Properties

Label 1170.2.bp.h.289.1
Level $1170$
Weight $2$
Character 1170.289
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.1
Root \(-0.531325 - 1.98293i\) of defining polynomial
Character \(\chi\) \(=\) 1170.289
Dual form 1170.2.bp.h.919.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-2.21432 + 0.311108i) q^{5} +(3.38028 + 1.95161i) q^{7} +1.00000i q^{8} +(1.76210 - 1.37659i) q^{10} +(0.533338 + 0.923769i) q^{11} +(-2.24483 - 2.82148i) q^{13} -3.90321 q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.13545 + 0.655554i) q^{17} +(-3.29605 + 5.70893i) q^{19} +(-0.837733 + 2.07321i) q^{20} +(-0.923769 - 0.533338i) q^{22} +(1.85991 - 1.07382i) q^{23} +(4.80642 - 1.37778i) q^{25} +(3.35482 + 1.32106i) q^{26} +(3.38028 - 1.95161i) q^{28} +(4.52543 + 7.83827i) q^{29} -6.92396 q^{31} +(0.866025 + 0.500000i) q^{32} -1.31111 q^{34} +(-8.09218 - 3.26985i) q^{35} +(4.34809 - 2.51037i) q^{37} -6.59210i q^{38} +(-0.311108 - 2.21432i) q^{40} +(-2.97703 - 5.15637i) q^{41} +(1.73205 + 1.00000i) q^{43} +1.06668 q^{44} +(-1.07382 + 1.85991i) q^{46} +0.0967881i q^{47} +(4.11753 + 7.13177i) q^{49} +(-3.47359 + 3.59641i) q^{50} +(-3.56589 + 0.533338i) q^{52} -1.49532i q^{53} +(-1.46837 - 1.87959i) q^{55} +(-1.95161 + 3.38028i) q^{56} +(-7.83827 - 4.52543i) q^{58} +(-3.59210 + 6.22171i) q^{59} +(-3.94370 + 6.83068i) q^{61} +(5.99632 - 3.46198i) q^{62} -1.00000 q^{64} +(5.84855 + 5.54927i) q^{65} +(-7.29942 + 4.21432i) q^{67} +(1.13545 - 0.655554i) q^{68} +(8.64296 - 1.21432i) q^{70} +(-7.73975 + 13.4056i) q^{71} +15.3526i q^{73} +(-2.51037 + 4.34809i) q^{74} +(3.29605 + 5.70893i) q^{76} +4.16346i q^{77} -4.30174 q^{79} +(1.37659 + 1.76210i) q^{80} +(5.15637 + 2.97703i) q^{82} +9.69381i q^{83} +(-2.71820 - 1.09836i) q^{85} -2.00000 q^{86} +(-0.923769 + 0.533338i) q^{88} +(-2.26271 - 3.91914i) q^{89} +(-2.08173 - 13.9184i) q^{91} -2.14764i q^{92} +(-0.0483940 - 0.0838209i) q^{94} +(5.52242 - 13.6668i) q^{95} +(3.68949 + 2.13013i) q^{97} +(-7.13177 - 4.11753i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{10} + 6 q^{11} - 20 q^{14} - 6 q^{16} - 26 q^{19} + 4 q^{25} + 28 q^{29} + 24 q^{31} - 16 q^{34} + 6 q^{35} - 4 q^{40} + 4 q^{41} + 12 q^{44} - 4 q^{49} + 8 q^{50} + 12 q^{55} - 10 q^{56}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.21432 + 0.311108i −0.990274 + 0.139132i
\(6\) 0 0
\(7\) 3.38028 + 1.95161i 1.27763 + 0.737638i 0.976411 0.215919i \(-0.0692746\pi\)
0.301215 + 0.953556i \(0.402608\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.76210 1.37659i 0.557226 0.435315i
\(11\) 0.533338 + 0.923769i 0.160808 + 0.278527i 0.935159 0.354229i \(-0.115257\pi\)
−0.774351 + 0.632756i \(0.781923\pi\)
\(12\) 0 0
\(13\) −2.24483 2.82148i −0.622603 0.782538i
\(14\) −3.90321 −1.04318
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.13545 + 0.655554i 0.275388 + 0.158995i 0.631334 0.775511i \(-0.282508\pi\)
−0.355946 + 0.934507i \(0.615841\pi\)
\(18\) 0 0
\(19\) −3.29605 + 5.70893i −0.756166 + 1.30972i 0.188626 + 0.982049i \(0.439597\pi\)
−0.944792 + 0.327669i \(0.893737\pi\)
\(20\) −0.837733 + 2.07321i −0.187323 + 0.463584i
\(21\) 0 0
\(22\) −0.923769 0.533338i −0.196948 0.113708i
\(23\) 1.85991 1.07382i 0.387819 0.223907i −0.293396 0.955991i \(-0.594785\pi\)
0.681215 + 0.732084i \(0.261452\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 3.35482 + 1.32106i 0.657934 + 0.259081i
\(27\) 0 0
\(28\) 3.38028 1.95161i 0.638813 0.368819i
\(29\) 4.52543 + 7.83827i 0.840351 + 1.45553i 0.889598 + 0.456744i \(0.150984\pi\)
−0.0492475 + 0.998787i \(0.515682\pi\)
\(30\) 0 0
\(31\) −6.92396 −1.24358 −0.621790 0.783184i \(-0.713594\pi\)
−0.621790 + 0.783184i \(0.713594\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −1.31111 −0.224853
\(35\) −8.09218 3.26985i −1.36783 0.552705i
\(36\) 0 0
\(37\) 4.34809 2.51037i 0.714822 0.412703i −0.0980220 0.995184i \(-0.531252\pi\)
0.812844 + 0.582482i \(0.197918\pi\)
\(38\) 6.59210i 1.06938i
\(39\) 0 0
\(40\) −0.311108 2.21432i −0.0491905 0.350115i
\(41\) −2.97703 5.15637i −0.464935 0.805290i 0.534264 0.845318i \(-0.320589\pi\)
−0.999199 + 0.0400274i \(0.987255\pi\)
\(42\) 0 0
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) 1.06668 0.160808
\(45\) 0 0
\(46\) −1.07382 + 1.85991i −0.158326 + 0.274229i
\(47\) 0.0967881i 0.0141180i 0.999975 + 0.00705900i \(0.00224697\pi\)
−0.999975 + 0.00705900i \(0.997753\pi\)
\(48\) 0 0
\(49\) 4.11753 + 7.13177i 0.588219 + 1.01882i
\(50\) −3.47359 + 3.59641i −0.491240 + 0.508609i
\(51\) 0 0
\(52\) −3.56589 + 0.533338i −0.494500 + 0.0739607i
\(53\) 1.49532i 0.205397i −0.994713 0.102699i \(-0.967252\pi\)
0.994713 0.102699i \(-0.0327478\pi\)
\(54\) 0 0
\(55\) −1.46837 1.87959i −0.197995 0.253444i
\(56\) −1.95161 + 3.38028i −0.260794 + 0.451709i
\(57\) 0 0
\(58\) −7.83827 4.52543i −1.02922 0.594218i
\(59\) −3.59210 + 6.22171i −0.467652 + 0.809997i −0.999317 0.0369577i \(-0.988233\pi\)
0.531665 + 0.846955i \(0.321567\pi\)
\(60\) 0 0
\(61\) −3.94370 + 6.83068i −0.504938 + 0.874579i 0.495045 + 0.868867i \(0.335151\pi\)
−0.999984 + 0.00571183i \(0.998182\pi\)
\(62\) 5.99632 3.46198i 0.761534 0.439672i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 5.84855 + 5.54927i 0.725424 + 0.688303i
\(66\) 0 0
\(67\) −7.29942 + 4.21432i −0.891766 + 0.514861i −0.874520 0.484990i \(-0.838823\pi\)
−0.0172460 + 0.999851i \(0.505490\pi\)
\(68\) 1.13545 0.655554i 0.137694 0.0794976i
\(69\) 0 0
\(70\) 8.64296 1.21432i 1.03303 0.145139i
\(71\) −7.73975 + 13.4056i −0.918539 + 1.59096i −0.116903 + 0.993143i \(0.537297\pi\)
−0.801636 + 0.597813i \(0.796037\pi\)
\(72\) 0 0
\(73\) 15.3526i 1.79689i 0.439091 + 0.898443i \(0.355301\pi\)
−0.439091 + 0.898443i \(0.644699\pi\)
\(74\) −2.51037 + 4.34809i −0.291825 + 0.505455i
\(75\) 0 0
\(76\) 3.29605 + 5.70893i 0.378083 + 0.654859i
\(77\) 4.16346i 0.474471i
\(78\) 0 0
\(79\) −4.30174 −0.483984 −0.241992 0.970278i \(-0.577801\pi\)
−0.241992 + 0.970278i \(0.577801\pi\)
\(80\) 1.37659 + 1.76210i 0.153907 + 0.197009i
\(81\) 0 0
\(82\) 5.15637 + 2.97703i 0.569426 + 0.328758i
