Properties

Label 145.144
Modulus $145$
Conductor $145$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(145, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1,1]))
 
pari: [g,chi] = znchar(Mod(144,145))
 

Kronecker symbol representation

sage: kronecker_character(145)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{145}{\bullet}\right)\)

Basic properties

Modulus: \(145\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 145.d

\(\chi_{145}(144,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{145}) \)

Values on generators

\((117,31)\) → \((-1,-1)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 145 }(144,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{145}(144,\cdot)) = \sum_{r\in \Z/145\Z} \chi_{145}(144,r) e\left(\frac{2r}{145}\right) = 12.0415945788 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 145 }(144,·),\chi_{ 145 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{145}(144,\cdot),\chi_{145}(1,\cdot)) = \sum_{r\in \Z/145\Z} \chi_{145}(144,r) \chi_{145}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 145 }(144,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{145}(144,·)) = \sum_{r \in \Z/145\Z} \chi_{145}(144,r) e\left(\frac{1 r + 2 r^{-1}}{145}\right) = -0.0 \)