Properties

Label 1170.2.bp.h.919.4
Level $1170$
Weight $2$
Character 1170.919
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 919.4
Root \(1.98293 + 0.531325i\) of defining polynomial
Character \(\chi\) \(=\) 1170.919
Dual form 1170.2.bp.h.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-2.21432 + 0.311108i) q^{5} +(-3.38028 + 1.95161i) q^{7} +1.00000i q^{8} +(-2.07321 - 0.837733i) q^{10} +(0.533338 - 0.923769i) q^{11} +(2.24483 - 2.82148i) q^{13} -3.90321 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.13545 + 0.655554i) q^{17} +(-3.29605 - 5.70893i) q^{19} +(-1.37659 - 1.76210i) q^{20} +(0.923769 - 0.533338i) q^{22} +(-1.85991 - 1.07382i) q^{23} +(4.80642 - 1.37778i) q^{25} +(3.35482 - 1.32106i) q^{26} +(-3.38028 - 1.95161i) q^{28} +(4.52543 - 7.83827i) q^{29} -6.92396 q^{31} +(-0.866025 + 0.500000i) q^{32} -1.31111 q^{34} +(6.87786 - 5.37311i) q^{35} +(-4.34809 - 2.51037i) q^{37} -6.59210i q^{38} +(-0.311108 - 2.21432i) q^{40} +(-2.97703 + 5.15637i) q^{41} +(-1.73205 + 1.00000i) q^{43} +1.06668 q^{44} +(-1.07382 - 1.85991i) q^{46} +0.0967881i q^{47} +(4.11753 - 7.13177i) q^{49} +(4.85138 + 1.21002i) q^{50} +(3.56589 + 0.533338i) q^{52} -1.49532i q^{53} +(-0.893590 + 2.21145i) q^{55} +(-1.95161 - 3.38028i) q^{56} +(7.83827 - 4.52543i) q^{58} +(-3.59210 - 6.22171i) q^{59} +(-3.94370 - 6.83068i) q^{61} +(-5.99632 - 3.46198i) q^{62} -1.00000 q^{64} +(-4.09298 + 6.94604i) q^{65} +(7.29942 + 4.21432i) q^{67} +(-1.13545 - 0.655554i) q^{68} +(8.64296 - 1.21432i) q^{70} +(-7.73975 - 13.4056i) q^{71} +15.3526i q^{73} +(-2.51037 - 4.34809i) q^{74} +(3.29605 - 5.70893i) q^{76} +4.16346i q^{77} -4.30174 q^{79} +(0.837733 - 2.07321i) q^{80} +(-5.15637 + 2.97703i) q^{82} +9.69381i q^{83} +(2.31031 - 1.80485i) q^{85} -2.00000 q^{86} +(0.923769 + 0.533338i) q^{88} +(-2.26271 + 3.91914i) q^{89} +(-2.08173 + 13.9184i) q^{91} -2.14764i q^{92} +(-0.0483940 + 0.0838209i) q^{94} +(9.07461 + 11.6160i) q^{95} +(-3.68949 + 2.13013i) q^{97} +(7.13177 - 4.11753i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{10} + 6 q^{11} - 20 q^{14} - 6 q^{16} - 26 q^{19} + 4 q^{25} + 28 q^{29} + 24 q^{31} - 16 q^{34} + 6 q^{35} - 4 q^{40} + 4 q^{41} + 12 q^{44} - 4 q^{49} + 8 q^{50} + 12 q^{55} - 10 q^{56}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.21432 + 0.311108i −0.990274 + 0.139132i
\(6\) 0 0
\(7\) −3.38028 + 1.95161i −1.27763 + 0.737638i −0.976411 0.215919i \(-0.930725\pi\)
−0.301215 + 0.953556i \(0.597392\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.07321 0.837733i −0.655607 0.264914i
\(11\) 0.533338 0.923769i 0.160808 0.278527i −0.774351 0.632756i \(-0.781923\pi\)
0.935159 + 0.354229i \(0.115257\pi\)
\(12\) 0 0
\(13\) 2.24483 2.82148i 0.622603 0.782538i
\(14\) −3.90321 −1.04318
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.13545 + 0.655554i −0.275388 + 0.158995i −0.631334 0.775511i \(-0.717492\pi\)
0.355946 + 0.934507i \(0.384159\pi\)
\(18\) 0 0
\(19\) −3.29605 5.70893i −0.756166 1.30972i −0.944792 0.327669i \(-0.893737\pi\)
0.188626 0.982049i \(-0.439597\pi\)
\(20\) −1.37659 1.76210i −0.307814 0.394018i
\(21\) 0 0
\(22\) 0.923769 0.533338i 0.196948 0.113708i
\(23\) −1.85991 1.07382i −0.387819 0.223907i 0.293396 0.955991i \(-0.405215\pi\)
−0.681215 + 0.732084i \(0.738548\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 3.35482 1.32106i 0.657934 0.259081i
\(27\) 0 0
\(28\) −3.38028 1.95161i −0.638813 0.368819i
\(29\) 4.52543 7.83827i 0.840351 1.45553i −0.0492475 0.998787i \(-0.515682\pi\)
0.889598 0.456744i \(-0.150984\pi\)
\(30\) 0 0
\(31\) −6.92396 −1.24358 −0.621790 0.783184i \(-0.713594\pi\)
−0.621790 + 0.783184i \(0.713594\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −1.31111 −0.224853
\(35\) 6.87786 5.37311i 1.16257 0.908222i
\(36\) 0 0
\(37\) −4.34809 2.51037i −0.714822 0.412703i 0.0980220 0.995184i \(-0.468748\pi\)
−0.812844 + 0.582482i \(0.802082\pi\)
\(38\) 6.59210i 1.06938i
\(39\) 0 0
\(40\) −0.311108 2.21432i −0.0491905 0.350115i
\(41\) −2.97703 + 5.15637i −0.464935 + 0.805290i −0.999199 0.0400274i \(-0.987255\pi\)
0.534264 + 0.845318i \(0.320589\pi\)
\(42\) 0 0
\(43\) −1.73205 + 1.00000i −0.264135 + 0.152499i −0.626219 0.779647i \(-0.715399\pi\)
0.362084 + 0.932145i \(0.382065\pi\)
\(44\) 1.06668 0.160808
\(45\) 0 0
\(46\) −1.07382 1.85991i −0.158326 0.274229i
\(47\) 0.0967881i 0.0141180i 0.999975 + 0.00705900i \(0.00224697\pi\)
−0.999975 + 0.00705900i \(0.997753\pi\)
\(48\) 0 0
\(49\) 4.11753 7.13177i 0.588219 1.01882i
\(50\) 4.85138 + 1.21002i 0.686088 + 0.171122i
\(51\) 0 0
\(52\) 3.56589 + 0.533338i 0.494500 + 0.0739607i
\(53\) 1.49532i 0.205397i −0.994713 0.102699i \(-0.967252\pi\)
0.994713 0.102699i \(-0.0327478\pi\)
\(54\) 0 0
\(55\) −0.893590 + 2.21145i −0.120492 + 0.298191i
\(56\) −1.95161 3.38028i −0.260794 0.451709i
\(57\) 0 0
\(58\) 7.83827 4.52543i 1.02922 0.594218i
\(59\) −3.59210 6.22171i −0.467652 0.809997i 0.531665 0.846955i \(-0.321567\pi\)
−0.999317 + 0.0369577i \(0.988233\pi\)
\(60\) 0 0
\(61\) −3.94370 6.83068i −0.504938 0.874579i −0.999984 0.00571183i \(-0.998182\pi\)
0.495045 0.868867i \(-0.335151\pi\)
\(62\) −5.99632 3.46198i −0.761534 0.439672i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.09298 + 6.94604i −0.507672 + 0.861550i
\(66\) 0 0
\(67\) 7.29942 + 4.21432i 0.891766 + 0.514861i 0.874520 0.484990i \(-0.161177\pi\)
0.0172460 + 0.999851i \(0.494510\pi\)
\(68\) −1.13545 0.655554i −0.137694 0.0794976i
\(69\) 0 0
\(70\) 8.64296 1.21432i 1.03303 0.145139i
\(71\) −7.73975 13.4056i −0.918539 1.59096i −0.801636 0.597813i \(-0.796037\pi\)
−0.116903 0.993143i \(-0.537297\pi\)
\(72\) 0 0
\(73\) 15.3526i 1.79689i 0.439091 + 0.898443i \(0.355301\pi\)
−0.439091 + 0.898443i \(0.644699\pi\)
\(74\) −2.51037 4.34809i −0.291825 0.505455i
\(75\) 0 0
\(76\) 3.29605 5.70893i 0.378083 0.654859i
\(77\) 4.16346i 0.474471i
\(78\) 0 0
\(79\) −4.30174 −0.483984 −0.241992 0.970278i \(-0.577801\pi\)
−0.241992 + 0.970278i \(0.577801\pi\)
\(80\) 0.837733 2.07321i 0.0936614 0.231792i
\(81\) 0 0
\(82\) −5.15637 + 2.97703i −0.569426 + 0.328758i
