Defining parameters
Level: | \( N \) | \(=\) | \( 145 = 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 145.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(145, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 16 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(145, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
145.2.d.a | $4$ | $1.158$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | None | \(-4\) | \(2\) | \(3\) | \(0\) | \(q-q^{2}-\beta _{2}q^{3}-q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
145.2.d.b | $4$ | $1.158$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q-\beta _{3}q^{2}+3q^{4}+(-1-\beta _{1})q^{5}+\beta _{1}q^{7}+\cdots\) |
145.2.d.c | $4$ | $1.158$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | None | \(4\) | \(-2\) | \(3\) | \(0\) | \(q+q^{2}+(-1+\beta _{2})q^{3}-q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\) |