\(83\) 9.69381i 1.06403i 0.846734 + 0.532017i \(0.178566\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(84\) 0 0
\(85\) −2.71820 1.09836i −0.294831 0.119134i
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −0.923769 + 0.533338i −0.0984741 + 0.0568541i
\(89\) −2.26271 3.91914i −0.239847 0.415428i 0.720823 0.693119i \(-0.243764\pi\)
−0.960670 + 0.277692i \(0.910431\pi\)
\(90\) 0 0
\(91\) −2.08173 13.9184i −0.218225 1.45905i
\(92\) 2.14764i 0.223907i
\(93\) 0 0
\(94\) −0.0483940 0.0838209i −0.00499146 0.00864547i
\(95\) 5.52242 13.6668i 0.566588 1.40219i
\(96\) 0 0
\(97\) 3.68949 + 2.13013i 0.374611 + 0.216282i 0.675471 0.737387i \(-0.263940\pi\)
−0.300860 + 0.953668i \(0.597274\pi\)
\(98\) −7.13177 4.11753i −0.720418 0.415934i
\(99\) 0 0
\(100\) 1.21002 4.85138i 0.121002 0.485138i
\(101\) 0.729376 + 1.26332i 0.0725756 + 0.125705i 0.900029 0.435829i \(-0.143545\pi\)
−0.827454 + 0.561534i \(0.810211\pi\)
\(102\) 0 0
\(103\) 10.2444i 1.00941i 0.863291 + 0.504707i \(0.168399\pi\)
−0.863291 + 0.504707i \(0.831601\pi\)
\(104\) 2.82148 2.24483i 0.276669 0.220123i
\(105\) 0 0
\(106\) 0.747658 + 1.29498i 0.0726190 + 0.125780i
\(107\) 1.91766 1.10716i 0.185387 0.107033i −0.404434 0.914567i \(-0.632532\pi\)
0.589821 + 0.807534i \(0.299198\pi\)
\(108\) 0 0
\(109\) −0.133353 −0.0127729 −0.00638645 0.999980i \(-0.502033\pi\)
−0.00638645 + 0.999980i \(0.502033\pi\)
\(110\) 2.21145 + 0.893590i 0.210853 + 0.0852004i
\(111\) 0 0
\(112\) 3.90321i 0.368819i
\(113\) 12.1244 + 7.00000i 1.14056 + 0.658505i 0.946570 0.322498i \(-0.104523\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(114\) 0 0
\(115\) −3.78437 + 2.95642i −0.352894 + 0.275687i
\(116\) 9.05086 0.840351
\(117\) 0 0
\(118\) 7.18421i 0.661360i
\(119\) 2.55877 + 4.43191i 0.234562 + 0.406273i
\(120\) 0 0
\(121\) 4.93110 8.54092i 0.448282 0.776447i
\(122\) 7.88739i 0.714091i
\(123\) 0 0
\(124\) −3.46198 + 5.99632i −0.310895 + 0.538486i
\(125\) −10.2143 + 4.54617i −0.913597 + 0.406622i
\(126\) 0 0
\(127\) 8.65214 4.99532i 0.767753 0.443263i −0.0643192 0.997929i \(-0.520488\pi\)
0.832073 + 0.554667i \(0.187154\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −7.83963 1.88154i −0.687581 0.165022i
\(131\) −9.25581 −0.808684 −0.404342 0.914608i \(-0.632499\pi\)
−0.404342 + 0.914608i \(0.632499\pi\)
\(132\) 0 0
\(133\) −22.2832 + 12.8652i −1.93220 + 1.11555i
\(134\) 4.21432 7.29942i 0.364062 0.630573i
\(135\) 0 0
\(136\) −0.655554 + 1.13545i −0.0562133 + 0.0973643i
\(137\) −12.8090 7.39530i −1.09435 0.631823i −0.159619 0.987179i \(-0.551026\pi\)
−0.934731 + 0.355356i \(0.884360\pi\)
\(138\) 0 0
\(139\) −6.34691 + 10.9932i −0.538338 + 0.932428i 0.460656 + 0.887579i \(0.347614\pi\)
−0.998994 + 0.0448494i \(0.985719\pi\)
\(140\) −6.87786 + 5.37311i −0.581285 + 0.454111i
\(141\) 0 0
\(142\) 15.4795i 1.29901i
\(143\) 1.40914 3.57851i 0.117838 0.299250i
\(144\) 0 0
\(145\) −12.4593 15.9485i −1.03469 1.32445i
\(146\) −7.67630 13.2957i −0.635295 1.10036i
\(147\) 0 0
\(148\) 5.02074i 0.412703i
\(149\) −3.64296 + 6.30979i −0.298443 + 0.516918i −0.975780 0.218755i \(-0.929801\pi\)
0.677337 + 0.735673i \(0.263134\pi\)
\(150\) 0 0
\(151\) 20.1082 1.63638 0.818190 0.574949i \(-0.194978\pi\)
0.818190 + 0.574949i \(0.194978\pi\)
\(152\) −5.70893 3.29605i −0.463055 0.267345i
\(153\) 0 0
\(154\) −2.08173 3.60567i −0.167751 0.290553i
\(155\) 15.3319 2.15410i 1.23148 0.173021i
\(156\) 0 0
\(157\) 1.98418i 0.158355i −0.996861 0.0791773i \(-0.974771\pi\)
0.996861 0.0791773i \(-0.0252293\pi\)
\(158\) 3.72542 2.15087i 0.296378 0.171114i
\(159\) 0 0
\(160\) −2.07321 0.837733i −0.163902 0.0662286i
\(161\) 8.38271 0.660650
\(162\) 0 0
\(163\) −4.07308 2.35159i −0.319028 0.184191i 0.331931 0.943304i \(-0.392300\pi\)
−0.650959 + 0.759113i \(0.725633\pi\)
\(164\) −5.95407 −0.464935
\(165\) 0 0
\(166\) −4.84691 8.39509i −0.376193 0.651585i
\(167\) 8.39642 4.84767i 0.649734 0.375124i −0.138620 0.990346i \(-0.544267\pi\)
0.788354 + 0.615221i \(0.210933\pi\)
\(168\) 0 0
\(169\) −2.92149 + 12.6675i −0.224730 + 0.974421i
\(170\) 2.90321 0.407896i 0.222666 0.0312842i
\(171\) 0 0
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) −20.8466 12.0358i −1.58494 0.915065i −0.994123 0.108259i \(-0.965473\pi\)
−0.590816 0.806806i \(-0.701194\pi\)
\(174\) 0 0
\(175\) 18.9360 + 4.72295i 1.43142 + 0.357021i
\(176\) 0.533338 0.923769i 0.0402019 0.0696317i
\(177\) 0 0
\(178\) 3.91914 + 2.26271i 0.293752 + 0.169598i
\(179\) −1.52543 2.64212i −0.114016 0.197481i 0.803370 0.595480i \(-0.203038\pi\)
−0.917386 + 0.397999i \(0.869705\pi\)
\(180\) 0 0
\(181\) 10.6430 0.791085 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(182\) 8.76204 + 11.0128i 0.649486 + 0.816325i
\(183\) 0 0
\(184\) 1.07382 + 1.85991i 0.0791632 + 0.137115i
\(185\) −8.84707 + 6.91149i −0.650449 + 0.508143i
\(186\) 0 0
\(187\) 1.39853i 0.102270i
\(188\) 0.0838209 + 0.0483940i 0.00611327 + 0.00352950i
\(189\) 0 0
\(190\) 2.05086 + 14.5970i 0.148785 + 1.05898i
\(191\) 7.36519 12.7569i 0.532926 0.923056i −0.466334 0.884609i \(-0.654426\pi\)
0.999261 0.0384470i \(-0.0122411\pi\)
\(192\) 0 0
\(193\) 12.1244 7.00000i 0.872730 0.503871i 0.00447566 0.999990i \(-0.498575\pi\)
0.868255 + 0.496119i \(0.165242\pi\)
\(194\) −4.26025 −0.305868
\(195\) 0 0
\(196\) 8.23506 0.588219
\(197\) 9.01776 5.20641i 0.642489 0.370941i −0.143084 0.989711i \(-0.545702\pi\)
0.785573 + 0.618769i \(0.212368\pi\)
\(198\) 0 0
\(199\) −2.18421 + 3.78316i −0.154834 + 0.268181i −0.932999 0.359880i \(-0.882818\pi\)
0.778164 + 0.628061i \(0.216151\pi\)
\(200\) 1.37778 + 4.80642i 0.0974241 + 0.339865i
\(201\) 0 0
\(202\) −1.26332 0.729376i −0.0888866 0.0513187i
\(203\) 35.3274i 2.47950i
\(204\) 0 0
\(205\) 8.19629 + 10.4917i 0.572454 + 0.732771i
\(206\) −5.12222 8.87194i −0.356882 0.618137i
\(207\) 0 0
\(208\) −1.32106 + 3.35482i −0.0915990 + 0.232615i
\(209\) −7.03164 −0.486389
\(210\) 0 0
\(211\) −2.74766 4.75908i −0.189157 0.327629i 0.755813 0.654788i \(-0.227242\pi\)
−0.944969 + 0.327159i \(0.893909\pi\)
\(212\) −1.29498 0.747658i −0.0889397 0.0513494i
\(213\) 0 0
\(214\) −1.10716 + 1.91766i −0.0756839 + 0.131088i