\(83\) 9.69381i 1.06403i 0.846734 + 0.532017i \(0.178566\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(84\) 0 0
\(85\) 2.31031 1.80485i 0.250588 0.195764i
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 0.923769 + 0.533338i 0.0984741 + 0.0568541i
\(89\) −2.26271 + 3.91914i −0.239847 + 0.415428i −0.960670 0.277692i \(-0.910431\pi\)
0.720823 + 0.693119i \(0.243764\pi\)
\(90\) 0 0
\(91\) −2.08173 + 13.9184i −0.218225 + 1.45905i
\(92\) 2.14764i 0.223907i
\(93\) 0 0
\(94\) −0.0483940 + 0.0838209i −0.00499146 + 0.00864547i
\(95\) 9.07461 + 11.6160i 0.931035 + 1.19177i
\(96\) 0 0
\(97\) −3.68949 + 2.13013i −0.374611 + 0.216282i −0.675471 0.737387i \(-0.736060\pi\)
0.300860 + 0.953668i \(0.402726\pi\)
\(98\) 7.13177 4.11753i 0.720418 0.415934i
\(99\) 0 0
\(100\) 3.59641 + 3.47359i 0.359641 + 0.347359i
\(101\) 0.729376 1.26332i 0.0725756 0.125705i −0.827454 0.561534i \(-0.810211\pi\)
0.900029 + 0.435829i \(0.143545\pi\)
\(102\) 0 0
\(103\) 10.2444i 1.00941i 0.863291 + 0.504707i \(0.168399\pi\)
−0.863291 + 0.504707i \(0.831601\pi\)
\(104\) 2.82148 + 2.24483i 0.276669 + 0.220123i
\(105\) 0 0
\(106\) 0.747658 1.29498i 0.0726190 0.125780i
\(107\) −1.91766 1.10716i −0.185387 0.107033i 0.404434 0.914567i \(-0.367468\pi\)
−0.589821 + 0.807534i \(0.700802\pi\)
\(108\) 0 0
\(109\) −0.133353 −0.0127729 −0.00638645 0.999980i \(-0.502033\pi\)
−0.00638645 + 0.999980i \(0.502033\pi\)
\(110\) −1.87959 + 1.46837i −0.179212 + 0.140004i
\(111\) 0 0
\(112\) 3.90321i 0.368819i
\(113\) −12.1244 + 7.00000i −1.14056 + 0.658505i −0.946570 0.322498i \(-0.895477\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) 4.45252 + 1.79915i 0.415199 + 0.167772i
\(116\) 9.05086 0.840351
\(117\) 0 0
\(118\) 7.18421i 0.661360i
\(119\) 2.55877 4.43191i 0.234562 0.406273i
\(120\) 0 0
\(121\) 4.93110 + 8.54092i 0.448282 + 0.776447i
\(122\) 7.88739i 0.714091i
\(123\) 0 0
\(124\) −3.46198 5.99632i −0.310895 0.538486i
\(125\) −10.2143 + 4.54617i −0.913597 + 0.406622i
\(126\) 0 0
\(127\) −8.65214 4.99532i −0.767753 0.443263i 0.0643192 0.997929i \(-0.479512\pi\)
−0.832073 + 0.554667i \(0.812846\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −7.01765 + 3.96896i −0.615488 + 0.348101i
\(131\) −9.25581 −0.808684 −0.404342 0.914608i \(-0.632499\pi\)
−0.404342 + 0.914608i \(0.632499\pi\)
\(132\) 0 0
\(133\) 22.2832 + 12.8652i 1.93220 + 1.11555i
\(134\) 4.21432 + 7.29942i 0.364062 + 0.630573i
\(135\) 0 0
\(136\) −0.655554 1.13545i −0.0562133 0.0973643i
\(137\) 12.8090 7.39530i 1.09435 0.631823i 0.159619 0.987179i \(-0.448974\pi\)
0.934731 + 0.355356i \(0.115640\pi\)
\(138\) 0 0
\(139\) −6.34691 10.9932i −0.538338 0.932428i −0.998994 0.0448494i \(-0.985719\pi\)
0.460656 0.887579i \(-0.347614\pi\)
\(140\) 8.09218 + 3.26985i 0.683914 + 0.276353i
\(141\) 0 0
\(142\) 15.4795i 1.29901i
\(143\) −1.40914 3.57851i −0.117838 0.299250i
\(144\) 0 0
\(145\) −7.58220 + 18.7643i −0.629667 + 1.55829i
\(146\) −7.67630 + 13.2957i −0.635295 + 1.10036i
\(147\) 0 0
\(148\) 5.02074i 0.412703i
\(149\) −3.64296 6.30979i −0.298443 0.516918i 0.677337 0.735673i \(-0.263134\pi\)
−0.975780 + 0.218755i \(0.929801\pi\)
\(150\) 0 0
\(151\) 20.1082 1.63638 0.818190 0.574949i \(-0.194978\pi\)
0.818190 + 0.574949i \(0.194978\pi\)
\(152\) 5.70893 3.29605i 0.463055 0.267345i
\(153\) 0 0
\(154\) −2.08173 + 3.60567i −0.167751 + 0.290553i
\(155\) 15.3319 2.15410i 1.23148 0.173021i
\(156\) 0 0
\(157\) 1.98418i 0.158355i −0.996861 0.0791773i \(-0.974771\pi\)
0.996861 0.0791773i \(-0.0252293\pi\)
\(158\) −3.72542 2.15087i −0.296378 0.171114i
\(159\) 0 0
\(160\) 1.76210 1.37659i 0.139306 0.108829i
\(161\) 8.38271 0.660650
\(162\) 0 0
\(163\) 4.07308 2.35159i 0.319028 0.184191i −0.331931 0.943304i \(-0.607700\pi\)
0.650959 + 0.759113i \(0.274367\pi\)
\(164\) −5.95407 −0.464935
\(165\) 0 0
\(166\) −4.84691 + 8.39509i −0.376193 + 0.651585i
\(167\) −8.39642 4.84767i −0.649734 0.375124i 0.138620 0.990346i \(-0.455733\pi\)
−0.788354 + 0.615221i \(0.789067\pi\)
\(168\) 0 0
\(169\) −2.92149 12.6675i −0.224730 0.974421i
\(170\) 2.90321 0.407896i 0.222666 0.0312842i
\(171\) 0 0
\(172\) −1.73205 1.00000i −0.132068 0.0762493i
\(173\) 20.8466 12.0358i 1.58494 0.915065i 0.590816 0.806806i \(-0.298806\pi\)
0.994123 0.108259i \(-0.0345275\pi\)
\(174\) 0 0
\(175\) −13.5582 + 14.0375i −1.02490 + 1.06114i
\(176\) 0.533338 + 0.923769i 0.0402019 + 0.0696317i
\(177\) 0 0
\(178\) −3.91914 + 2.26271i −0.293752 + 0.169598i
\(179\) −1.52543 + 2.64212i −0.114016 + 0.197481i −0.917386 0.397999i \(-0.869705\pi\)
0.803370 + 0.595480i \(0.203038\pi\)
\(180\) 0 0
\(181\) 10.6430 0.791085 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(182\) −8.76204 + 11.0128i −0.649486 + 0.816325i
\(183\) 0 0
\(184\) 1.07382 1.85991i 0.0791632 0.137115i
\(185\) 10.4091 + 4.20604i 0.765289 + 0.309234i
\(186\) 0 0
\(187\) 1.39853i 0.102270i
\(188\) −0.0838209 + 0.0483940i −0.00611327 + 0.00352950i
\(189\) 0 0
\(190\) 2.05086 + 14.5970i 0.148785 + 1.05898i
\(191\) 7.36519 + 12.7569i 0.532926 + 0.923056i 0.999261 + 0.0384470i \(0.0122411\pi\)
−0.466334 + 0.884609i \(0.654426\pi\)
\(192\) 0 0
\(193\) −12.1244 7.00000i −0.872730 0.503871i −0.00447566 0.999990i \(-0.501425\pi\)
−0.868255 + 0.496119i \(0.834758\pi\)
\(194\) −4.26025 −0.305868
\(195\) 0 0
\(196\) 8.23506 0.588219
\(197\) −9.01776 5.20641i −0.642489 0.370941i 0.143084 0.989711i \(-0.454298\pi\)
−0.785573 + 0.618769i \(0.787632\pi\)
\(198\) 0 0
\(199\) −2.18421 3.78316i −0.154834 0.268181i 0.778164 0.628061i \(-0.216151\pi\)
−0.932999 + 0.359880i \(0.882818\pi\)
\(200\) 1.37778 + 4.80642i 0.0974241 + 0.339865i
\(201\) 0 0
\(202\) 1.26332 0.729376i 0.0888866 0.0513187i
\(203\) 35.3274i 2.47950i
\(204\) 0 0
\(205\) 4.98792 12.3440i 0.348371 0.862145i
\(206\) −5.12222 + 8.87194i −0.356882 + 0.618137i
\(207\) 0 0
\(208\) 1.32106 + 3.35482i 0.0915990 + 0.232615i
\(209\) −7.03164 −0.486389
\(210\) 0 0
\(211\) −2.74766 + 4.75908i −0.189157 + 0.327629i −0.944969 0.327159i \(-0.893909\pi\)
0.755813 + 0.654788i \(0.227242\pi\)
\(212\) 1.29498 0.747658i 0.0889397 0.0513494i
\(213\) 0 0
\(214\) −1.10716 1.91766i −0.0756839 0.131088i
