Properties

Label 145.2.d
Level $145$
Weight $2$
Character orbit 145.d
Rep. character $\chi_{145}(144,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $3$
Sturm bound $30$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(30\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(145, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 12 12 0
Eisenstein series 4 4 0

Trace form

\( 12 q + 4 q^{4} + 2 q^{5} - 4 q^{6} + O(q^{10}) \) \( 12 q + 4 q^{4} + 2 q^{5} - 4 q^{6} - 12 q^{16} - 18 q^{20} + 12 q^{24} - 26 q^{25} + 12 q^{29} + 14 q^{30} + 24 q^{34} + 4 q^{35} - 48 q^{36} + 4 q^{45} - 28 q^{49} + 8 q^{51} - 28 q^{54} + 40 q^{59} + 4 q^{64} + 22 q^{65} + 48 q^{71} - 16 q^{74} - 2 q^{80} - 20 q^{81} + 60 q^{86} + 56 q^{91} + 36 q^{94} - 20 q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(145, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
145.2.d.a 145.d 145.d $4$ $1.158$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 145.2.d.a \(-4\) \(2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{2}q^{3}-q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
145.2.d.b 145.d 145.d $4$ $1.158$ \(\Q(i, \sqrt{5})\) None 145.2.d.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+3q^{4}+(-1-\beta _{1})q^{5}+\beta _{1}q^{7}+\cdots\)
145.2.d.c 145.d 145.d $4$ $1.158$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 145.2.d.a \(4\) \(-2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(-1+\beta _{2})q^{3}-q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)