\(215\) −4.14642 1.67547i −0.282784 0.114266i
\(216\) 0 0
\(217\) −23.4049 13.5128i −1.58883 0.917311i
\(218\) 0.115487 0.0666765i 0.00782178 0.00451591i
\(219\) 0 0
\(220\) −2.36196 + 0.331851i −0.159244 + 0.0223734i
\(221\) −0.699264 4.67526i −0.0470376 0.314492i
\(222\) 0 0
\(223\) 17.4043 10.0484i 1.16548 0.672890i 0.212869 0.977081i \(-0.431719\pi\)
0.952611 + 0.304191i \(0.0983860\pi\)
\(224\) 1.95161 + 3.38028i 0.130397 + 0.225855i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 16.7654 + 9.67952i 1.11276 + 0.642453i 0.939543 0.342431i \(-0.111250\pi\)
0.173218 + 0.984884i \(0.444584\pi\)
\(228\) 0 0
\(229\) −15.7255 −1.03917 −0.519584 0.854420i \(-0.673913\pi\)
−0.519584 + 0.854420i \(0.673913\pi\)
\(230\) 1.79915 4.45252i 0.118632 0.293590i
\(231\) 0 0
\(232\) −7.83827 + 4.52543i −0.514608 + 0.297109i
\(233\) 14.8825i 0.974983i −0.873128 0.487491i \(-0.837912\pi\)
0.873128 0.487491i \(-0.162088\pi\)
\(234\) 0 0
\(235\) −0.0301115 0.214320i −0.00196426 0.0139807i
\(236\) 3.59210 + 6.22171i 0.233826 + 0.404999i
\(237\) 0 0
\(238\) −4.43191 2.55877i −0.287278 0.165860i
\(239\) 4.42219 0.286047 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(240\) 0 0
\(241\) 5.64050 9.76963i 0.363336 0.629317i −0.625171 0.780488i \(-0.714971\pi\)
0.988508 + 0.151170i \(0.0483042\pi\)
\(242\) 9.86220i 0.633966i
\(243\) 0 0
\(244\) 3.94370 + 6.83068i 0.252469 + 0.437290i
\(245\) −11.3363 14.5110i −0.724249 0.927076i
\(246\) 0 0
\(247\) 23.5067 3.51582i 1.49570 0.223706i
\(248\) 6.92396i 0.439672i
\(249\) 0 0
\(250\) 6.57277 9.04426i 0.415699 0.572009i
\(251\) 1.32616 2.29698i 0.0837067 0.144984i −0.821133 0.570737i \(-0.806657\pi\)
0.904839 + 0.425753i \(0.139991\pi\)
\(252\) 0 0
\(253\) 1.98393 + 1.14542i 0.124728 + 0.0720120i
\(254\) −4.99532 + 8.65214i −0.313434 + 0.542884i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.55219 + 2.05086i −0.221579 + 0.127929i −0.606681 0.794945i \(-0.707500\pi\)
0.385102 + 0.922874i \(0.374166\pi\)
\(258\) 0 0
\(259\) 19.5970 1.21770
\(260\) 7.73009 2.29036i 0.479400 0.142042i
\(261\) 0 0
\(262\) 8.01576 4.62790i 0.495216 0.285913i
\(263\) −9.35479 + 5.40099i −0.576841 + 0.333039i −0.759877 0.650067i \(-0.774741\pi\)
0.183036 + 0.983106i \(0.441407\pi\)
\(264\) 0 0
\(265\) 0.465205 + 3.31111i 0.0285773 + 0.203400i
\(266\) 12.8652 22.2832i 0.788815 1.36627i
\(267\) 0 0
\(268\) 8.42864i 0.514861i
\(269\) 9.29137 16.0931i 0.566505 0.981215i −0.430403 0.902637i \(-0.641629\pi\)
0.996908 0.0785782i \(-0.0250380\pi\)
\(270\) 0 0
\(271\) −9.88739 17.1255i −0.600616 1.04030i −0.992728 0.120380i \(-0.961589\pi\)
0.392112 0.919918i \(-0.371745\pi\)
\(272\) 1.31111i 0.0794976i
\(273\) 0 0
\(274\) 14.7906 0.893533
\(275\) 3.83620 + 3.70520i 0.231332 + 0.223432i
\(276\) 0 0
\(277\) −0.177493 0.102476i −0.0106645 0.00615718i 0.494658 0.869088i \(-0.335293\pi\)
−0.505323 + 0.862930i \(0.668627\pi\)
\(278\) 12.6938i 0.761324i
\(279\) 0 0
\(280\) 3.26985 8.09218i 0.195411 0.483600i
\(281\) 20.4558 1.22029 0.610146 0.792289i \(-0.291111\pi\)
0.610146 + 0.792289i \(0.291111\pi\)
\(282\) 0 0
\(283\) −1.24535 + 0.719004i −0.0740284 + 0.0427403i −0.536557 0.843864i \(-0.680275\pi\)
0.462529 + 0.886604i \(0.346942\pi\)
\(284\) 7.73975 + 13.4056i 0.459270 + 0.795478i
\(285\) 0 0
\(286\) 0.568899 + 3.80365i 0.0336397 + 0.224914i
\(287\) 23.2400i 1.37181i
\(288\) 0 0
\(289\) −7.64050 13.2337i −0.449441 0.778455i
\(290\) 18.7643 + 7.58220i 1.10188 + 0.445242i
\(291\) 0 0
\(292\) 13.2957 + 7.67630i 0.778074 + 0.449221i
\(293\) 18.1126 + 10.4573i 1.05815 + 0.610922i 0.924919 0.380164i \(-0.124132\pi\)
0.133228 + 0.991085i \(0.457466\pi\)
\(294\) 0 0
\(295\) 6.01845 14.8944i 0.350407 0.867184i
\(296\) 2.51037 + 4.34809i 0.145912 + 0.252728i
\(297\) 0 0
\(298\) 7.28592i 0.422062i
\(299\) −7.20495 2.83716i −0.416673 0.164077i
\(300\) 0 0
\(301\) 3.90321 + 6.76056i 0.224977 + 0.389672i
\(302\) −17.4142 + 10.0541i −1.00207 + 0.578547i
\(303\) 0 0
\(304\) 6.59210 0.378083
\(305\) 6.60752 16.3522i 0.378346 0.936326i
\(306\) 0 0
\(307\) 12.5303i 0.715145i 0.933885 + 0.357572i \(0.116395\pi\)
−0.933885 + 0.357572i \(0.883605\pi\)
\(308\) 3.60567 + 2.08173i 0.205452 + 0.118618i
\(309\) 0 0
\(310\) −12.2007 + 9.53143i −0.692955 + 0.541349i
\(311\) 9.78123 0.554643 0.277321 0.960777i \(-0.410553\pi\)
0.277321 + 0.960777i \(0.410553\pi\)
\(312\) 0 0
\(313\) 17.2128i 0.972924i −0.873702 0.486462i \(-0.838287\pi\)
0.873702 0.486462i \(-0.161713\pi\)
\(314\) 0.992089 + 1.71835i 0.0559868 + 0.0969720i
\(315\) 0 0
\(316\) −2.15087 + 3.72542i −0.120996 + 0.209571i
\(317\) 13.7447i 0.771978i −0.922503 0.385989i \(-0.873860\pi\)
0.922503 0.385989i \(-0.126140\pi\)
\(318\) 0 0
\(319\) −4.82717 + 8.36090i −0.270269 + 0.468120i
\(320\) 2.21432 0.311108i 0.123784 0.0173915i
\(321\) 0 0
\(322\) −7.25964 + 4.19135i −0.404564 + 0.233575i
\(323\) −7.48502 + 4.32148i −0.416478 + 0.240454i
\(324\) 0 0
\(325\) −14.6770 10.4683i −0.814133 0.580679i
\(326\) 4.70318 0.260485
\(327\) 0 0
\(328\) 5.15637 2.97703i 0.284713 0.164379i
\(329\) −0.188892 + 0.327171i −0.0104140 + 0.0180375i
\(330\) 0 0
\(331\) −9.69381 + 16.7902i −0.532820 + 0.922872i 0.466445 + 0.884550i \(0.345534\pi\)
−0.999265 + 0.0383216i \(0.987799\pi\)
\(332\) 8.39509 + 4.84691i 0.460740 + 0.266009i
\(333\) 0 0
\(334\) −4.84767 + 8.39642i −0.265253 + 0.459431i
\(335\) 14.8521 11.6028i 0.811459 0.633926i
\(336\) 0 0
\(337\) 0.555539i 0.0302621i 0.999886 + 0.0151311i \(0.00481655\pi\)
−0.999886 + 0.0151311i \(0.995183\pi\)
\(338\) −3.80365 12.4311i −0.206891 0.676163i
\(339\) 0 0
\(340\) −2.31031 + 1.80485i −0.125294 + 0.0978820i
\(341\) −3.69281 6.39614i −0.199977 0.346370i
\(342\) 0 0
\(343\) 4.82071i 0.260294i
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) 24.0716 1.29410
\(347\) 5.78890 + 3.34222i 0.310764 + 0.179420i 0.647269 0.762262i \(-0.275911\pi\)
−0.336504 + 0.941682i \(0.609245\pi\)
\(348\) 0 0
\(349\) 5.29137 + 9.16492i 0.283240 + 0.490587i 0.972181 0.234231i \(-0.0752572\pi\)
−0.688941 + 0.724818i \(0.741924\pi\)
\(350\) −18.7605 + 5.37778i −1.00279 + 0.287455i