\(215\) 3.52421 2.75317i 0.240349 0.187765i
\(216\) 0 0
\(217\) 23.4049 13.5128i 1.58883 0.917311i
\(218\) −0.115487 0.0666765i −0.00782178 0.00451591i
\(219\) 0 0
\(220\) −2.36196 + 0.331851i −0.159244 + 0.0223734i
\(221\) −0.699264 + 4.67526i −0.0470376 + 0.314492i
\(222\) 0 0
\(223\) −17.4043 10.0484i −1.16548 0.672890i −0.212869 0.977081i \(-0.568281\pi\)
−0.952611 + 0.304191i \(0.901614\pi\)
\(224\) 1.95161 3.38028i 0.130397 0.225855i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) −16.7654 + 9.67952i −1.11276 + 0.642453i −0.939543 0.342431i \(-0.888750\pi\)
−0.173218 + 0.984884i \(0.555416\pi\)
\(228\) 0 0
\(229\) −15.7255 −1.03917 −0.519584 0.854420i \(-0.673913\pi\)
−0.519584 + 0.854420i \(0.673913\pi\)
\(230\) 2.95642 + 3.78437i 0.194940 + 0.249534i
\(231\) 0 0
\(232\) 7.83827 + 4.52543i 0.514608 + 0.297109i
\(233\) 14.8825i 0.974983i −0.873128 0.487491i \(-0.837912\pi\)
0.873128 0.487491i \(-0.162088\pi\)
\(234\) 0 0
\(235\) −0.0301115 0.214320i −0.00196426 0.0139807i
\(236\) 3.59210 6.22171i 0.233826 0.404999i
\(237\) 0 0
\(238\) 4.43191 2.55877i 0.287278 0.165860i
\(239\) 4.42219 0.286047 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(240\) 0 0
\(241\) 5.64050 + 9.76963i 0.363336 + 0.629317i 0.988508 0.151170i \(-0.0483042\pi\)
−0.625171 + 0.780488i \(0.714971\pi\)
\(242\) 9.86220i 0.633966i
\(243\) 0 0
\(244\) 3.94370 6.83068i 0.252469 0.437290i
\(245\) −6.89878 + 17.0730i −0.440747 + 1.09076i
\(246\) 0 0
\(247\) −23.5067 3.51582i −1.49570 0.223706i
\(248\) 6.92396i 0.439672i
\(249\) 0 0
\(250\) −11.1189 1.17006i −0.703224 0.0740011i
\(251\) 1.32616 + 2.29698i 0.0837067 + 0.144984i 0.904839 0.425753i \(-0.139991\pi\)
−0.821133 + 0.570737i \(0.806657\pi\)
\(252\) 0 0
\(253\) −1.98393 + 1.14542i −0.124728 + 0.0720120i
\(254\) −4.99532 8.65214i −0.313434 0.542884i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.55219 + 2.05086i 0.221579 + 0.127929i 0.606681 0.794945i \(-0.292500\pi\)
−0.385102 + 0.922874i \(0.625834\pi\)
\(258\) 0 0
\(259\) 19.5970 1.21770
\(260\) −8.06194 0.0716061i −0.499980 0.00444082i
\(261\) 0 0
\(262\) −8.01576 4.62790i −0.495216 0.285913i
\(263\) 9.35479 + 5.40099i 0.576841 + 0.333039i 0.759877 0.650067i \(-0.225259\pi\)
−0.183036 + 0.983106i \(0.558593\pi\)
\(264\) 0 0
\(265\) 0.465205 + 3.31111i 0.0285773 + 0.203400i
\(266\) 12.8652 + 22.2832i 0.788815 + 1.36627i
\(267\) 0 0
\(268\) 8.42864i 0.514861i
\(269\) 9.29137 + 16.0931i 0.566505 + 0.981215i 0.996908 + 0.0785782i \(0.0250380\pi\)
−0.430403 + 0.902637i \(0.641629\pi\)
\(270\) 0 0
\(271\) −9.88739 + 17.1255i −0.600616 + 1.04030i 0.392112 + 0.919918i \(0.371745\pi\)
−0.992728 + 0.120380i \(0.961589\pi\)
\(272\) 1.31111i 0.0794976i
\(273\) 0 0
\(274\) 14.7906 0.893533
\(275\) 1.29070 5.17485i 0.0778319 0.312055i
\(276\) 0 0
\(277\) 0.177493 0.102476i 0.0106645 0.00615718i −0.494658 0.869088i \(-0.664707\pi\)
0.505323 + 0.862930i \(0.331373\pi\)
\(278\) 12.6938i 0.761324i
\(279\) 0 0
\(280\) 5.37311 + 6.87786i 0.321105 + 0.411031i
\(281\) 20.4558 1.22029 0.610146 0.792289i \(-0.291111\pi\)
0.610146 + 0.792289i \(0.291111\pi\)
\(282\) 0 0
\(283\) 1.24535 + 0.719004i 0.0740284 + 0.0427403i 0.536557 0.843864i \(-0.319725\pi\)
−0.462529 + 0.886604i \(0.653058\pi\)
\(284\) 7.73975 13.4056i 0.459270 0.795478i
\(285\) 0 0
\(286\) 0.568899 3.80365i 0.0336397 0.224914i
\(287\) 23.2400i 1.37181i
\(288\) 0 0
\(289\) −7.64050 + 13.2337i −0.449441 + 0.778455i
\(290\) −15.9485 + 12.4593i −0.936531 + 0.731635i
\(291\) 0 0
\(292\) −13.2957 + 7.67630i −0.778074 + 0.449221i
\(293\) −18.1126 + 10.4573i −1.05815 + 0.610922i −0.924919 0.380164i \(-0.875868\pi\)
−0.133228 + 0.991085i \(0.542534\pi\)
\(294\) 0 0
\(295\) 9.88969 + 12.6593i 0.575800 + 0.737054i
\(296\) 2.51037 4.34809i 0.145912 0.252728i
\(297\) 0 0
\(298\) 7.28592i 0.422062i
\(299\) −7.20495 + 2.83716i −0.416673 + 0.164077i
\(300\) 0 0
\(301\) 3.90321 6.76056i 0.224977 0.389672i
\(302\) 17.4142 + 10.0541i 1.00207 + 0.578547i
\(303\) 0 0
\(304\) 6.59210 0.378083
\(305\) 10.8577 + 13.8984i 0.621709 + 0.795820i
\(306\) 0 0
\(307\) 12.5303i 0.715145i 0.933885 + 0.357572i \(0.116395\pi\)
−0.933885 + 0.357572i \(0.883605\pi\)
\(308\) −3.60567 + 2.08173i −0.205452 + 0.118618i
\(309\) 0 0
\(310\) 14.3548 + 5.80042i 0.815299 + 0.329442i
\(311\) 9.78123 0.554643 0.277321 0.960777i \(-0.410553\pi\)
0.277321 + 0.960777i \(0.410553\pi\)
\(312\) 0 0
\(313\) 17.2128i 0.972924i −0.873702 0.486462i \(-0.838287\pi\)
0.873702 0.486462i \(-0.161713\pi\)
\(314\) 0.992089 1.71835i 0.0559868 0.0969720i
\(315\) 0 0
\(316\) −2.15087 3.72542i −0.120996 0.209571i
\(317\) 13.7447i 0.771978i −0.922503 0.385989i \(-0.873860\pi\)
0.922503 0.385989i \(-0.126140\pi\)
\(318\) 0 0
\(319\) −4.82717 8.36090i −0.270269 0.468120i
\(320\) 2.21432 0.311108i 0.123784 0.0173915i
\(321\) 0 0
\(322\) 7.25964 + 4.19135i 0.404564 + 0.233575i
\(323\) 7.48502 + 4.32148i 0.416478 + 0.240454i
\(324\) 0 0
\(325\) 6.90220 16.6541i 0.382865 0.923804i
\(326\) 4.70318 0.260485
\(327\) 0 0
\(328\) −5.15637 2.97703i −0.284713 0.164379i
\(329\) −0.188892 0.327171i −0.0104140 0.0180375i
\(330\) 0 0
\(331\) −9.69381 16.7902i −0.532820 0.922872i −0.999265 0.0383216i \(-0.987799\pi\)
0.466445 0.884550i \(-0.345534\pi\)
\(332\) −8.39509 + 4.84691i −0.460740 + 0.266009i
\(333\) 0 0
\(334\) −4.84767 8.39642i −0.265253 0.459431i
\(335\) −17.4743 7.06095i −0.954726 0.385781i
\(336\) 0 0
\(337\) 0.555539i 0.0302621i 0.999886 + 0.0151311i \(0.00481655\pi\)
−0.999886 + 0.0151311i \(0.995183\pi\)
\(338\) 3.80365 12.4311i 0.206891 0.676163i
\(339\) 0 0
\(340\) 2.71820 + 1.09836i 0.147415 + 0.0595668i
\(341\) −3.69281 + 6.39614i −0.199977 + 0.346370i
\(342\) 0 0
\(343\) 4.82071i 0.260294i
\(344\) −1.00000 1.73205i −0.0539164 0.0933859i
\(345\) 0 0
\(346\) 24.0716 1.29410
\(347\) −5.78890 + 3.34222i −0.310764 + 0.179420i −0.647269 0.762262i \(-0.724089\pi\)
0.336504 + 0.941682i \(0.390755\pi\)
\(348\) 0 0
\(349\) 5.29137 9.16492i 0.283240 0.490587i −0.688941 0.724818i \(-0.741924\pi\)
0.972181 + 0.234231i \(0.0752572\pi\)
