Properties

Label 650.2.e.j.451.1
Level $650$
Weight $2$
Character 650.451
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,-3,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.591408.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.155554 + 0.269427i\) of defining polynomial
Character \(\chi\) \(=\) 650.451
Dual form 650.2.e.j.601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.10716 + 1.91766i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.10716 - 1.91766i) q^{6} +(1.95161 + 3.38028i) q^{7} +1.00000 q^{8} +(-0.951606 - 1.64823i) q^{9} +(-0.533338 + 0.923769i) q^{11} +2.21432 q^{12} +(2.82148 + 2.24483i) q^{13} -3.90321 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.655554 - 1.13545i) q^{17} +1.90321 q^{18} +(3.29605 + 5.70893i) q^{19} -8.64296 q^{21} +(-0.533338 - 0.923769i) q^{22} +(-1.07382 + 1.85991i) q^{23} +(-1.10716 + 1.91766i) q^{24} +(-3.35482 + 1.32106i) q^{26} -2.42864 q^{27} +(1.95161 - 3.38028i) q^{28} +(4.52543 - 7.83827i) q^{29} -6.92396 q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.18098 - 2.04552i) q^{33} +1.31111 q^{34} +(-0.951606 + 1.64823i) q^{36} +(-2.51037 + 4.34809i) q^{37} -6.59210 q^{38} +(-7.42864 + 2.92525i) q^{39} +(2.97703 - 5.15637i) q^{41} +(4.32148 - 7.48502i) q^{42} +(-1.00000 - 1.73205i) q^{43} +1.06668 q^{44} +(-1.07382 - 1.85991i) q^{46} -0.0967881 q^{47} +(-1.10716 - 1.91766i) q^{48} +(-4.11753 + 7.13177i) q^{49} +2.90321 q^{51} +(0.533338 - 3.56589i) q^{52} -1.49532 q^{53} +(1.21432 - 2.10326i) q^{54} +(1.95161 + 3.38028i) q^{56} -14.5970 q^{57} +(4.52543 + 7.83827i) q^{58} +(-3.59210 - 6.22171i) q^{59} +(-3.94370 - 6.83068i) q^{61} +(3.46198 - 5.99632i) q^{62} +(3.71432 - 6.43339i) q^{63} +1.00000 q^{64} +2.36196 q^{66} +(4.21432 - 7.29942i) q^{67} +(-0.655554 + 1.13545i) q^{68} +(-2.37778 - 4.11844i) q^{69} +(7.73975 + 13.4056i) q^{71} +(-0.951606 - 1.64823i) q^{72} -15.3526 q^{73} +(-2.51037 - 4.34809i) q^{74} +(3.29605 - 5.70893i) q^{76} -4.16346 q^{77} +(1.18098 - 7.89601i) q^{78} +4.30174 q^{79} +(5.54371 - 9.60199i) q^{81} +(2.97703 + 5.15637i) q^{82} +9.69381 q^{83} +(4.32148 + 7.48502i) q^{84} +2.00000 q^{86} +(10.0207 + 17.3564i) q^{87} +(-0.533338 + 0.923769i) q^{88} +(-2.26271 + 3.91914i) q^{89} +(-2.08173 + 13.9184i) q^{91} +2.14764 q^{92} +(7.66593 - 13.2778i) q^{93} +(0.0483940 - 0.0838209i) q^{94} +2.21432 q^{96} +(2.13013 + 3.68949i) q^{97} +(-4.11753 - 7.13177i) q^{98} +2.03011 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 5 q^{7} + 6 q^{8} + q^{9} - 3 q^{11} - 3 q^{13} - 10 q^{14} - 3 q^{16} - 4 q^{17} - 2 q^{18} + 13 q^{19} - 12 q^{21} - 3 q^{22} + 12 q^{27} + 5 q^{28} + 14 q^{29} + 12 q^{31}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.10716 + 1.91766i −0.639219 + 1.10716i 0.346385 + 0.938092i \(0.387409\pi\)
−0.985604 + 0.169068i \(0.945924\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −1.10716 1.91766i −0.451996 0.782880i
\(7\) 1.95161 + 3.38028i 0.737638 + 1.27763i 0.953556 + 0.301215i \(0.0973921\pi\)
−0.215919 + 0.976411i \(0.569275\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.951606 1.64823i −0.317202 0.549410i