\(351\) 0 0
\(352\) 1.06668i 0.0568541i
\(353\) −7.97557 + 4.60470i −0.424497 + 0.245083i −0.696999 0.717072i \(-0.745482\pi\)
0.272503 + 0.962155i \(0.412149\pi\)
\(354\) 0 0
\(355\) 12.9677 32.0923i 0.688253 1.70328i
\(356\) −4.52543 −0.239847
\(357\) 0 0
\(358\) 2.64212 + 1.52543i 0.139640 + 0.0806214i
\(359\) −4.19358 −0.221328 −0.110664 0.993858i \(-0.535298\pi\)
−0.110664 + 0.993858i \(0.535298\pi\)
\(360\) 0 0
\(361\) −12.2279 21.1794i −0.643575 1.11470i
\(362\) −9.21707 + 5.32148i −0.484439 + 0.279691i
\(363\) 0 0
\(364\) −13.0946 5.15637i −0.686342 0.270267i
\(365\) −4.77631 33.9956i −0.250004 1.77941i
\(366\) 0 0
\(367\) 12.0970 6.98418i 0.631456 0.364571i −0.149860 0.988707i \(-0.547882\pi\)
0.781316 + 0.624136i \(0.214549\pi\)
\(368\) −1.85991 1.07382i −0.0969547 0.0559768i
\(369\) 0 0
\(370\) 4.20604 10.4091i 0.218662 0.541141i
\(371\) 2.91827 5.05459i 0.151509 0.262421i
\(372\) 0 0
\(373\) 10.2606 + 5.92396i 0.531273 + 0.306731i 0.741535 0.670914i \(-0.234098\pi\)
−0.210262 + 0.977645i \(0.567432\pi\)
\(374\) −0.699264 1.21116i −0.0361581 0.0626276i
\(375\) 0 0
\(376\) −0.0967881 −0.00499146
\(377\) 11.9567 30.3640i 0.615802 1.56382i
\(378\) 0 0
\(379\) 0.303197 + 0.525153i 0.0155742 + 0.0269753i 0.873707 0.486452i \(-0.161709\pi\)
−0.858133 + 0.513427i \(0.828376\pi\)
\(380\) −9.07461 11.6160i −0.465517 0.595887i
\(381\) 0 0
\(382\) 14.7304i 0.753672i
\(383\) 30.1201 + 17.3899i 1.53907 + 0.888580i 0.998894 + 0.0470252i \(0.0149741\pi\)
0.540172 + 0.841555i \(0.318359\pi\)
\(384\) 0 0
\(385\) −1.29529 9.21924i −0.0660139 0.469856i
\(386\) −7.00000 + 12.1244i −0.356291 + 0.617113i
\(387\) 0 0
\(388\) 3.68949 2.13013i 0.187305 0.108141i
\(389\) −18.6844 −0.947339 −0.473670 0.880703i \(-0.657071\pi\)
−0.473670 + 0.880703i \(0.657071\pi\)
\(390\) 0 0
\(391\) 2.81579 0.142401
\(392\) −7.13177 + 4.11753i −0.360209 + 0.207967i
\(393\) 0 0
\(394\) −5.20641 + 9.01776i −0.262295 + 0.454308i
\(395\) 9.52543 1.33830i 0.479276 0.0673374i
\(396\) 0 0
\(397\) −19.8968 11.4874i −0.998590 0.576536i −0.0907594 0.995873i \(-0.528929\pi\)
−0.907831 + 0.419337i \(0.862263\pi\)
\(398\) 4.36842i 0.218969i
\(399\) 0 0
\(400\) −3.59641 3.47359i −0.179820 0.173680i
\(401\) −2.18667 3.78742i −0.109197 0.189135i 0.806248 0.591577i \(-0.201495\pi\)
−0.915445 + 0.402443i \(0.868161\pi\)
\(402\) 0 0
\(403\) 15.5431 + 19.5358i 0.774256 + 0.973147i
\(404\) 1.45875 0.0725756
\(405\) 0 0
\(406\) −17.6637 30.5944i −0.876635 1.51838i
\(407\) 4.63801 + 2.67775i 0.229897 + 0.132731i
\(408\) 0 0
\(409\) −1.88493 + 3.26479i −0.0932038 + 0.161434i −0.908858 0.417107i \(-0.863044\pi\)
0.815654 + 0.578540i \(0.196377\pi\)
\(410\) −12.3440 4.98792i −0.609629 0.246336i
\(411\) 0 0
\(412\) 8.87194 + 5.12222i 0.437089 + 0.252353i
\(413\) −24.2846 + 14.0207i −1.19497 + 0.689916i
\(414\) 0 0
\(415\) −3.01582 21.4652i −0.148041 1.05369i
\(416\) −0.533338 3.56589i −0.0261491 0.174832i
\(417\) 0 0
\(418\) 6.08958 3.51582i 0.297851 0.171964i
\(419\) −3.72615 6.45388i −0.182034 0.315293i 0.760539 0.649292i \(-0.224935\pi\)
−0.942573 + 0.334000i \(0.891602\pi\)
\(420\) 0 0
\(421\) 27.6751 1.34880 0.674400 0.738366i \(-0.264402\pi\)
0.674400 + 0.738366i \(0.264402\pi\)
\(422\) 4.75908 + 2.74766i 0.231669 + 0.133754i
\(423\) 0 0
\(424\) 1.49532 0.0726190
\(425\) 6.36068 + 1.58646i 0.308538 + 0.0769547i
\(426\) 0 0
\(427\) −26.6616 + 15.3931i −1.29024 + 0.744923i
\(428\) 2.21432i 0.107033i
\(429\) 0 0
\(430\) 4.42864 0.622216i 0.213568 0.0300059i
\(431\) 9.84468 + 17.0515i 0.474202 + 0.821342i 0.999564 0.0295373i \(-0.00940339\pi\)
−0.525362 + 0.850879i \(0.676070\pi\)
\(432\) 0 0
\(433\) −11.9046 6.87310i −0.572097 0.330300i 0.185890 0.982571i \(-0.440483\pi\)
−0.757986 + 0.652270i \(0.773817\pi\)
\(434\) 27.0257 1.29727
\(435\) 0 0
\(436\) −0.0666765 + 0.115487i −0.00319323 + 0.00553083i
\(437\) 14.1575i 0.677244i
\(438\) 0 0
\(439\) 20.9114 + 36.2195i 0.998045 + 1.72866i 0.553151 + 0.833081i \(0.313425\pi\)
0.444894 + 0.895583i \(0.353242\pi\)
\(440\) 1.87959 1.46837i 0.0896061 0.0700019i
\(441\) 0 0
\(442\) 2.94321 + 3.69926i 0.139994 + 0.175956i
\(443\) 23.6829i 1.12521i −0.826726 0.562605i \(-0.809799\pi\)
0.826726 0.562605i \(-0.190201\pi\)
\(444\) 0 0
\(445\) 6.22965 + 7.97427i 0.295314 + 0.378017i
\(446\) −10.0484 + 17.4043i −0.475805 + 0.824119i
\(447\) 0 0
\(448\) −3.38028 1.95161i −0.159703 0.0922047i
\(449\) −3.52789 + 6.11048i −0.166491 + 0.288371i −0.937184 0.348836i \(-0.886577\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(450\) 0 0
\(451\) 3.17553 5.50018i 0.149530 0.258993i
\(452\) 12.1244 7.00000i 0.570282 0.329252i
\(453\) 0 0
\(454\) −19.3590 −0.908565
\(455\) 8.93975 + 30.1722i 0.419102 + 1.41449i
\(456\) 0 0
\(457\) −30.8994 + 17.8398i −1.44541 + 0.834509i −0.998203 0.0599208i \(-0.980915\pi\)
−0.447209 + 0.894430i \(0.647582\pi\)
\(458\) 13.6186 7.86273i 0.636358 0.367401i
\(459\) 0 0
\(460\) 0.668149 + 4.75557i 0.0311526 + 0.221730i
\(461\) −7.30074 + 12.6452i −0.340029 + 0.588948i −0.984438 0.175734i \(-0.943770\pi\)
0.644409 + 0.764681i \(0.277104\pi\)
\(462\) 0 0
\(463\) 30.7511i 1.42913i −0.699571 0.714563i \(-0.746626\pi\)
0.699571 0.714563i \(-0.253374\pi\)
\(464\) 4.52543 7.83827i 0.210088 0.363883i
\(465\) 0 0
\(466\) 7.44123 + 12.8886i 0.344709 + 0.597053i
\(467\) 20.5620i 0.951496i 0.879582 + 0.475748i \(0.157822\pi\)
−0.879582 + 0.475748i \(0.842178\pi\)
\(468\) 0 0
\(469\) −32.8988 −1.51912
\(470\) 0.133237 + 0.170551i 0.00614577 + 0.00786691i
\(471\) 0 0
\(472\) −6.22171 3.59210i −0.286377 0.165340i
\(473\) 2.13335i 0.0980917i
\(474\) 0 0
\(475\) −7.97655 + 31.9808i −0.365989 + 1.46738i
\(476\) 5.11753 0.234562
\(477\) 0 0
\(478\) −3.82973 + 2.21109i −0.175168 + 0.101133i
\(479\) −5.96666 10.3346i −0.272624 0.472198i 0.696909 0.717159i \(-0.254558\pi\)
−0.969533 + 0.244961i \(0.921225\pi\)
\(480\) 0 0
\(481\) −16.8437 6.63270i −0.768006 0.302425i
\(482\) 11.2810i 0.513835i
\(483\) 0 0
\(484\) −4.93110 8.54092i −0.224141 0.388223i
\(485\) −8.83240 3.56895i −0.401059 0.162058i
\(486\) 0 0
