11 | \( 1 + 0.972iT - 11T^{2} \) |
| 13 | \( 1 - 4.43iT - 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 3.46iT - 19T^{2} \) |
| 23 | \( 1 + 3.46iT - 23T^{2} \) |
| 31 | \( 1 + 7.90iT - 31T^{2} \) |
| 37 | \( 1 - 7.12T + 37T^{2} \) |
| 41 | \( 1 + 8.87iT - 41T^{2} \) |
| 43 | \( 1 - 5.43T + 43T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 + 4.43iT - 53T^{2} \) |
| 59 | \( 1 + 1.12T + 59T^{2} \) |
| 61 | \( 1 - 1.94iT - 61T^{2} \) |
| 67 | \( 1 - 12.3iT - 67T^{2} \) |
| 71 | \( 1 + 2.24T + 71T^{2} \) |
| 73 | \( 1 + 7.12T + 73T^{2} \) |
| 79 | \( 1 - 14.8iT - 79T^{2} \) |
| 83 | \( 1 + 10.3iT - 83T^{2} \) |
| 89 | \( 1 + 8.87iT - 89T^{2} \) |
| 97 | \( 1 - 8.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82613899410049206639503140625, −11.79365701359136829052983263604, −11.09131888538413100995644265060, −9.799057026236586362811130366651, −8.655837136957002905605725356901, −6.98043752516577185301006267791, −5.90753858714149880635881960624, −4.65542927772928913942823389993, −4.23482001401805972728799863179, −0.57948483866347112329156145828,
3.05314225209909456921490544241, 4.77661296522691771731853788293, 5.77526998599516028280227635690, 6.35900600865415681870294439017, 8.064330824235915064257298429339, 9.603415377311210289407734908116, 10.64137812842595975177262949167, 11.70276802400966372430483100421, 12.28024545849098531653210661479, 13.16767580842412446624849716055