Learn more

Refine search


Results (1-50 of 95 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM RM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
145.1.f.a 145.f 145.f $2$ $0.072$ \(\Q(\sqrt{-1}) \) None \(\Q(\sqrt{5}) \) \(0\) \(0\) \(0\) \(0\) \(q+iq^{4}-iq^{5}+iq^{9}+(-1-i)q^{11}+\cdots\)
145.1.h.a 145.h 145.h $2$ $0.072$ \(\Q(\sqrt{-1}) \) None \(\Q(\sqrt{29}) \) \(0\) \(0\) \(0\) \(-2\) \(q-iq^{4}-iq^{5}+(-1+i)q^{7}+iq^{9}+\cdots\)
145.2.a.a 145.a 1.a $1$ $1.158$ \(\Q\) None None \(-1\) \(0\) \(-1\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-q^{5}-2q^{7}+3q^{8}-3q^{9}+\cdots\)
145.2.a.b 145.a 1.a $2$ $1.158$ \(\Q(\sqrt{2}) \) None None \(-2\) \(-4\) \(2\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-2q^{3}+(1-2\beta )q^{4}+\cdots\)
145.2.a.c 145.a 1.a $3$ $1.158$ 3.3.148.1 None None \(1\) \(2\) \(3\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+(\beta _{1}+\beta _{2})q^{4}+\cdots\)
145.2.a.d 145.a 1.a $3$ $1.158$ 3.3.148.1 None None \(3\) \(-2\) \(-3\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+\cdots\)
145.2.b.a 145.b 5.b $4$ $1.158$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None None \(0\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(-\beta _{1}-\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\)
145.2.b.b 145.b 5.b $4$ $1.158$ \(\Q(\sqrt{-2}, \sqrt{3})\) None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\)
145.2.b.c 145.b 5.b $6$ $1.158$ 6.0.84345856.2 None None \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{5})q^{3}+(-3+\beta _{3}+\cdots)q^{4}+\cdots\)
145.2.c.a 145.c 29.b $4$ $1.158$ \(\Q(\sqrt{-2}, \sqrt{3})\) None None \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}-q^{5}+\cdots\)
145.2.c.b 145.c 29.b $6$ $1.158$ 6.0.16516096.1 None None \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)
145.2.d.a 145.d 145.d $4$ $1.158$ \(\Q(\sqrt{-3}, \sqrt{17})\) None None \(-4\) \(2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{2}q^{3}-q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
145.2.d.b 145.d 145.d $4$ $1.158$ \(\Q(i, \sqrt{5})\) None None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+3q^{4}+(-1-\beta _{1})q^{5}+\beta _{1}q^{7}+\cdots\)
145.2.d.c 145.d 145.d $4$ $1.158$ \(\Q(\sqrt{-3}, \sqrt{17})\) None None \(4\) \(-2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(-1+\beta _{2})q^{3}-q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
145.2.e.a 145.e 145.e $26$ $1.158$ None None \(0\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
145.2.j.a 145.j 145.j $26$ $1.158$ None None \(-6\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
145.2.k.a 145.k 29.d $24$ $1.158$ None None \(-2\) \(2\) \(4\) \(4\) $\mathrm{SU}(2)[C_{7}]$
145.2.k.b 145.k 29.d $36$ $1.158$ None None \(-2\) \(-2\) \(-6\) \(-8\) $\mathrm{SU}(2)[C_{7}]$
145.2.l.a 145.l 145.l $72$ $1.158$ None None \(0\) \(0\) \(-9\) \(0\) $\mathrm{SU}(2)[C_{14}]$
145.2.m.a 145.m 29.e $24$ $1.158$ None None \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{14}]$
145.2.m.b 145.m 29.e $36$ $1.158$ None None \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{14}]$
145.2.n.a 145.n 145.n $84$ $1.158$ None None \(0\) \(0\) \(-7\) \(0\) $\mathrm{SU}(2)[C_{14}]$
145.2.o.a 145.o 145.o $156$ $1.158$ None None \(-8\) \(-14\) \(-14\) \(-10\) $\mathrm{SU}(2)[C_{28}]$
145.2.t.a 145.t 145.t $156$ $1.158$ None None \(-14\) \(-10\) \(-14\) \(-10\) $\mathrm{SU}(2)[C_{28}]$
145.3.f.a 145.f 145.f $56$ $3.951$ None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