\(350\) −18.7605 + 5.37778i −1.00279 + 0.287455i
\(351\) 0 0
\(352\) 1.06668i 0.0568541i
\(353\) 7.97557 + 4.60470i 0.424497 + 0.245083i 0.696999 0.717072i \(-0.254518\pi\)
−0.272503 + 0.962155i \(0.587851\pi\)
\(354\) 0 0
\(355\) 21.3089 + 27.2765i 1.13096 + 1.44768i
\(356\) −4.52543 −0.239847
\(357\) 0 0
\(358\) −2.64212 + 1.52543i −0.139640 + 0.0806214i
\(359\) −4.19358 −0.221328 −0.110664 0.993858i \(-0.535298\pi\)
−0.110664 + 0.993858i \(0.535298\pi\)
\(360\) 0 0
\(361\) −12.2279 + 21.1794i −0.643575 + 1.11470i
\(362\) 9.21707 + 5.32148i 0.484439 + 0.279691i
\(363\) 0 0
\(364\) −13.0946 + 5.15637i −0.686342 + 0.270267i
\(365\) −4.77631 33.9956i −0.250004 1.77941i
\(366\) 0 0
\(367\) −12.0970 6.98418i −0.631456 0.364571i 0.149860 0.988707i \(-0.452118\pi\)
−0.781316 + 0.624136i \(0.785451\pi\)
\(368\) 1.85991 1.07382i 0.0969547 0.0559768i
\(369\) 0 0
\(370\) 6.91149 + 8.84707i 0.359311 + 0.459937i
\(371\) 2.91827 + 5.05459i 0.151509 + 0.262421i
\(372\) 0 0
\(373\) −10.2606 + 5.92396i −0.531273 + 0.306731i −0.741535 0.670914i \(-0.765902\pi\)
0.210262 + 0.977645i \(0.432568\pi\)
\(374\) −0.699264 + 1.21116i −0.0361581 + 0.0626276i
\(375\) 0 0
\(376\) −0.0967881 −0.00499146
\(377\) −11.9567 30.3640i −0.615802 1.56382i
\(378\) 0 0
\(379\) 0.303197 0.525153i 0.0155742 0.0269753i −0.858133 0.513427i \(-0.828376\pi\)
0.873707 + 0.486452i \(0.161709\pi\)
\(380\) −5.52242 + 13.6668i −0.283294 + 0.701093i
\(381\) 0 0
\(382\) 14.7304i 0.753672i
\(383\) −30.1201 + 17.3899i −1.53907 + 0.888580i −0.540172 + 0.841555i \(0.681641\pi\)
−0.998894 + 0.0470252i \(0.985026\pi\)
\(384\) 0 0
\(385\) −1.29529 9.21924i −0.0660139 0.469856i
\(386\) −7.00000 12.1244i −0.356291 0.617113i
\(387\) 0 0
\(388\) −3.68949 2.13013i −0.187305 0.108141i
\(389\) −18.6844 −0.947339 −0.473670 0.880703i \(-0.657071\pi\)
−0.473670 + 0.880703i \(0.657071\pi\)
\(390\) 0 0
\(391\) 2.81579 0.142401
\(392\) 7.13177 + 4.11753i 0.360209 + 0.207967i
\(393\) 0 0
\(394\) −5.20641 9.01776i −0.262295 0.454308i
\(395\) 9.52543 1.33830i 0.479276 0.0673374i
\(396\) 0 0
\(397\) 19.8968 11.4874i 0.998590 0.576536i 0.0907594 0.995873i \(-0.471071\pi\)
0.907831 + 0.419337i \(0.137737\pi\)
\(398\) 4.36842i 0.218969i
\(399\) 0 0
\(400\) −1.21002 + 4.85138i −0.0605008 + 0.242569i
\(401\) −2.18667 + 3.78742i −0.109197 + 0.189135i −0.915445 0.402443i \(-0.868161\pi\)
0.806248 + 0.591577i \(0.201495\pi\)
\(402\) 0 0
\(403\) −15.5431 + 19.5358i −0.774256 + 0.973147i
\(404\) 1.45875 0.0725756
\(405\) 0 0
\(406\) −17.6637 + 30.5944i −0.876635 + 1.51838i
\(407\) −4.63801 + 2.67775i −0.229897 + 0.132731i
\(408\) 0 0
\(409\) −1.88493 3.26479i −0.0932038 0.161434i 0.815654 0.578540i \(-0.196377\pi\)
−0.908858 + 0.417107i \(0.863044\pi\)
\(410\) 10.4917 8.19629i 0.518147 0.404786i
\(411\) 0 0
\(412\) −8.87194 + 5.12222i −0.437089 + 0.252353i
\(413\) 24.2846 + 14.0207i 1.19497 + 0.689916i
\(414\) 0 0
\(415\) −3.01582 21.4652i −0.148041 1.05369i
\(416\) −0.533338 + 3.56589i −0.0261491 + 0.174832i
\(417\) 0 0
\(418\) −6.08958 3.51582i −0.297851 0.171964i
\(419\) −3.72615 + 6.45388i −0.182034 + 0.315293i −0.942573 0.334000i \(-0.891602\pi\)
0.760539 + 0.649292i \(0.224935\pi\)
\(420\) 0 0
\(421\) 27.6751 1.34880 0.674400 0.738366i \(-0.264402\pi\)
0.674400 + 0.738366i \(0.264402\pi\)
\(422\) −4.75908 + 2.74766i −0.231669 + 0.133754i
\(423\) 0 0
\(424\) 1.49532 0.0726190
\(425\) −4.55425 + 4.71528i −0.220914 + 0.228725i
\(426\) 0 0
\(427\) 26.6616 + 15.3931i 1.29024 + 0.744923i
\(428\) 2.21432i 0.107033i
\(429\) 0 0
\(430\) 4.42864 0.622216i 0.213568 0.0300059i
\(431\) 9.84468 17.0515i 0.474202 0.821342i −0.525362 0.850879i \(-0.676070\pi\)
0.999564 + 0.0295373i \(0.00940339\pi\)
\(432\) 0 0
\(433\) 11.9046 6.87310i 0.572097 0.330300i −0.185890 0.982571i \(-0.559517\pi\)
0.757986 + 0.652270i \(0.226183\pi\)
\(434\) 27.0257 1.29727
\(435\) 0 0
\(436\) −0.0666765 0.115487i −0.00319323 0.00553083i
\(437\) 14.1575i 0.677244i
\(438\) 0 0
\(439\) 20.9114 36.2195i 0.998045 1.72866i 0.444894 0.895583i \(-0.353242\pi\)
0.553151 0.833081i \(-0.313425\pi\)
\(440\) −2.21145 0.893590i −0.105427 0.0426002i
\(441\) 0 0
\(442\) −2.94321 + 3.69926i −0.139994 + 0.175956i
\(443\) 23.6829i 1.12521i −0.826726 0.562605i \(-0.809799\pi\)
0.826726 0.562605i \(-0.190201\pi\)
\(444\) 0 0
\(445\) 3.79110 9.38217i 0.179715 0.444757i
\(446\) −10.0484 17.4043i −0.475805 0.824119i
\(447\) 0 0
\(448\) 3.38028 1.95161i 0.159703 0.0922047i
\(449\) −3.52789 6.11048i −0.166491 0.288371i 0.770693 0.637207i \(-0.219910\pi\)
−0.937184 + 0.348836i \(0.886577\pi\)
\(450\) 0 0
\(451\) 3.17553 + 5.50018i 0.149530 + 0.258993i
\(452\) −12.1244 7.00000i −0.570282 0.329252i
\(453\) 0 0
\(454\) −19.3590 −0.908565
\(455\) 0.279494 31.4675i 0.0131029 1.47522i
\(456\) 0 0
\(457\) 30.8994 + 17.8398i 1.44541 + 0.834509i 0.998203 0.0599208i \(-0.0190848\pi\)
0.447209 + 0.894430i \(0.352418\pi\)
\(458\) −13.6186 7.86273i −0.636358 0.367401i
\(459\) 0 0
\(460\) 0.668149 + 4.75557i 0.0311526 + 0.221730i
\(461\) −7.30074 12.6452i −0.340029 0.588948i 0.644409 0.764681i \(-0.277104\pi\)
−0.984438 + 0.175734i \(0.943770\pi\)
\(462\) 0 0
\(463\) 30.7511i 1.42913i −0.699571 0.714563i \(-0.746626\pi\)
0.699571 0.714563i \(-0.253374\pi\)
\(464\) 4.52543 + 7.83827i 0.210088 + 0.363883i
\(465\) 0 0
\(466\) 7.44123 12.8886i 0.344709 0.597053i
\(467\) 20.5620i 0.951496i 0.879582 + 0.475748i \(0.157822\pi\)
−0.879582 + 0.475748i \(0.842178\pi\)
\(468\) 0 0
\(469\) −32.8988 −1.51912
\(470\) 0.0810825 0.200662i 0.00374006 0.00925585i
\(471\) 0 0
\(472\) 6.22171 3.59210i 0.286377 0.165340i
\(473\) 2.13335i 0.0980917i
\(474\) 0 0
\(475\) −23.7079 22.8983i −1.08779 1.05065i
\(476\) 5.11753 0.234562
\(477\) 0 0
\(478\) 3.82973 + 2.21109i 0.175168 + 0.101133i
\(479\) −5.96666 + 10.3346i −0.272624 + 0.472198i −0.969533 0.244961i \(-0.921225\pi\)
0.696909 + 0.717159i \(0.254558\pi\)
\(480\) 0 0
\(481\) −16.8437 + 6.63270i −0.768006 + 0.302425i
\(482\) 11.2810i 0.513835i
\(483\) 0 0
\(484\) −4.93110 + 8.54092i −0.224141 + 0.388223i
\(485\) 7.50701 5.86461i 0.340876 0.266298i