\(487\) 24.2244 + 13.9859i 1.09771 + 0.633764i 0.935619 0.353012i \(-0.114842\pi\)
0.162092 + 0.986776i \(0.448176\pi\)
\(488\) −6.83068 3.94370i −0.309210 0.178523i
\(489\) 0 0
\(490\) 17.0730 + 6.89878i 0.771281 + 0.311655i
\(491\) −10.3906 17.9971i −0.468922 0.812197i 0.530447 0.847718i \(-0.322024\pi\)
−0.999369 + 0.0355214i \(0.988691\pi\)
\(492\) 0 0
\(493\) 11.8666i 0.534447i
\(494\) −18.5995 + 14.7981i −0.836830 + 0.665800i
\(495\) 0 0
\(496\) 3.46198 + 5.99632i 0.155447 + 0.269243i
\(497\) −52.3250 + 30.2099i −2.34710 + 1.35510i
\(498\) 0 0
\(499\) −34.2908 −1.53507 −0.767534 0.641008i \(-0.778517\pi\)
−0.767534 + 0.641008i \(0.778517\pi\)
\(500\) −1.17006 + 11.1189i −0.0523267 + 0.497254i
\(501\) 0 0
\(502\) 2.65233i 0.118379i
\(503\) 17.5160 + 10.1128i 0.780998 + 0.450910i 0.836784 0.547533i \(-0.184433\pi\)
−0.0557857 + 0.998443i \(0.517766\pi\)
\(504\) 0 0
\(505\) −2.00810 2.57047i −0.0893592 0.114384i
\(506\) −2.29084 −0.101840
\(507\) 0 0
\(508\) 9.99063i 0.443263i
\(509\) 13.6889 + 23.7099i 0.606749 + 1.05092i 0.991772 + 0.128014i \(0.0408602\pi\)
−0.385023 + 0.922907i \(0.625806\pi\)
\(510\) 0 0
\(511\) −29.9622 + 51.8961i −1.32545 + 2.29575i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 2.05086 3.55219i 0.0904593 0.156680i
\(515\) −3.18712 22.6844i −0.140441 0.999596i
\(516\) 0 0
\(517\) −0.0894098 + 0.0516208i −0.00393224 + 0.00227028i
\(518\) −16.9715 + 9.79851i −0.745686 + 0.430522i
\(519\) 0 0
\(520\) −5.54927 + 5.84855i −0.243352 + 0.256476i
\(521\) 31.2034 1.36705 0.683523 0.729929i \(-0.260447\pi\)
0.683523 + 0.729929i \(0.260447\pi\)
\(522\) 0 0
\(523\) 8.52854 4.92396i 0.372927 0.215310i −0.301809 0.953368i \(-0.597591\pi\)
0.674736 + 0.738059i \(0.264257\pi\)
\(524\) −4.62790 + 8.01576i −0.202171 + 0.350170i
\(525\) 0 0
\(526\) 5.40099 9.35479i 0.235494 0.407888i
\(527\) −7.86182 4.53903i −0.342466 0.197723i
\(528\) 0 0
\(529\) −9.19381 + 15.9242i −0.399731 + 0.692355i
\(530\) −2.05843 2.63490i −0.0894126 0.114453i
\(531\) 0 0
\(532\) 25.7304i 1.11555i
\(533\) −7.86567 + 19.9748i −0.340700 + 0.865205i
\(534\) 0 0
\(535\) −3.90186 + 3.04820i −0.168692 + 0.131785i
\(536\) −4.21432 7.29942i −0.182031 0.315287i
\(537\) 0 0
\(538\) 18.5827i 0.801159i
\(539\) −4.39207 + 7.60730i −0.189180 + 0.327669i
\(540\) 0 0
\(541\) 41.6149 1.78916 0.894581 0.446905i \(-0.147474\pi\)
0.894581 + 0.446905i \(0.147474\pi\)
\(542\) 17.1255 + 9.88739i 0.735602 + 0.424700i
\(543\) 0 0
\(544\) 0.655554 + 1.13545i 0.0281066 + 0.0486821i
\(545\) 0.295286 0.0414872i 0.0126487 0.00177712i
\(546\) 0 0
\(547\) 6.77430i 0.289648i 0.989457 + 0.144824i \(0.0462617\pi\)
−0.989457 + 0.144824i \(0.953738\pi\)
\(548\) −12.8090 + 7.39530i −0.547175 + 0.315912i
\(549\) 0 0
\(550\) −5.17485 1.29070i −0.220656 0.0550354i
\(551\) −59.6642 −2.54178
\(552\) 0 0
\(553\) −14.5411 8.39530i −0.618350 0.357005i
\(554\) 0.204952 0.00870757
\(555\) 0 0
\(556\) 6.34691 + 10.9932i 0.269169 + 0.466214i
\(557\) −22.0360 + 12.7225i −0.933694 + 0.539068i −0.887978 0.459886i \(-0.847890\pi\)
−0.0457158 + 0.998954i \(0.514557\pi\)
\(558\) 0 0
\(559\) −1.06668 7.13177i −0.0451156 0.301642i
\(560\) 1.21432 + 8.64296i 0.0513144 + 0.365232i
\(561\) 0 0
\(562\) −17.7153 + 10.2279i −0.747274 + 0.431439i
\(563\) −11.4179 6.59210i −0.481205 0.277824i 0.239713 0.970844i \(-0.422947\pi\)
−0.720919 + 0.693020i \(0.756280\pi\)
\(564\) 0 0
\(565\) −29.0250 11.7283i −1.22109 0.493411i
\(566\) 0.719004 1.24535i 0.0302220 0.0523460i
\(567\) 0 0
\(568\) −13.4056 7.73975i −0.562488 0.324753i
\(569\) 12.2304 + 21.1836i 0.512724 + 0.888064i 0.999891 + 0.0147555i \(0.00469698\pi\)
−0.487167 + 0.873309i \(0.661970\pi\)
\(570\) 0 0
\(571\) 24.3526 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(572\) −2.39451 3.00961i −0.100119 0.125838i
\(573\) 0 0
\(574\) 11.6200 + 20.1264i 0.485009 + 0.840060i
\(575\) 7.46004 7.72380i 0.311105 0.322105i
\(576\) 0 0
\(577\) 42.0479i 1.75048i −0.483690 0.875239i \(-0.660704\pi\)
0.483690 0.875239i \(-0.339296\pi\)
\(578\) 13.2337 + 7.64050i 0.550451 + 0.317803i
\(579\) 0 0
\(580\) −20.0415 + 2.81579i −0.832177 + 0.116919i
\(581\) −18.9185 + 32.7678i −0.784872 + 1.35944i
\(582\) 0 0
\(583\) 1.38133 0.797509i 0.0572087 0.0330295i
\(584\) −15.3526 −0.635295
\(585\) 0 0
\(586\) −20.9146 −0.863974
\(587\) 6.36195 3.67307i 0.262586 0.151604i −0.362928 0.931817i \(-0.618223\pi\)
0.625513 + 0.780213i \(0.284890\pi\)
\(588\) 0 0
\(589\) 22.8217 39.5284i 0.940353 1.62874i
\(590\) 2.23506 + 15.9081i 0.0920161 + 0.654928i
\(591\) 0 0
\(592\) −4.34809 2.51037i −0.178705 0.103176i
\(593\) 4.19358i 0.172210i 0.996286 + 0.0861048i \(0.0274420\pi\)
−0.996286 + 0.0861048i \(0.972558\pi\)
\(594\) 0 0
\(595\) −7.04473 9.01762i −0.288806 0.369686i
\(596\) 3.64296 + 6.30979i 0.149221 + 0.258459i
\(597\) 0 0
\(598\) 7.65825 1.14542i 0.313169 0.0468397i
\(599\) 9.33630 0.381471 0.190735 0.981641i \(-0.438913\pi\)
0.190735 + 0.981641i \(0.438913\pi\)
\(600\) 0 0
\(601\) 1.48571 + 2.57333i 0.0606034 + 0.104968i 0.894735 0.446597i \(-0.147364\pi\)
−0.834132 + 0.551565i \(0.814031\pi\)
\(602\) −6.76056 3.90321i −0.275540 0.159083i
\(603\) 0 0
\(604\) 10.0541 17.4142i 0.409095 0.708573i
\(605\) −8.26189 + 20.4464i −0.335893 + 0.831265i
\(606\) 0 0
\(607\) 14.8464 + 8.57160i 0.602599 + 0.347910i 0.770063 0.637968i \(-0.220225\pi\)
−0.167465 + 0.985878i \(0.553558\pi\)
\(608\) −5.70893 + 3.29605i −0.231528 + 0.133673i
\(609\) 0 0
\(610\) 2.45383 + 17.4652i 0.0993526 + 0.707145i
\(611\) 0.273086 0.217273i 0.0110479 0.00878991i
\(612\) 0 0
\(613\) 25.3610 14.6422i 1.02432 0.591393i 0.108969 0.994045i \(-0.465245\pi\)
0.915353 + 0.402653i \(0.131912\pi\)
\(614\) −6.26517 10.8516i −0.252842 0.437935i
\(615\) 0 0
\(616\) −4.16346 −0.167751
\(617\) −11.4453 6.60793i −0.460769 0.266025i 0.251599 0.967832i \(-0.419044\pi\)
−0.712368 + 0.701807i \(0.752377\pi\)
\(618\) 0 0
\(619\) 18.9333 0.760995 0.380497 0.924782i \(-0.375753\pi\)
0.380497 + 0.924782i \(0.375753\pi\)
\(620\) 5.80042 14.3548i 0.232951 0.576503i
\(621\) 0 0
\(622\) −8.47080 + 4.89062i −0.339648 + 0.196096i
