Properties

Label 145.2.d.c
Level $145$
Weight $2$
Character orbit 145.d
Analytic conductor $1.158$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(144,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.144"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{2} - 1) q^{3} - q^{4} + ( - \beta_1 + 1) q^{5} + (\beta_{2} - 1) q^{6} - \beta_{3} q^{7} - 3 q^{8} + ( - \beta_{2} + 2) q^{9} + ( - \beta_1 + 1) q^{10} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{11}+ \cdots - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} - 4 q^{4} + 3 q^{5} - 2 q^{6} - 12 q^{8} + 6 q^{9} + 3 q^{10} + 2 q^{12} + 7 q^{15} - 4 q^{16} - 8 q^{17} + 6 q^{18} - 3 q^{20} + 6 q^{24} - 7 q^{25} - 14 q^{27} + 7 q^{30} + 20 q^{32}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} - 25\nu + 16 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 4 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} - 5\nu + 6 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 4\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{3} - 4\beta_{2} - 4\beta _1 - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{2} - 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
144.1
−0.780776 1.35234i
−0.780776 + 1.35234i
1.28078 2.21837i
1.28078 + 2.21837i
1.00000 −2.56155 −1.00000 −0.280776 2.21837i −2.56155 3.46410i −3.00000 3.56155 −0.280776 2.21837i
144.2 1.00000 −2.56155 −1.00000 −0.280776 + 2.21837i −2.56155 3.46410i −3.00000 3.56155 −0.280776 + 2.21837i
144.3 1.00000 1.56155 −1.00000 1.78078 1.35234i 1.56155 3.46410i −3.00000 −0.561553 1.78078 1.35234i
144.4 1.00000 1.56155 −1.00000 1.78078 + 1.35234i 1.56155 3.46410i −3.00000 −0.561553 1.78078 + 1.35234i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.2.d.c yes 4
3.b odd 2 1 1305.2.f.e 4
4.b odd 2 1 2320.2.j.c 4
5.b even 2 1 145.2.d.a 4
5.c odd 4 2 725.2.c.f 8
15.d odd 2 1 1305.2.f.i 4
20.d odd 2 1 2320.2.j.a 4
29.b even 2 1 145.2.d.a 4
87.d odd 2 1 1305.2.f.i 4
116.d odd 2 1 2320.2.j.a 4
145.d even 2 1 inner 145.2.d.c yes 4
145.h odd 4 2 725.2.c.f 8
435.b odd 2 1 1305.2.f.e 4
580.e odd 2 1 2320.2.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.d.a 4 5.b even 2 1
145.2.d.a 4 29.b even 2 1
145.2.d.c yes 4 1.a even 1 1 trivial
145.2.d.c yes 4 145.d even 2 1 inner
725.2.c.f 8 5.c odd 4 2
725.2.c.f 8 145.h odd 4 2
1305.2.f.e 4 3.b odd 2 1
1305.2.f.e 4 435.b odd 2 1
1305.2.f.i 4 15.d odd 2 1
1305.2.f.i 4 87.d odd 2 1
2320.2.j.a 4 20.d odd 2 1
2320.2.j.a 4 116.d odd 2 1
2320.2.j.c 4 4.b odd 2 1
2320.2.j.c 4 580.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(145, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 3 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 39T^{2} + 36 \) Copy content Toggle raw display
$13$ \( T^{4} + 27T^{2} + 144 \) Copy content Toggle raw display
$17$ \( (T + 2)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 10T^{2} + 841 \) Copy content Toggle raw display
$31$ \( T^{4} + 63T^{2} + 36 \) Copy content Toggle raw display
$37$ \( (T^{2} - 6 T - 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 108T^{2} + 2304 \) Copy content Toggle raw display
$43$ \( (T^{2} - 15 T + 52)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 11 T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 27T^{2} + 144 \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T - 8)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 156T^{2} + 576 \) Copy content Toggle raw display
$67$ \( T^{4} + 156T^{2} + 576 \) Copy content Toggle raw display
$71$ \( (T^{2} - 12 T - 32)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 6 T - 8)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 279 T^{2} + 12996 \) Copy content Toggle raw display
$83$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 108T^{2} + 2304 \) Copy content Toggle raw display
$97$ \( (T^{2} - 68)^{2} \) Copy content Toggle raw display
show more
show less