\(486\) 0 0
\(487\) −24.2244 + 13.9859i −1.09771 + 0.633764i −0.935619 0.353012i \(-0.885158\pi\)
−0.162092 + 0.986776i \(0.551824\pi\)
\(488\) 6.83068 3.94370i 0.309210 0.178523i
\(489\) 0 0
\(490\) −14.5110 + 11.3363i −0.655542 + 0.512121i
\(491\) −10.3906 + 17.9971i −0.468922 + 0.812197i −0.999369 0.0355214i \(-0.988691\pi\)
0.530447 + 0.847718i \(0.322024\pi\)
\(492\) 0 0
\(493\) 11.8666i 0.534447i
\(494\) −18.5995 14.7981i −0.836830 0.665800i
\(495\) 0 0
\(496\) 3.46198 5.99632i 0.155447 0.269243i
\(497\) 52.3250 + 30.2099i 2.34710 + 1.35510i
\(498\) 0 0
\(499\) −34.2908 −1.53507 −0.767534 0.641008i \(-0.778517\pi\)
−0.767534 + 0.641008i \(0.778517\pi\)
\(500\) −9.04426 6.57277i −0.404472 0.293943i
\(501\) 0 0
\(502\) 2.65233i 0.118379i
\(503\) −17.5160 + 10.1128i −0.780998 + 0.450910i −0.836784 0.547533i \(-0.815567\pi\)
0.0557857 + 0.998443i \(0.482234\pi\)
\(504\) 0 0
\(505\) −1.22204 + 3.02430i −0.0543802 + 0.134580i
\(506\) −2.29084 −0.101840
\(507\) 0 0
\(508\) 9.99063i 0.443263i
\(509\) 13.6889 23.7099i 0.606749 1.05092i −0.385023 0.922907i \(-0.625806\pi\)
0.991772 0.128014i \(-0.0408602\pi\)
\(510\) 0 0
\(511\) −29.9622 51.8961i −1.32545 2.29575i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 2.05086 + 3.55219i 0.0904593 + 0.156680i
\(515\) −3.18712 22.6844i −0.140441 0.999596i
\(516\) 0 0
\(517\) 0.0894098 + 0.0516208i 0.00393224 + 0.00227028i
\(518\) 16.9715 + 9.79851i 0.745686 + 0.430522i
\(519\) 0 0
\(520\) −6.94604 4.09298i −0.304604 0.179489i
\(521\) 31.2034 1.36705 0.683523 0.729929i \(-0.260447\pi\)
0.683523 + 0.729929i \(0.260447\pi\)
\(522\) 0 0
\(523\) −8.52854 4.92396i −0.372927 0.215310i 0.301809 0.953368i \(-0.402409\pi\)
−0.674736 + 0.738059i \(0.735743\pi\)
\(524\) −4.62790 8.01576i −0.202171 0.350170i
\(525\) 0 0
\(526\) 5.40099 + 9.35479i 0.235494 + 0.407888i
\(527\) 7.86182 4.53903i 0.342466 0.197723i
\(528\) 0 0
\(529\) −9.19381 15.9242i −0.399731 0.692355i
\(530\) −1.25267 + 3.10011i −0.0544127 + 0.134660i
\(531\) 0 0
\(532\) 25.7304i 1.11555i
\(533\) 7.86567 + 19.9748i 0.340700 + 0.865205i
\(534\) 0 0
\(535\) 4.59075 + 1.85501i 0.198476 + 0.0801990i
\(536\) −4.21432 + 7.29942i −0.182031 + 0.315287i
\(537\) 0 0
\(538\) 18.5827i 0.801159i
\(539\) −4.39207 7.60730i −0.189180 0.327669i
\(540\) 0 0
\(541\) 41.6149 1.78916 0.894581 0.446905i \(-0.147474\pi\)
0.894581 + 0.446905i \(0.147474\pi\)
\(542\) −17.1255 + 9.88739i −0.735602 + 0.424700i
\(543\) 0 0
\(544\) 0.655554 1.13545i 0.0281066 0.0486821i
\(545\) 0.295286 0.0414872i 0.0126487 0.00177712i
\(546\) 0 0
\(547\) 6.77430i 0.289648i 0.989457 + 0.144824i \(0.0462617\pi\)
−0.989457 + 0.144824i \(0.953738\pi\)
\(548\) 12.8090 + 7.39530i 0.547175 + 0.315912i
\(549\) 0 0
\(550\) 3.70520 3.83620i 0.157990 0.163576i
\(551\) −59.6642 −2.54178
\(552\) 0 0
\(553\) 14.5411 8.39530i 0.618350 0.357005i
\(554\) 0.204952 0.00870757
\(555\) 0 0
\(556\) 6.34691 10.9932i 0.269169 0.466214i
\(557\) 22.0360 + 12.7225i 0.933694 + 0.539068i 0.887978 0.459886i \(-0.152110\pi\)
0.0457158 + 0.998954i \(0.485443\pi\)
\(558\) 0 0
\(559\) −1.06668 + 7.13177i −0.0451156 + 0.301642i
\(560\) 1.21432 + 8.64296i 0.0513144 + 0.365232i
\(561\) 0 0
\(562\) 17.7153 + 10.2279i 0.747274 + 0.431439i
\(563\) 11.4179 6.59210i 0.481205 0.277824i −0.239713 0.970844i \(-0.577053\pi\)
0.720919 + 0.693020i \(0.243720\pi\)
\(564\) 0 0
\(565\) 24.6694 19.2722i 1.03785 0.810788i
\(566\) 0.719004 + 1.24535i 0.0302220 + 0.0523460i
\(567\) 0 0
\(568\) 13.4056 7.73975i 0.562488 0.324753i
\(569\) 12.2304 21.1836i 0.512724 0.888064i −0.487167 0.873309i \(-0.661970\pi\)
0.999891 0.0147555i \(-0.00469698\pi\)
\(570\) 0 0
\(571\) 24.3526 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(572\) 2.39451 3.00961i 0.100119 0.125838i
\(573\) 0 0
\(574\) 11.6200 20.1264i 0.485009 0.840060i
\(575\) −10.4190 2.59868i −0.434503 0.108373i
\(576\) 0 0
\(577\) 42.0479i 1.75048i −0.483690 0.875239i \(-0.660704\pi\)
0.483690 0.875239i \(-0.339296\pi\)
\(578\) −13.2337 + 7.64050i −0.550451 + 0.317803i
\(579\) 0 0
\(580\) −20.0415 + 2.81579i −0.832177 + 0.116919i
\(581\) −18.9185 32.7678i −0.784872 1.35944i
\(582\) 0 0
\(583\) −1.38133 0.797509i −0.0572087 0.0330295i
\(584\) −15.3526 −0.635295
\(585\) 0 0
\(586\) −20.9146 −0.863974
\(587\) −6.36195 3.67307i −0.262586 0.151604i 0.362928 0.931817i \(-0.381777\pi\)
−0.625513 + 0.780213i \(0.715110\pi\)
\(588\) 0 0
\(589\) 22.8217 + 39.5284i 0.940353 + 1.62874i
\(590\) 2.23506 + 15.9081i 0.0920161 + 0.654928i
\(591\) 0 0
\(592\) 4.34809 2.51037i 0.178705 0.103176i
\(593\) 4.19358i 0.172210i 0.996286 + 0.0861048i \(0.0274420\pi\)
−0.996286 + 0.0861048i \(0.972558\pi\)
\(594\) 0 0
\(595\) −4.28712 + 10.6097i −0.175755 + 0.434956i
\(596\) 3.64296 6.30979i 0.149221 0.258459i
\(597\) 0 0
\(598\) −7.65825 1.14542i −0.313169 0.0468397i
\(599\) 9.33630 0.381471 0.190735 0.981641i \(-0.438913\pi\)
0.190735 + 0.981641i \(0.438913\pi\)
\(600\) 0 0
\(601\) 1.48571 2.57333i 0.0606034 0.104968i −0.834132 0.551565i \(-0.814031\pi\)
0.894735 + 0.446597i \(0.147364\pi\)
\(602\) 6.76056 3.90321i 0.275540 0.159083i
\(603\) 0 0
\(604\) 10.0541 + 17.4142i 0.409095 + 0.708573i
\(605\) −13.5762 17.3782i −0.551950 0.706525i
\(606\) 0 0
\(607\) −14.8464 + 8.57160i −0.602599 + 0.347910i −0.770063 0.637968i \(-0.779775\pi\)
0.167465 + 0.985878i \(0.446442\pi\)
\(608\) 5.70893 + 3.29605i 0.231528 + 0.133673i
\(609\) 0 0
\(610\) 2.45383 + 17.4652i 0.0993526 + 0.707145i
\(611\) 0.273086 + 0.217273i 0.0110479 + 0.00878991i
\(612\) 0 0
\(613\) −25.3610 14.6422i −1.02432 0.591393i −0.108969 0.994045i \(-0.534755\pi\)
−0.915353 + 0.402653i \(0.868088\pi\)
\(614\) −6.26517 + 10.8516i −0.252842 + 0.437935i
\(615\) 0 0
\(616\) −4.16346 −0.167751
\(617\) 11.4453 6.60793i 0.460769 0.266025i −0.251599 0.967832i \(-0.580956\pi\)
0.712368 + 0.701807i \(0.247623\pi\)
\(618\) 0 0
\(619\) 18.9333 0.760995 0.380497 0.924782i \(-0.375753\pi\)
0.380497 + 0.924782i \(0.375753\pi\)
\(620\) 9.53143 + 12.2007i 0.382791 + 0.489993i
\(621\) 0 0
\(622\) 8.47080 + 4.89062i 0.339648 + 0.196096i