\(623\) 17.6637i 0.707681i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 8.60639 + 14.9067i 0.343981 + 0.595792i
\(627\) 0 0
\(628\) −1.71835 0.992089i −0.0685696 0.0395887i
\(629\) 6.58274 0.262471
\(630\) 0 0
\(631\) −1.21432 + 2.10326i −0.0483413 + 0.0837296i −0.889184 0.457551i \(-0.848727\pi\)
0.840842 + 0.541280i \(0.182060\pi\)
\(632\) 4.30174i 0.171114i
\(633\) 0 0
\(634\) 6.87233 + 11.9032i 0.272935 + 0.472738i
\(635\) −17.6045 + 13.7530i −0.698614 + 0.545770i
\(636\) 0 0
\(637\) 10.8790 27.6271i 0.431042 1.09463i
\(638\) 9.65433i 0.382219i
\(639\) 0 0
\(640\) −1.76210 + 1.37659i −0.0696532 + 0.0544144i
\(641\) 7.54371 13.0661i 0.297959 0.516079i −0.677710 0.735329i \(-0.737028\pi\)
0.975669 + 0.219250i \(0.0703609\pi\)
\(642\) 0 0
\(643\) −5.80513 3.35159i −0.228932 0.132174i 0.381147 0.924514i \(-0.375529\pi\)
−0.610079 + 0.792340i \(0.708862\pi\)
\(644\) 4.19135 7.25964i 0.165162 0.286070i
\(645\) 0 0
\(646\) 4.32148 7.48502i 0.170026 0.294494i
\(647\) −19.3759 + 11.1867i −0.761744 + 0.439793i −0.829922 0.557880i \(-0.811615\pi\)
0.0681773 + 0.997673i \(0.478282\pi\)
\(648\) 0 0
\(649\) −7.66323 −0.300808
\(650\) 17.9448 + 1.72735i 0.703853 + 0.0677524i
\(651\) 0 0
\(652\) −4.07308 + 2.35159i −0.159514 + 0.0920954i
\(653\) 14.2139 8.20641i 0.556234 0.321142i −0.195399 0.980724i \(-0.562600\pi\)
0.751632 + 0.659582i \(0.229267\pi\)
\(654\) 0 0
\(655\) 20.4953 2.87955i 0.800818 0.112513i
\(656\) −2.97703 + 5.15637i −0.116234 + 0.201323i
\(657\) 0 0
\(658\) 0.377784i 0.0147276i
\(659\) −4.33407 + 7.50684i −0.168832 + 0.292425i −0.938009 0.346610i \(-0.887333\pi\)
0.769178 + 0.639035i \(0.220666\pi\)
\(660\) 0 0
\(661\) −8.71509 15.0950i −0.338978 0.587126i 0.645263 0.763960i \(-0.276748\pi\)
−0.984241 + 0.176834i \(0.943414\pi\)
\(662\) 19.3876i 0.753522i
\(663\) 0 0
\(664\) −9.69381 −0.376193
\(665\) 45.3396 35.4201i 1.75819 1.37353i
\(666\) 0 0
\(667\) 16.8338 + 9.71900i 0.651808 + 0.376321i
\(668\) 9.69535i 0.375124i
\(669\) 0 0
\(670\) −7.06095 + 17.4743i −0.272788 + 0.675093i
\(671\) −8.41329 −0.324792
\(672\) 0 0
\(673\) −35.0593 + 20.2415i −1.35144 + 0.780253i −0.988451 0.151541i \(-0.951576\pi\)
−0.362987 + 0.931794i \(0.618243\pi\)
\(674\) −0.277770 0.481111i −0.0106993 0.0185317i
\(675\) 0 0
\(676\) 9.50961 + 8.86382i 0.365754 + 0.340916i
\(677\) 40.0228i 1.53820i −0.639129 0.769100i \(-0.720705\pi\)
0.639129 0.769100i \(-0.279295\pi\)
\(678\) 0 0
\(679\) 8.31433 + 14.4008i 0.319075 + 0.552654i
\(680\) 1.09836 2.71820i 0.0421201 0.104238i
\(681\) 0 0
\(682\) 6.39614 + 3.69281i 0.244921 + 0.141405i
\(683\) −37.5064 21.6543i −1.43514 0.828580i −0.437636 0.899152i \(-0.644184\pi\)
−0.997507 + 0.0705721i \(0.977518\pi\)
\(684\) 0 0
\(685\) 30.6640 + 12.3906i 1.17161 + 0.473419i
\(686\) −2.41036 4.17486i −0.0920279 0.159397i
\(687\) 0 0
\(688\) 2.00000i 0.0762493i
\(689\) −4.21900 + 3.35673i −0.160731 + 0.127881i
\(690\) 0 0
\(691\) −14.1741 24.5502i −0.539207 0.933934i −0.998947 0.0458806i \(-0.985391\pi\)
0.459740 0.888054i \(-0.347943\pi\)
\(692\) −20.8466 + 12.0358i −0.792469 + 0.457532i
\(693\) 0 0
\(694\) −6.68445 −0.253738
\(695\) 10.6340 26.3170i 0.403371 0.998259i
\(696\) 0 0
\(697\) 7.80642i 0.295689i
\(698\) −9.16492 5.29137i −0.346897 0.200281i
\(699\) 0 0
\(700\) 13.5582 14.0375i 0.512451 0.530569i
\(701\) −12.8080 −0.483750 −0.241875 0.970307i \(-0.577762\pi\)
−0.241875 + 0.970307i \(0.577762\pi\)
\(702\) 0 0
\(703\) 33.0973i 1.24829i
\(704\) −0.533338 0.923769i −0.0201009 0.0348159i
\(705\) 0 0
\(706\) 4.60470 7.97557i 0.173300 0.300165i
\(707\) 5.69381i 0.214138i
\(708\) 0 0
\(709\) 1.26126 2.18456i 0.0473675 0.0820429i −0.841370 0.540460i \(-0.818250\pi\)
0.888737 + 0.458417i \(0.151583\pi\)
\(710\) 4.81579 + 34.2766i 0.180733 + 1.28638i
\(711\) 0 0
\(712\) 3.91914 2.26271i 0.146876 0.0847988i
\(713\) −12.8780 + 7.43509i −0.482283 + 0.278446i
\(714\) 0 0
\(715\) −2.00699 + 8.36235i −0.0750572 + 0.312734i
\(716\) −3.05086 −0.114016
\(717\) 0 0
\(718\) 3.63174 2.09679i 0.135535 0.0782514i
\(719\) −8.51114 + 14.7417i −0.317412 + 0.549773i −0.979947 0.199257i \(-0.936147\pi\)
0.662535 + 0.749031i \(0.269480\pi\)
\(720\) 0 0
\(721\) −19.9931 + 34.6291i −0.744582 + 1.28965i
\(722\) 21.1794 + 12.2279i 0.788215 + 0.455076i
\(723\) 0 0
\(724\) 5.32148 9.21707i 0.197771 0.342550i
\(725\) 32.5506 + 31.4390i 1.20890 + 1.16761i
\(726\) 0 0
\(727\) 30.5353i 1.13249i −0.824237 0.566245i \(-0.808395\pi\)
0.824237 0.566245i \(-0.191605\pi\)
\(728\) 13.9184 2.08173i 0.515851 0.0771541i
\(729\) 0 0
\(730\) 21.1342 + 27.0529i 0.782211 + 1.00127i
\(731\) 1.31111 + 2.27091i 0.0484931 + 0.0839925i
\(732\) 0 0
\(733\) 24.4499i 0.903076i −0.892252 0.451538i \(-0.850876\pi\)
0.892252 0.451538i \(-0.149124\pi\)
\(734\) −6.98418 + 12.0970i −0.257791 + 0.446507i
\(735\) 0 0
\(736\) 2.14764 0.0791632
\(737\) −7.78612 4.49532i −0.286805 0.165587i
\(738\) 0 0
\(739\) −5.39776 9.34920i −0.198560 0.343916i 0.749502 0.662002i \(-0.230293\pi\)
−0.948062 + 0.318086i \(0.896960\pi\)
\(740\) 1.56199 + 11.1175i 0.0574200 + 0.408689i
\(741\) 0 0
\(742\) 5.83654i 0.214266i
\(743\) 25.9248 14.9677i 0.951087 0.549110i 0.0576686 0.998336i \(-0.481633\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(744\) 0 0
\(745\) 6.10365 15.1052i 0.223620 0.553413i
\(746\) −11.8479 −0.433783
\(747\) 0 0
\(748\) 1.21116 + 0.699264i 0.0442844 + 0.0255676i
\(749\) 8.64296 0.315807
\(750\) 0 0
\(751\) −13.4588 23.3112i −0.491117 0.850639i 0.508831 0.860866i \(-0.330078\pi\)
−0.999948 + 0.0102272i \(0.996745\pi\)
\(752\) 0.0838209 0.0483940i 0.00305663 0.00176475i
\(753\) 0 0
\(754\) 4.82717 + 32.2743i 0.175795 + 1.17536i
\(755\) −44.5259 + 6.25581i −1.62046 + 0.227672i
\(756\) 0 0
\(757\) −31.0960 + 17.9533i −1.13020 + 0.652524i −0.943986 0.329985i \(-0.892956\pi\)
−0.186218 + 0.982508i \(0.559623\pi\)
\(758\) −0.525153 0.303197i −0.0190744 0.0110126i
\(759\) 0 0
\(760\) 13.6668 + 5.52242i 0.495748 + 0.200319i
\(761\) 11.2699 19.5200i 0.408532 0.707598i −0.586193 0.810171i \(-0.699374\pi\)
0.994725 + 0.102573i \(0.0327075\pi\)
\(762\) 0 0