145.3.g.a 145.g 29.c $40$ $3.951$ None None \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
145.3.h.a 145.h 145.h $56$ $3.951$ None None \(0\) \(0\) \(-12\) \(-20\) $\mathrm{SU}(2)[C_{4}]$
145.3.i.a 145.i 5.c $56$ $3.951$ None None \(0\) \(-4\) \(4\) \(12\) $\mathrm{SU}(2)[C_{4}]$
145.3.p.a 145.p 145.p $336$ $3.951$ None None \(-14\) \(-10\) \(-18\) \(-26\) $\mathrm{SU}(2)[C_{28}]$
145.3.q.a 145.q 145.q $336$ $3.951$ None None \(-14\) \(-14\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{28}]$
145.3.r.a 145.r 29.f $240$ $3.951$ None None \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{28}]$
145.3.s.a 145.s 145.s $336$ $3.951$ None None \(0\) \(0\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{28}]$
145.4.a.a 145.a 1.a $1$ $8.555$ \(\Q\) None None \(1\) \(-8\) \(-5\) \(-14\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots\)
145.4.a.b 145.a 1.a $6$ $8.555$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None None \(-7\) \(-13\) \(30\) \(-79\) $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+(-2+\beta _{1}+\beta _{4})q^{3}+\cdots\)
145.4.a.c 145.a 1.a $6$ $8.555$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None None \(-1\) \(-1\) \(-30\) \(3\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-\beta _{3}-\beta _{4})q^{3}+(4+2\beta _{1}+\cdots)q^{4}+\cdots\)
145.4.a.d 145.a 1.a $7$ $8.555$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(6\) \(1\) \(-35\) \(17\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{4})q^{2}-\beta _{3}q^{3}+(8-\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
145.4.a.e 145.a 1.a $8$ $8.555$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None \(5\) \(17\) \(40\) \(33\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2-\beta _{3})q^{3}+(5+\beta _{2}+\cdots)q^{4}+\cdots\)
145.4.b.a 145.b 5.b $18$ $8.555$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None None \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{13}q^{3}+(-2+\beta _{2})q^{4}+\cdots\)
145.4.b.b 145.b 5.b $24$ $8.555$ None None \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$
145.4.c.a 145.c 29.b $14$ $8.555$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None None \(0\) \(0\) \(70\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(-3+\beta _{2})q^{4}+5q^{5}+\cdots\)
145.4.c.b 145.c 29.b $16$ $8.555$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None None \(0\) \(0\) \(-80\) \(38\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{8}q^{3}+(-4+\beta _{2})q^{4}-5q^{5}+\cdots\)
145.4.d.a 145.d 145.d $44$ $8.555$ None None \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$
145.4.e.a 145.e 145.e $86$ $8.555$ None None \(0\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
145.4.j.a 145.j 145.j $86$ $8.555$ None None \(-8\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
145.4.k.a 145.k 29.d $84$ $8.555$ None None \(2\) \(-4\) \(-70\) \(46\) $\mathrm{SU}(2)[C_{7}]$
145.4.k.b 145.k 29.d $96$ $8.555$ None None \(2\) \(4\) \(80\) \(-18\) $\mathrm{SU}(2)[C_{7}]$
145.4.l.a 145.l 145.l $264$ $8.555$ None None \(0\) \(0\) \(-13\) \(0\) $\mathrm{SU}(2)[C_{14}]$
145.4.m.a 145.m 29.e $84$ $8.555$ None None \(0\) \(0\) \(-70\) \(10\) $\mathrm{SU}(2)[C_{14}]$
145.4.m.b 145.m 29.e $96$ $8.555$ None None \(0\) \(0\) \(80\) \(-38\) $\mathrm{SU}(2)[C_{14}]$
145.4.n.a 145.n 145.n $252$ $8.555$ None None \(0\) \(0\) \(9\) \(0\) $\mathrm{SU}(2)[C_{14}]$
Next   displayed columns for results