\(623\) 17.6637i 0.707681i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 8.60639 14.9067i 0.343981 0.595792i
\(627\) 0 0
\(628\) 1.71835 0.992089i 0.0685696 0.0395887i
\(629\) 6.58274 0.262471
\(630\) 0 0
\(631\) −1.21432 2.10326i −0.0483413 0.0837296i 0.840842 0.541280i \(-0.182060\pi\)
−0.889184 + 0.457551i \(0.848727\pi\)
\(632\) 4.30174i 0.171114i
\(633\) 0 0
\(634\) 6.87233 11.9032i 0.272935 0.472738i
\(635\) 20.7127 + 8.36948i 0.821958 + 0.332133i
\(636\) 0 0
\(637\) −10.8790 27.6271i −0.431042 1.09463i
\(638\) 9.65433i 0.382219i
\(639\) 0 0
\(640\) 2.07321 + 0.837733i 0.0819509 + 0.0331143i
\(641\) 7.54371 + 13.0661i 0.297959 + 0.516079i 0.975669 0.219250i \(-0.0703609\pi\)
−0.677710 + 0.735329i \(0.737028\pi\)
\(642\) 0 0
\(643\) 5.80513 3.35159i 0.228932 0.132174i −0.381147 0.924514i \(-0.624471\pi\)
0.610079 + 0.792340i \(0.291138\pi\)
\(644\) 4.19135 + 7.25964i 0.165162 + 0.286070i
\(645\) 0 0
\(646\) 4.32148 + 7.48502i 0.170026 + 0.294494i
\(647\) 19.3759 + 11.1867i 0.761744 + 0.439793i 0.829922 0.557880i \(-0.188385\pi\)
−0.0681773 + 0.997673i \(0.521718\pi\)
\(648\) 0 0
\(649\) −7.66323 −0.300808
\(650\) 14.3045 10.9718i 0.561070 0.430349i
\(651\) 0 0
\(652\) 4.07308 + 2.35159i 0.159514 + 0.0920954i
\(653\) −14.2139 8.20641i −0.556234 0.321142i 0.195399 0.980724i \(-0.437400\pi\)
−0.751632 + 0.659582i \(0.770733\pi\)
\(654\) 0 0
\(655\) 20.4953 2.87955i 0.800818 0.112513i
\(656\) −2.97703 5.15637i −0.116234 0.201323i
\(657\) 0 0
\(658\) 0.377784i 0.0147276i
\(659\) −4.33407 7.50684i −0.168832 0.292425i 0.769178 0.639035i \(-0.220666\pi\)
−0.938009 + 0.346610i \(0.887333\pi\)
\(660\) 0 0
\(661\) −8.71509 + 15.0950i −0.338978 + 0.587126i −0.984241 0.176834i \(-0.943414\pi\)
0.645263 + 0.763960i \(0.276748\pi\)
\(662\) 19.3876i 0.753522i
\(663\) 0 0
\(664\) −9.69381 −0.376193
\(665\) −53.3445 21.5552i −2.06861 0.835874i
\(666\) 0 0
\(667\) −16.8338 + 9.71900i −0.651808 + 0.376321i
\(668\) 9.69535i 0.375124i
\(669\) 0 0
\(670\) −11.6028 14.8521i −0.448254 0.573788i
\(671\) −8.41329 −0.324792
\(672\) 0 0
\(673\) 35.0593 + 20.2415i 1.35144 + 0.780253i 0.988451 0.151541i \(-0.0484236\pi\)
0.362987 + 0.931794i \(0.381757\pi\)
\(674\) −0.277770 + 0.481111i −0.0106993 + 0.0185317i
\(675\) 0 0
\(676\) 9.50961 8.86382i 0.365754 0.340916i
\(677\) 40.0228i 1.53820i −0.639129 0.769100i \(-0.720705\pi\)
0.639129 0.769100i \(-0.279295\pi\)
\(678\) 0 0
\(679\) 8.31433 14.4008i 0.319075 0.552654i
\(680\) 1.80485 + 2.31031i 0.0692130 + 0.0885962i
\(681\) 0 0
\(682\) −6.39614 + 3.69281i −0.244921 + 0.141405i
\(683\) 37.5064 21.6543i 1.43514 0.828580i 0.437636 0.899152i \(-0.355816\pi\)
0.997507 + 0.0705721i \(0.0224825\pi\)
\(684\) 0 0
\(685\) −26.0626 + 20.3606i −0.995800 + 0.777937i
\(686\) −2.41036 + 4.17486i −0.0920279 + 0.159397i
\(687\) 0 0
\(688\) 2.00000i 0.0762493i
\(689\) −4.21900 3.35673i −0.160731 0.127881i
\(690\) 0 0
\(691\) −14.1741 + 24.5502i −0.539207 + 0.933934i 0.459740 + 0.888054i \(0.347943\pi\)
−0.998947 + 0.0458806i \(0.985391\pi\)
\(692\) 20.8466 + 12.0358i 0.792469 + 0.457532i
\(693\) 0 0
\(694\) −6.68445 −0.253738
\(695\) 17.4741 + 22.3678i 0.662832 + 0.848459i
\(696\) 0 0
\(697\) 7.80642i 0.295689i
\(698\) 9.16492 5.29137i 0.346897 0.200281i
\(699\) 0 0
\(700\) −18.9360 4.72295i −0.715712 0.178511i
\(701\) −12.8080 −0.483750 −0.241875 0.970307i \(-0.577762\pi\)
−0.241875 + 0.970307i \(0.577762\pi\)
\(702\) 0 0
\(703\) 33.0973i 1.24829i
\(704\) −0.533338 + 0.923769i −0.0201009 + 0.0348159i
\(705\) 0 0
\(706\) 4.60470 + 7.97557i 0.173300 + 0.300165i
\(707\) 5.69381i 0.214138i
\(708\) 0 0
\(709\) 1.26126 + 2.18456i 0.0473675 + 0.0820429i 0.888737 0.458417i \(-0.151583\pi\)
−0.841370 + 0.540460i \(0.818250\pi\)
\(710\) 4.81579 + 34.2766i 0.180733 + 1.28638i
\(711\) 0 0
\(712\) −3.91914 2.26271i −0.146876 0.0847988i
\(713\) 12.8780 + 7.43509i 0.482283 + 0.278446i
\(714\) 0 0
\(715\) 4.23359 + 7.48556i 0.158327 + 0.279944i
\(716\) −3.05086 −0.114016
\(717\) 0 0
\(718\) −3.63174 2.09679i −0.135535 0.0782514i
\(719\) −8.51114 14.7417i −0.317412 0.549773i 0.662535 0.749031i \(-0.269480\pi\)
−0.979947 + 0.199257i \(0.936147\pi\)
\(720\) 0 0
\(721\) −19.9931 34.6291i −0.744582 1.28965i
\(722\) −21.1794 + 12.2279i −0.788215 + 0.455076i
\(723\) 0 0
\(724\) 5.32148 + 9.21707i 0.197771 + 0.342550i
\(725\) 10.9517 43.9091i 0.406735 1.63074i
\(726\) 0 0
\(727\) 30.5353i 1.13249i −0.824237 0.566245i \(-0.808395\pi\)
0.824237 0.566245i \(-0.191605\pi\)
\(728\) −13.9184 2.08173i −0.515851 0.0771541i
\(729\) 0 0
\(730\) 12.8614 31.8292i 0.476021 1.17805i
\(731\) 1.31111 2.27091i 0.0484931 0.0839925i
\(732\) 0 0
\(733\) 24.4499i 0.903076i −0.892252 0.451538i \(-0.850876\pi\)
0.892252 0.451538i \(-0.149124\pi\)
\(734\) −6.98418 12.0970i −0.257791 0.446507i
\(735\) 0 0
\(736\) 2.14764 0.0791632
\(737\) 7.78612 4.49532i 0.286805 0.165587i
\(738\) 0 0
\(739\) −5.39776 + 9.34920i −0.198560 + 0.343916i −0.948062 0.318086i \(-0.896960\pi\)
0.749502 + 0.662002i \(0.230293\pi\)
\(740\) 1.56199 + 11.1175i 0.0574200 + 0.408689i
\(741\) 0 0
\(742\) 5.83654i 0.214266i
\(743\) −25.9248 14.9677i −0.951087 0.549110i −0.0576686 0.998336i \(-0.518367\pi\)
−0.893418 + 0.449225i \(0.851700\pi\)
\(744\) 0 0
\(745\) 10.0297 + 12.8385i 0.367460 + 0.470368i
\(746\) −11.8479 −0.433783
\(747\) 0 0
\(748\) −1.21116 + 0.699264i −0.0442844 + 0.0255676i
\(749\) 8.64296 0.315807
\(750\) 0 0
\(751\) −13.4588 + 23.3112i −0.491117 + 0.850639i −0.999948 0.0102272i \(-0.996745\pi\)
0.508831 + 0.860866i \(0.330078\pi\)
\(752\) −0.0838209 0.0483940i −0.00305663 0.00176475i
\(753\) 0 0
\(754\) 4.82717 32.2743i 0.175795 1.17536i
\(755\) −44.5259 + 6.25581i −1.62046 + 0.227672i
\(756\) 0 0
\(757\) 31.0960 + 17.9533i 1.13020 + 0.652524i 0.943986 0.329985i \(-0.107044\pi\)
0.186218 + 0.982508i \(0.440377\pi\)
\(758\) 0.525153 0.303197i 0.0190744 0.0110126i
\(759\) 0 0
\(760\) −11.6160 + 9.07461i −0.421355 + 0.329171i
\(761\) 11.2699 + 19.5200i 0.408532 + 0.707598i 0.994725 0.102573i \(-0.0327075\pi\)
−0.586193 + 0.810171i \(0.699374\pi\)
\(762\) 0 0