\(763\) −0.450771 0.260253i −0.0163190 0.00942178i
\(764\) −7.36519 12.7569i −0.266463 0.461528i
\(765\) 0 0
\(766\) −34.7797 −1.25664
\(767\) 25.6181 3.83161i 0.925015 0.138352i
\(768\) 0 0
\(769\) 1.23729 + 2.14304i 0.0446177 + 0.0772801i 0.887472 0.460862i \(-0.152460\pi\)
−0.842854 + 0.538142i \(0.819126\pi\)
\(770\) 5.73137 + 7.33645i 0.206544 + 0.264387i
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) 38.2788 + 22.1003i 1.37679 + 0.794891i 0.991772 0.128018i \(-0.0408614\pi\)
0.385019 + 0.922908i \(0.374195\pi\)
\(774\) 0 0
\(775\) −33.2795 + 9.53972i −1.19543 + 0.342677i
\(776\) −2.13013 + 3.68949i −0.0764671 + 0.132445i
\(777\) 0 0
\(778\) 16.1812 9.34222i 0.580124 0.334935i
\(779\) 39.2498 1.40627
\(780\) 0 0
\(781\) −16.5116 −0.590832
\(782\) −2.43855 + 1.40790i −0.0872023 + 0.0503463i
\(783\) 0 0
\(784\) 4.11753 7.13177i 0.147055 0.254706i
\(785\) 0.617293 + 4.39361i 0.0220321 + 0.156815i
\(786\) 0 0
\(787\) −29.4714 17.0153i −1.05054 0.606530i −0.127740 0.991808i \(-0.540772\pi\)
−0.922801 + 0.385278i \(0.874106\pi\)
\(788\) 10.4128i 0.370941i
\(789\) 0 0
\(790\) −7.58011 + 5.92172i −0.269688 + 0.210685i
\(791\) 27.3225 + 47.3239i 0.971476 + 1.68265i
\(792\) 0 0
\(793\) 28.1255 4.20665i 0.998767 0.149382i
\(794\) 22.9748 0.815346
\(795\) 0 0
\(796\) 2.18421 + 3.78316i 0.0774172 + 0.134091i
\(797\) 7.04754 + 4.06890i 0.249637 + 0.144128i 0.619598 0.784919i \(-0.287296\pi\)
−0.369961 + 0.929047i \(0.620629\pi\)
\(798\) 0 0
\(799\) −0.0634498 + 0.109898i −0.00224469 + 0.00388792i
\(800\) 4.85138 + 1.21002i 0.171522 + 0.0427805i
\(801\) 0 0
\(802\) 3.78742 + 2.18667i 0.133739 + 0.0772140i
\(803\) −14.1823 + 8.18813i −0.500481 + 0.288953i
\(804\) 0 0
\(805\) −18.5620 + 2.60793i −0.654224 + 0.0919173i
\(806\) −23.2286 9.14695i −0.818193 0.322188i
\(807\) 0 0
\(808\) −1.26332 + 0.729376i −0.0444433 + 0.0256593i
\(809\) 3.92618 + 6.80034i 0.138037 + 0.239087i 0.926754 0.375670i \(-0.122587\pi\)
−0.788716 + 0.614757i \(0.789254\pi\)
\(810\) 0 0
\(811\) 9.33477 0.327788 0.163894 0.986478i \(-0.447595\pi\)
0.163894 + 0.986478i \(0.447595\pi\)
\(812\) 30.5944 + 17.6637i 1.07365 + 0.619874i
\(813\) 0 0
\(814\) −5.35551 −0.187711
\(815\) 9.75069 + 3.94001i 0.341552 + 0.138012i
\(816\) 0 0
\(817\) −11.4179 + 6.59210i −0.399460 + 0.230629i
\(818\) 3.76986i 0.131810i
\(819\) 0 0
\(820\) 13.1842 1.85236i 0.460413 0.0646871i
\(821\) −23.7659 41.1638i −0.829437 1.43663i −0.898480 0.439013i \(-0.855328\pi\)
0.0690434 0.997614i \(-0.478005\pi\)
\(822\) 0 0
\(823\) −1.20131 0.693576i −0.0418750 0.0241765i 0.478916 0.877861i \(-0.341030\pi\)
−0.520791 + 0.853684i \(0.674363\pi\)
\(824\) −10.2444 −0.356882
\(825\) 0 0
\(826\) 14.0207 24.2846i 0.487844 0.844971i
\(827\) 31.5131i 1.09582i 0.836537 + 0.547910i \(0.184576\pi\)
−0.836537 + 0.547910i \(0.815424\pi\)
\(828\) 0 0
\(829\) −14.4128 24.9637i −0.500578 0.867026i −1.00000 0.000667386i \(-0.999788\pi\)
0.499422 0.866359i \(-0.333546\pi\)
\(830\) 13.3444 + 17.0815i 0.463190 + 0.592908i
\(831\) 0 0
\(832\) 2.24483 + 2.82148i 0.0778254 + 0.0978172i
\(833\) 10.7971i 0.374096i
\(834\) 0 0
\(835\) −17.0842 + 13.3465i −0.591223 + 0.461874i
\(836\) −3.51582 + 6.08958i −0.121597 + 0.210613i
\(837\) 0 0
\(838\) 6.45388 + 3.72615i 0.222946 + 0.128718i
\(839\) −4.21755 + 7.30500i −0.145606 + 0.252197i −0.929599 0.368573i \(-0.879846\pi\)
0.783993 + 0.620770i \(0.213180\pi\)
\(840\) 0 0
\(841\) −26.4590 + 45.8283i −0.912379 + 1.58029i
\(842\) −23.9673 + 13.8375i −0.825968 + 0.476873i
\(843\) 0 0
\(844\) −5.49532 −0.189157
\(845\) 2.52817 28.9587i 0.0869718 0.996211i
\(846\) 0 0
\(847\) 33.3370 19.2471i 1.14547 0.661339i
\(848\) −1.29498 + 0.747658i −0.0444699 + 0.0256747i
\(849\) 0 0
\(850\) −6.30174 + 1.80642i −0.216148 + 0.0619598i
\(851\) 5.39138 9.33815i 0.184814 0.320108i
\(852\) 0 0
\(853\) 40.0656i 1.37182i 0.727686 + 0.685910i \(0.240596\pi\)
−0.727686 + 0.685910i \(0.759404\pi\)
\(854\) 15.3931 26.6616i 0.526740 0.912341i
\(855\) 0 0
\(856\) 1.10716 + 1.91766i 0.0378419 + 0.0655442i
\(857\) 32.0479i 1.09474i −0.836892 0.547368i \(-0.815630\pi\)
0.836892 0.547368i \(-0.184370\pi\)
\(858\) 0 0
\(859\) 26.6894 0.910630 0.455315 0.890331i \(-0.349527\pi\)
0.455315 + 0.890331i \(0.349527\pi\)
\(860\) −3.52421 + 2.75317i −0.120174 + 0.0938825i
\(861\) 0 0
\(862\) −17.0515 9.84468i −0.580776 0.335311i
\(863\) 30.6593i 1.04365i 0.853052 + 0.521827i \(0.174749\pi\)
−0.853052 + 0.521827i \(0.825251\pi\)
\(864\) 0 0
\(865\) 49.9055 + 20.1656i 1.69684 + 0.685650i
\(866\) 13.7462 0.467115
\(867\) 0 0
\(868\) −23.4049 + 13.5128i −0.794415 + 0.458655i
\(869\) −2.29428 3.97381i −0.0778282 0.134802i
\(870\) 0 0
\(871\) 28.2766 + 11.1347i 0.958114 + 0.377286i
\(872\) 0.133353i 0.00451591i
\(873\) 0 0
\(874\) −7.07874 12.2607i −0.239442 0.414726i
\(875\) −43.3996 4.56699i −1.46717 0.154393i
\(876\) 0 0
\(877\) −18.1263 10.4652i −0.612081 0.353385i 0.161699 0.986840i \(-0.448303\pi\)
−0.773779 + 0.633455i \(0.781636\pi\)
\(878\) −36.2195 20.9114i −1.22235 0.705724i
\(879\) 0 0
\(880\) −0.893590 + 2.21145i −0.0301229 + 0.0745478i
\(881\) 10.7351 + 18.5937i 0.361673 + 0.626437i 0.988236 0.152934i \(-0.0488722\pi\)
−0.626563 + 0.779371i \(0.715539\pi\)
\(882\) 0 0
\(883\) 7.73530i 0.260314i 0.991493 + 0.130157i \(0.0415481\pi\)
−0.991493 + 0.130157i \(0.958452\pi\)
\(884\) −4.39853 1.73205i −0.147939 0.0582552i
\(885\) 0 0
\(886\) 11.8415 + 20.5100i 0.397822 + 0.689047i
\(887\) 41.9559 24.2232i 1.40874 0.813337i 0.413473 0.910516i \(-0.364315\pi\)
0.995267 + 0.0971796i \(0.0309821\pi\)
\(888\) 0 0
\(889\) 38.9956 1.30787
\(890\) −9.38217 3.79110i −0.314491 0.127078i
\(891\) 0 0
\(892\) 20.0968i 0.672890i
\(893\) −0.552556 0.319019i −0.0184906 0.0106755i
\(894\) 0 0
\(895\) 4.19977 + 5.37592i 0.140383 + 0.179697i
\(896\) 3.90321 0.130397
\(897\) 0 0
\(898\) 7.05578i 0.235454i
\(899\) −31.3339 54.2718i −1.04504 1.81007i
\(900\) 0 0
\(901\) 0.980260 1.69786i 0.0326572 0.0565639i
\(902\) 6.35106i 0.211467i
\(903\) 0 0
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) −23.5669 + 3.31111i −0.783391 + 0.110065i
\(906\) 0 0
\(907\) 10.4017 6.00545i 0.345384 0.199408i −0.317266 0.948337i \(-0.602765\pi\)
0.662650 + 0.748929i \(0.269432\pi\)
\(908\) 16.7654 9.67952i 0.556380 0.321226i
\(909\) 0 0
\(910\) −22.8281 21.6600i −0.756745 0.718022i
\(911\) 8.10171 0.268422 0.134211 0.990953i \(-0.457150\pi\)
0.134211 + 0.990953i \(0.457150\pi\)
\(912\) 0 0
\(913\) −8.95485 + 5.17008i −0.296362 + 0.171105i
\(914\) 17.8398 30.8994i 0.590087 1.02206i
\(915\) 0 0
\(916\) −7.86273 + 13.6186i −0.259792 + 0.449973i
\(917\) −31.2872 18.0637i −1.03320 0.596516i
\(918\) 0 0
\(919\) 8.29682 14.3705i 0.273687 0.474039i −0.696116 0.717929i \(-0.745090\pi\)
0.969803 + 0.243890i \(0.0784235\pi\)
\(920\) −2.95642 3.78437i −0.0974702 0.124767i
\(921\) 0 0
\(922\) 14.6015i 0.480874i
\(923\) 55.1981 8.25581i 1.81687 0.271743i
\(924\) 0 0
\(925\) 17.4400 18.0566i 0.573424 0.593699i
\(926\) 15.3756 + 26.6313i 0.505272 + 0.875157i
\(927\) 0 0
\(928\) 9.05086i 0.297109i
\(929\) −28.5605 + 49.4682i −0.937038 + 1.62300i −0.166080 + 0.986112i \(0.553111\pi\)
−0.770958 + 0.636886i \(0.780222\pi\)
\(930\) 0 0
\(931\) −54.2864 −1.77916
\(932\) −12.8886 7.44123i −0.422180 0.243746i
\(933\) 0 0
\(934\) −10.2810 17.8072i −0.336404 0.582670i
\(935\) −0.435093 3.09679i −0.0142291 0.101276i
\(936\) 0 0
\(937\) 11.1842i 0.365372i −0.983171 0.182686i \(-0.941521\pi\)
0.983171 0.182686i \(-0.0584792\pi\)
\(938\) 28.4912 16.4494i 0.930270 0.537091i
\(939\) 0 0
\(940\) −0.200662 0.0810825i −0.00654488 0.00264462i
\(941\) 7.68598 0.250556 0.125278 0.992122i \(-0.460018\pi\)
0.125278 + 0.992122i \(0.460018\pi\)
\(942\) 0 0
\(943\) −11.0741 6.39361i −0.360621 0.208204i
\(944\) 7.18421 0.233826
\(945\) 0 0
\(946\) −1.06668 1.84754i −0.0346806 0.0600686i
\(947\) −17.9047 + 10.3373i −0.581826 + 0.335917i −0.761859 0.647743i \(-0.775713\pi\)
0.180033 + 0.983661i \(0.442380\pi\)
\(948\) 0 0
\(949\) 43.3170 34.4639i 1.40613 1.11875i
\(950\) −9.08250 31.6844i −0.294675 1.02798i
\(951\) 0 0
\(952\) −4.43191 + 2.55877i −0.143639 + 0.0829301i
\(953\) 26.8254 + 15.4876i 0.868959 + 0.501694i 0.867002 0.498304i \(-0.166044\pi\)
0.00195715 + 0.999998i \(0.499377\pi\)
\(954\) 0 0
\(955\) −12.3401 + 30.5392i −0.399317 + 0.988225i
\(956\) 2.21109 3.82973i 0.0715119 0.123862i
\(957\) 0 0
\(958\) 10.3346 + 5.96666i 0.333895 + 0.192774i
\(959\) −28.8654 49.9964i −0.932113 1.61447i
\(960\) 0 0
\(961\) 16.9412 0.546489
\(962\) 17.9034 2.67775i 0.577229 0.0863343i
\(963\) 0 0
\(964\) −5.64050 9.76963i −0.181668 0.314659i
\(965\) −24.6694 + 19.2722i −0.794138 + 0.620395i
\(966\) 0 0
\(967\) 0.529873i 0.0170396i −0.999964 0.00851979i \(-0.997288\pi\)
0.999964 0.00851979i \(-0.00271197\pi\)
\(968\) 8.54092 + 4.93110i 0.274515 + 0.158492i
\(969\) 0 0
\(970\) 9.43356 1.32540i 0.302893 0.0425560i
\(971\) −17.1620 + 29.7255i −0.550755 + 0.953936i 0.447465 + 0.894301i \(0.352327\pi\)
−0.998220 + 0.0596344i \(0.981007\pi\)
\(972\) 0 0
\(973\) −42.9087 + 24.7733i −1.37559 + 0.794196i
\(974\) −27.9719 −0.896277
\(975\) 0 0
\(976\) 7.88739 0.252469
\(977\) −17.2931 + 9.98418i −0.553255 + 0.319422i −0.750434 0.660945i \(-0.770155\pi\)
0.197179 + 0.980368i \(0.436822\pi\)
\(978\) 0 0
\(979\) 2.41358 4.18045i 0.0771385 0.133608i
\(980\) −18.2351 + 2.56199i −0.582498 + 0.0818399i
\(981\) 0 0
\(982\) 17.9971 + 10.3906i 0.574310 + 0.331578i
\(983\) 20.8524i 0.665087i −0.943088 0.332543i \(-0.892093\pi\)
0.943088 0.332543i \(-0.107907\pi\)
\(984\) 0 0
\(985\) −18.3485 + 14.3342i −0.584631 + 0.456724i
\(986\) −5.93332 10.2768i −0.188956 0.327281i
\(987\) 0 0
\(988\) 8.70856 22.1153i 0.277056 0.703582i
\(989\) 4.29529 0.136582
\(990\) 0 0
\(991\) 1.47949 + 2.56256i 0.0469977 + 0.0814024i 0.888567 0.458746i \(-0.151701\pi\)
−0.841570 + 0.540149i \(0.818368\pi\)
\(992\) −5.99632 3.46198i −0.190383 0.109918i
\(993\) 0 0
\(994\) 30.2099 52.3250i 0.958199 1.65965i
\(995\) 3.65956 9.05665i 0.116016 0.287115i
\(996\) 0 0
\(997\) 18.2281 + 10.5240i 0.577288 + 0.333297i 0.760055 0.649859i \(-0.225172\pi\)
−0.182767 + 0.983156i \(0.558505\pi\)
\(998\) 29.6967 17.1454i 0.940034 0.542729i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.h.289.1 12
3.2 odd 2 130.2.n.a.29.4 yes 12
5.4 even 2 inner 1170.2.bp.h.289.4 12
12.11 even 2 1040.2.dh.b.289.6 12
13.9 even 3 inner 1170.2.bp.h.919.4 12
15.2 even 4 650.2.e.k.601.3 6
15.8 even 4 650.2.e.j.601.1 6
15.14 odd 2 130.2.n.a.29.3 yes 12
39.2 even 12 1690.2.c.c.1689.1 6
39.11 even 12 1690.2.c.b.1689.1 6
39.23 odd 6 1690.2.b.b.339.1 6
39.29 odd 6 1690.2.b.c.339.4 6
39.35 odd 6 130.2.n.a.9.3 12
60.59 even 2 1040.2.dh.b.289.1 12
65.9 even 6 inner 1170.2.bp.h.919.1 12
156.35 even 6 1040.2.dh.b.529.1 12
195.23 even 12 8450.2.a.bt.1.3 3
195.29 odd 6 1690.2.b.c.339.3 6
195.62 even 12 8450.2.a.ca.1.1 3
195.68 even 12 8450.2.a.cb.1.3 3
195.74 odd 6 130.2.n.a.9.4 yes 12
195.89 even 12 1690.2.c.c.1689.6 6
195.107 even 12 8450.2.a.bu.1.1 3
195.113 even 12 650.2.e.j.451.1 6
195.119 even 12 1690.2.c.b.1689.6 6
195.152 even 12 650.2.e.k.451.3 6
195.179 odd 6 1690.2.b.b.339.6 6
780.659 even 6 1040.2.dh.b.529.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.3 12 39.35 odd 6
130.2.n.a.9.4 yes 12 195.74 odd 6
130.2.n.a.29.3 yes 12 15.14 odd 2
130.2.n.a.29.4 yes 12 3.2 odd 2
650.2.e.j.451.1 6 195.113 even 12
650.2.e.j.601.1 6 15.8 even 4
650.2.e.k.451.3 6 195.152 even 12
650.2.e.k.601.3 6 15.2 even 4
1040.2.dh.b.289.1 12 60.59 even 2
1040.2.dh.b.289.6 12 12.11 even 2
1040.2.dh.b.529.1 12 156.35 even 6
1040.2.dh.b.529.6 12 780.659 even 6
1170.2.bp.h.289.1 12 1.1 even 1 trivial
1170.2.bp.h.289.4 12 5.4 even 2 inner
1170.2.bp.h.919.1 12 65.9 even 6 inner
1170.2.bp.h.919.4 12 13.9 even 3 inner
1690.2.b.b.339.1 6 39.23 odd 6
1690.2.b.b.339.6 6 195.179 odd 6
1690.2.b.c.339.3 6 195.29 odd 6
1690.2.b.c.339.4 6 39.29 odd 6
1690.2.c.b.1689.1 6 39.11 even 12
1690.2.c.b.1689.6 6 195.119 even 12
1690.2.c.c.1689.1 6 39.2 even 12
1690.2.c.c.1689.6 6 195.89 even 12
8450.2.a.bt.1.3 3 195.23 even 12
8450.2.a.bu.1.1 3 195.107 even 12
8450.2.a.ca.1.1 3 195.62 even 12
8450.2.a.cb.1.3 3 195.68 even 12