\(763\) 0.450771 0.260253i 0.0163190 0.00942178i
\(764\) −7.36519 + 12.7569i −0.266463 + 0.461528i
\(765\) 0 0
\(766\) −34.7797 −1.25664
\(767\) −25.6181 3.83161i −0.925015 0.138352i
\(768\) 0 0
\(769\) 1.23729 2.14304i 0.0446177 0.0772801i −0.842854 0.538142i \(-0.819126\pi\)
0.887472 + 0.460862i \(0.152460\pi\)
\(770\) 3.48787 8.63174i 0.125694 0.311066i
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) −38.2788 + 22.1003i −1.37679 + 0.794891i −0.991772 0.128018i \(-0.959139\pi\)
−0.385019 + 0.922908i \(0.625805\pi\)
\(774\) 0 0
\(775\) −33.2795 + 9.53972i −1.19543 + 0.342677i
\(776\) −2.13013 3.68949i −0.0764671 0.132445i
\(777\) 0 0
\(778\) −16.1812 9.34222i −0.580124 0.334935i
\(779\) 39.2498 1.40627
\(780\) 0 0
\(781\) −16.5116 −0.590832
\(782\) 2.43855 + 1.40790i 0.0872023 + 0.0503463i
\(783\) 0 0
\(784\) 4.11753 + 7.13177i 0.147055 + 0.254706i
\(785\) 0.617293 + 4.39361i 0.0220321 + 0.156815i
\(786\) 0 0
\(787\) 29.4714 17.0153i 1.05054 0.606530i 0.127740 0.991808i \(-0.459228\pi\)
0.922801 + 0.385278i \(0.125894\pi\)
\(788\) 10.4128i 0.370941i
\(789\) 0 0
\(790\) 8.91841 + 3.60371i 0.317303 + 0.128214i
\(791\) 27.3225 47.3239i 0.971476 1.68265i
\(792\) 0 0
\(793\) −28.1255 4.20665i −0.998767 0.149382i
\(794\) 22.9748 0.815346
\(795\) 0 0
\(796\) 2.18421 3.78316i 0.0774172 0.134091i
\(797\) −7.04754 + 4.06890i −0.249637 + 0.144128i −0.619598 0.784919i \(-0.712704\pi\)
0.369961 + 0.929047i \(0.379371\pi\)
\(798\) 0 0
\(799\) −0.0634498 0.109898i −0.00224469 0.00388792i
\(800\) −3.47359 + 3.59641i −0.122810 + 0.127152i
\(801\) 0 0
\(802\) −3.78742 + 2.18667i −0.133739 + 0.0772140i
\(803\) 14.1823 + 8.18813i 0.500481 + 0.288953i
\(804\) 0 0
\(805\) −18.5620 + 2.60793i −0.654224 + 0.0919173i
\(806\) −23.2286 + 9.14695i −0.818193 + 0.322188i
\(807\) 0 0
\(808\) 1.26332 + 0.729376i 0.0444433 + 0.0256593i
\(809\) 3.92618 6.80034i 0.138037 0.239087i −0.788716 0.614757i \(-0.789254\pi\)
0.926754 + 0.375670i \(0.122587\pi\)
\(810\) 0 0
\(811\) 9.33477 0.327788 0.163894 0.986478i \(-0.447595\pi\)
0.163894 + 0.986478i \(0.447595\pi\)
\(812\) −30.5944 + 17.6637i −1.07365 + 0.619874i
\(813\) 0 0
\(814\) −5.35551 −0.187711
\(815\) −8.28749 + 6.47434i −0.290298 + 0.226786i
\(816\) 0 0
\(817\) 11.4179 + 6.59210i 0.399460 + 0.230629i
\(818\) 3.76986i 0.131810i
\(819\) 0 0
\(820\) 13.1842 1.85236i 0.460413 0.0646871i
\(821\) −23.7659 + 41.1638i −0.829437 + 1.43663i 0.0690434 + 0.997614i \(0.478005\pi\)
−0.898480 + 0.439013i \(0.855328\pi\)
\(822\) 0 0
\(823\) 1.20131 0.693576i 0.0418750 0.0241765i −0.478916 0.877861i \(-0.658970\pi\)
0.520791 + 0.853684i \(0.325637\pi\)
\(824\) −10.2444 −0.356882
\(825\) 0 0
\(826\) 14.0207 + 24.2846i 0.487844 + 0.844971i
\(827\) 31.5131i 1.09582i 0.836537 + 0.547910i \(0.184576\pi\)
−0.836537 + 0.547910i \(0.815424\pi\)
\(828\) 0 0
\(829\) −14.4128 + 24.9637i −0.500578 + 0.867026i 0.499422 + 0.866359i \(0.333546\pi\)
−1.00000 0.000667386i \(0.999788\pi\)
\(830\) 8.12082 20.0973i 0.281878 0.697588i
\(831\) 0 0
\(832\) −2.24483 + 2.82148i −0.0778254 + 0.0978172i
\(833\) 10.7971i 0.374096i
\(834\) 0 0
\(835\) 20.1005 + 8.12211i 0.695606 + 0.281077i
\(836\) −3.51582 6.08958i −0.121597 0.210613i
\(837\) 0 0
\(838\) −6.45388 + 3.72615i −0.222946 + 0.128718i
\(839\) −4.21755 7.30500i −0.145606 0.252197i 0.783993 0.620770i \(-0.213180\pi\)
−0.929599 + 0.368573i \(0.879846\pi\)
\(840\) 0 0
\(841\) −26.4590 45.8283i −0.912379 1.58029i
\(842\) 23.9673 + 13.8375i 0.825968 + 0.476873i
\(843\) 0 0
\(844\) −5.49532 −0.189157
\(845\) 10.4101 + 27.1409i 0.358117 + 0.933677i
\(846\) 0 0
\(847\) −33.3370 19.2471i −1.14547 0.661339i
\(848\) 1.29498 + 0.747658i 0.0444699 + 0.0256747i
\(849\) 0 0
\(850\) −6.30174 + 1.80642i −0.216148 + 0.0619598i
\(851\) 5.39138 + 9.33815i 0.184814 + 0.320108i
\(852\) 0 0
\(853\) 40.0656i 1.37182i 0.727686 + 0.685910i \(0.240596\pi\)
−0.727686 + 0.685910i \(0.759404\pi\)
\(854\) 15.3931 + 26.6616i 0.526740 + 0.912341i
\(855\) 0 0
\(856\) 1.10716 1.91766i 0.0378419 0.0655442i
\(857\) 32.0479i 1.09474i −0.836892 0.547368i \(-0.815630\pi\)
0.836892 0.547368i \(-0.184370\pi\)
\(858\) 0 0
\(859\) 26.6894 0.910630 0.455315 0.890331i \(-0.349527\pi\)
0.455315 + 0.890331i \(0.349527\pi\)
\(860\) 4.14642 + 1.67547i 0.141392 + 0.0571329i
\(861\) 0 0
\(862\) 17.0515 9.84468i 0.580776 0.335311i
\(863\) 30.6593i 1.04365i 0.853052 + 0.521827i \(0.174749\pi\)
−0.853052 + 0.521827i \(0.825251\pi\)
\(864\) 0 0
\(865\) −42.4166 + 33.1367i −1.44221 + 1.12668i
\(866\) 13.7462 0.467115
\(867\) 0 0
\(868\) 23.4049 + 13.5128i 0.794415 + 0.458655i
\(869\) −2.29428 + 3.97381i −0.0778282 + 0.134802i
\(870\) 0 0
\(871\) 28.2766 11.1347i 0.958114 0.377286i
\(872\) 0.133353i 0.00451591i
\(873\) 0 0
\(874\) −7.07874 + 12.2607i −0.239442 + 0.414726i
\(875\) 25.6549 35.3017i 0.867295 1.19341i
\(876\) 0 0
\(877\) 18.1263 10.4652i 0.612081 0.353385i −0.161699 0.986840i \(-0.551697\pi\)
0.773779 + 0.633455i \(0.218364\pi\)
\(878\) 36.2195 20.9114i 1.22235 0.705724i
\(879\) 0 0
\(880\) −1.46837 1.87959i −0.0494989 0.0633611i
\(881\) 10.7351 18.5937i 0.361673 0.626437i −0.626563 0.779371i \(-0.715539\pi\)
0.988236 + 0.152934i \(0.0488722\pi\)
\(882\) 0 0
\(883\) 7.73530i 0.260314i 0.991493 + 0.130157i \(0.0415481\pi\)
−0.991493 + 0.130157i \(0.958452\pi\)
\(884\) −4.39853 + 1.73205i −0.147939 + 0.0582552i
\(885\) 0 0
\(886\) 11.8415 20.5100i 0.397822 0.689047i
\(887\) −41.9559 24.2232i −1.40874 0.813337i −0.413473 0.910516i \(-0.635685\pi\)
−0.995267 + 0.0971796i \(0.969018\pi\)
\(888\) 0 0
\(889\) 38.9956 1.30787
\(890\) 7.97427 6.22965i 0.267298 0.208818i
\(891\) 0 0
\(892\) 20.0968i 0.672890i
\(893\) 0.552556 0.319019i 0.0184906 0.0106755i
\(894\) 0 0
\(895\) 2.55580 6.32507i 0.0854310 0.211424i
\(896\) 3.90321 0.130397
\(897\) 0 0
\(898\) 7.05578i 0.235454i
\(899\) −31.3339 + 54.2718i −1.04504 + 1.81007i
\(900\) 0 0
\(901\) 0.980260 + 1.69786i 0.0326572 + 0.0565639i
\(902\) 6.35106i 0.211467i
\(903\) 0 0
\(904\) −7.00000 12.1244i −0.232817 0.403250i
\(905\) −23.5669 + 3.31111i −0.783391 + 0.110065i
\(906\) 0 0
\(907\) −10.4017 6.00545i −0.345384 0.199408i 0.317266 0.948337i \(-0.397235\pi\)
−0.662650 + 0.748929i \(0.730568\pi\)
\(908\) −16.7654 9.67952i −0.556380 0.321226i
\(909\) 0 0
\(910\) 15.9758 27.1119i 0.529592 0.898750i
\(911\) 8.10171 0.268422 0.134211 0.990953i \(-0.457150\pi\)
0.134211 + 0.990953i \(0.457150\pi\)
\(912\) 0 0
\(913\) 8.95485 + 5.17008i 0.296362 + 0.171105i
\(914\) 17.8398 + 30.8994i 0.590087 + 1.02206i
\(915\) 0 0
\(916\) −7.86273 13.6186i −0.259792 0.449973i
\(917\) 31.2872 18.0637i 1.03320 0.596516i
\(918\) 0 0
\(919\) 8.29682 + 14.3705i 0.273687 + 0.474039i 0.969803 0.243890i \(-0.0784235\pi\)
−0.696116 + 0.717929i \(0.745090\pi\)
\(920\) −1.79915 + 4.45252i −0.0593162 + 0.146795i
\(921\) 0 0
\(922\) 14.6015i 0.480874i
\(923\) −55.1981 8.25581i −1.81687 0.271743i
\(924\) 0 0
\(925\) −24.3575 6.07518i −0.800870 0.199751i
\(926\) 15.3756 26.6313i 0.505272 0.875157i
\(927\) 0 0
\(928\) 9.05086i 0.297109i
\(929\) −28.5605 49.4682i −0.937038 1.62300i −0.770958 0.636886i \(-0.780222\pi\)
−0.166080 0.986112i \(-0.553111\pi\)
\(930\) 0 0
\(931\) −54.2864 −1.77916
\(932\) 12.8886 7.44123i 0.422180 0.243746i
\(933\) 0 0
\(934\) −10.2810 + 17.8072i −0.336404 + 0.582670i
\(935\) −0.435093 3.09679i −0.0142291 0.101276i
\(936\) 0 0
\(937\) 11.1842i 0.365372i −0.983171 0.182686i \(-0.941521\pi\)
0.983171 0.182686i \(-0.0584792\pi\)
\(938\) −28.4912 16.4494i −0.930270 0.537091i
\(939\) 0 0
\(940\) 0.170551 0.133237i 0.00556275 0.00434572i
\(941\) 7.68598 0.250556 0.125278 0.992122i \(-0.460018\pi\)
0.125278 + 0.992122i \(0.460018\pi\)
\(942\) 0 0
\(943\) 11.0741 6.39361i 0.360621 0.208204i
\(944\) 7.18421 0.233826
\(945\) 0 0
\(946\) −1.06668 + 1.84754i −0.0346806 + 0.0600686i
\(947\) 17.9047 + 10.3373i 0.581826 + 0.335917i 0.761859 0.647743i \(-0.224287\pi\)
−0.180033 + 0.983661i \(0.557620\pi\)
\(948\) 0 0
\(949\) 43.3170 + 34.4639i 1.40613 + 1.11875i
\(950\) −9.08250 31.6844i −0.294675 1.02798i
\(951\) 0 0
\(952\) 4.43191 + 2.55877i 0.143639 + 0.0829301i
\(953\) −26.8254 + 15.4876i −0.868959 + 0.501694i −0.867002 0.498304i \(-0.833956\pi\)
−0.00195715 + 0.999998i \(0.500623\pi\)
\(954\) 0 0
\(955\) −20.2777 25.9564i −0.656169 0.839931i
\(956\) 2.21109 + 3.82973i 0.0715119 + 0.123862i
\(957\) 0 0
\(958\) −10.3346 + 5.96666i −0.333895 + 0.192774i
\(959\) −28.8654 + 49.9964i −0.932113 + 1.61447i
\(960\) 0 0
\(961\) 16.9412 0.546489
\(962\) −17.9034 2.67775i −0.577229 0.0863343i
\(963\) 0 0
\(964\) −5.64050 + 9.76963i −0.181668 + 0.314659i
\(965\) 29.0250 + 11.7283i 0.934346 + 0.377546i
\(966\) 0 0
\(967\) 0.529873i 0.0170396i −0.999964 0.00851979i \(-0.997288\pi\)
0.999964 0.00851979i \(-0.00271197\pi\)
\(968\) −8.54092 + 4.93110i −0.274515 + 0.158492i
\(969\) 0 0
\(970\) 9.43356 1.32540i 0.302893 0.0425560i
\(971\) −17.1620 29.7255i −0.550755 0.953936i −0.998220 0.0596344i \(-0.981007\pi\)
0.447465 0.894301i \(-0.352327\pi\)
\(972\) 0 0
\(973\) 42.9087 + 24.7733i 1.37559 + 0.794196i
\(974\) −27.9719 −0.896277
\(975\) 0 0
\(976\) 7.88739 0.252469
\(977\) 17.2931 + 9.98418i 0.553255 + 0.319422i 0.750434 0.660945i \(-0.229845\pi\)
−0.197179 + 0.980368i \(0.563178\pi\)
\(978\) 0 0
\(979\) 2.41358 + 4.18045i 0.0771385 + 0.133608i
\(980\) −18.2351 + 2.56199i −0.582498 + 0.0818399i
\(981\) 0 0
\(982\) −17.9971 + 10.3906i −0.574310 + 0.331578i
\(983\) 20.8524i 0.665087i −0.943088 0.332543i \(-0.892093\pi\)
0.943088 0.332543i \(-0.107907\pi\)
\(984\) 0 0
\(985\) 21.5880 + 8.72316i 0.687850 + 0.277943i
\(986\) −5.93332 + 10.2768i −0.188956 + 0.327281i
\(987\) 0 0
\(988\) −8.70856 22.1153i −0.277056 0.703582i
\(989\) 4.29529 0.136582
\(990\) 0 0
\(991\) 1.47949 2.56256i 0.0469977 0.0814024i −0.841570 0.540149i \(-0.818368\pi\)
0.888567 + 0.458746i \(0.151701\pi\)
\(992\) 5.99632 3.46198i 0.190383 0.109918i
\(993\) 0 0
\(994\) 30.2099 + 52.3250i 0.958199 + 1.65965i
\(995\) 6.01351 + 7.69760i 0.190641 + 0.244030i
\(996\) 0 0
\(997\) −18.2281 + 10.5240i −0.577288 + 0.333297i −0.760055 0.649859i \(-0.774828\pi\)
0.182767 + 0.983156i \(0.441495\pi\)
\(998\) −29.6967 17.1454i −0.940034 0.542729i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.h.919.4 12
3.2 odd 2 130.2.n.a.9.3 12
5.4 even 2 inner 1170.2.bp.h.919.1 12
12.11 even 2 1040.2.dh.b.529.1 12
13.3 even 3 inner 1170.2.bp.h.289.1 12
15.2 even 4 650.2.e.k.451.3 6
15.8 even 4 650.2.e.j.451.1 6
15.14 odd 2 130.2.n.a.9.4 yes 12
39.17 odd 6 1690.2.b.b.339.1 6
39.20 even 12 1690.2.c.b.1689.1 6
39.29 odd 6 130.2.n.a.29.4 yes 12
39.32 even 12 1690.2.c.c.1689.1 6
39.35 odd 6 1690.2.b.c.339.4 6
60.59 even 2 1040.2.dh.b.529.6 12
65.29 even 6 inner 1170.2.bp.h.289.4 12
156.107 even 6 1040.2.dh.b.289.6 12
195.17 even 12 8450.2.a.ca.1.1 3
195.29 odd 6 130.2.n.a.29.3 yes 12
195.59 even 12 1690.2.c.c.1689.6 6
195.68 even 12 650.2.e.j.601.1 6
195.74 odd 6 1690.2.b.c.339.3 6
195.107 even 12 650.2.e.k.601.3 6
195.113 even 12 8450.2.a.cb.1.3 3
195.134 odd 6 1690.2.b.b.339.6 6
195.149 even 12 1690.2.c.b.1689.6 6
195.152 even 12 8450.2.a.bu.1.1 3
195.173 even 12 8450.2.a.bt.1.3 3
780.419 even 6 1040.2.dh.b.289.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.3 12 3.2 odd 2
130.2.n.a.9.4 yes 12 15.14 odd 2
130.2.n.a.29.3 yes 12 195.29 odd 6
130.2.n.a.29.4 yes 12 39.29 odd 6
650.2.e.j.451.1 6 15.8 even 4
650.2.e.j.601.1 6 195.68 even 12
650.2.e.k.451.3 6 15.2 even 4
650.2.e.k.601.3 6 195.107 even 12
1040.2.dh.b.289.1 12 780.419 even 6
1040.2.dh.b.289.6 12 156.107 even 6
1040.2.dh.b.529.1 12 12.11 even 2
1040.2.dh.b.529.6 12 60.59 even 2
1170.2.bp.h.289.1 12 13.3 even 3 inner
1170.2.bp.h.289.4 12 65.29 even 6 inner
1170.2.bp.h.919.1 12 5.4 even 2 inner
1170.2.bp.h.919.4 12 1.1 even 1 trivial
1690.2.b.b.339.1 6 39.17 odd 6
1690.2.b.b.339.6 6 195.134 odd 6
1690.2.b.c.339.3 6 195.74 odd 6
1690.2.b.c.339.4 6 39.35 odd 6
1690.2.c.b.1689.1 6 39.20 even 12
1690.2.c.b.1689.6 6 195.149 even 12
1690.2.c.c.1689.1 6 39.32 even 12
1690.2.c.c.1689.6 6 195.59 even 12
8450.2.a.bt.1.3 3 195.173 even 12
8450.2.a.bu.1.1 3 195.152 even 12
8450.2.a.ca.1.1 3 195.17 even 12
8450.2.a.cb.1.3 3 195.113 even 12