\(10\) 0 0
\(11\) −0.533338 + 0.923769i −0.160808 + 0.278527i −0.935159 0.354229i \(-0.884743\pi\)
0.774351 + 0.632756i \(0.218077\pi\)
\(12\) 2.21432 0.639219
\(13\) 2.82148 + 2.24483i 0.782538 + 0.622603i
\(14\) −3.90321 −1.04318
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.655554 1.13545i −0.158995 0.275388i 0.775511 0.631334i \(-0.217492\pi\)
−0.934507 + 0.355946i \(0.884159\pi\)
\(18\) 1.90321 0.448591
\(19\) 3.29605 + 5.70893i 0.756166 + 1.30972i 0.944792 + 0.327669i \(0.106263\pi\)
−0.188626 + 0.982049i \(0.560403\pi\)
\(20\) 0 0
\(21\) −8.64296 −1.88605
\(22\) −0.533338 0.923769i −0.113708 0.196948i
\(23\) −1.07382 + 1.85991i −0.223907 + 0.387819i −0.955991 0.293396i \(-0.905215\pi\)
0.732084 + 0.681215i \(0.238548\pi\)
\(24\) −1.10716 + 1.91766i −0.225998 + 0.391440i
\(25\) 0 0
\(26\) −3.35482 + 1.32106i −0.657934 + 0.259081i
\(27\) −2.42864 −0.467392
\(28\) 1.95161 3.38028i 0.368819 0.638813i
\(29\) 4.52543 7.83827i 0.840351 1.45553i −0.0492475 0.998787i \(-0.515682\pi\)
0.889598 0.456744i \(-0.150984\pi\)
\(30\) 0 0
\(31\) −6.92396 −1.24358 −0.621790 0.783184i \(-0.713594\pi\)
−0.621790 + 0.783184i \(0.713594\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.18098 2.04552i −0.205582 0.356079i
\(34\) 1.31111 0.224853
\(35\) 0 0
\(36\) −0.951606 + 1.64823i −0.158601 + 0.274705i
\(37\) −2.51037 + 4.34809i −0.412703 + 0.714822i −0.995184 0.0980220i \(-0.968748\pi\)
0.582482 + 0.812844i \(0.302082\pi\)
\(38\) −6.59210 −1.06938
\(39\) −7.42864 + 2.92525i −1.18953 + 0.468414i
\(40\) 0 0
\(41\) 2.97703 5.15637i 0.464935 0.805290i −0.534264 0.845318i \(-0.679411\pi\)
0.999199 + 0.0400274i \(0.0127445\pi\)
\(42\) 4.32148 7.48502i 0.666819 1.15496i
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) 1.06668 0.160808
\(45\) 0 0
\(46\) −1.07382 1.85991i −0.158326 0.274229i
\(47\) −0.0967881 −0.0141180 −0.00705900 0.999975i \(-0.502247\pi\)
−0.00705900 + 0.999975i \(0.502247\pi\)
\(48\) −1.10716 1.91766i −0.159805 0.276790i
\(49\) −4.11753 + 7.13177i −0.588219 + 1.01882i
\(50\) 0 0
\(51\) 2.90321 0.406531
\(52\) 0.533338 3.56589i 0.0739607 0.494500i
\(53\) −1.49532 −0.205397 −0.102699 0.994713i \(-0.532748\pi\)
−0.102699 + 0.994713i \(0.532748\pi\)
\(54\) 1.21432 2.10326i 0.165248 0.286218i
\(55\) 0 0
\(56\) 1.95161 + 3.38028i 0.260794 + 0.451709i
\(57\) −14.5970 −1.93342
\(58\) 4.52543 + 7.83827i 0.594218 + 1.02922i
\(59\) −3.59210 6.22171i −0.467652 0.809997i 0.531665 0.846955i \(-0.321567\pi\)
−0.999317 + 0.0369577i \(0.988233\pi\)
\(60\) 0 0
\(61\) −3.94370 6.83068i −0.504938 0.874579i −0.999984 0.00571183i \(-0.998182\pi\)
0.495045 0.868867i \(-0.335151\pi\)
\(62\) 3.46198 5.99632i 0.439672 0.761534i
\(63\) 3.71432 6.43339i 0.467960 0.810531i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.36196 0.290738
\(67\) 4.21432 7.29942i 0.514861 0.891766i −0.484990 0.874520i \(-0.661177\pi\)
0.999851 0.0172460i \(-0.00548984\pi\)
\(68\) −0.655554 + 1.13545i −0.0794976 + 0.137694i
\(69\) −2.37778 4.11844i −0.286252 0.495802i
\(70\) 0 0
\(71\) 7.73975 + 13.4056i 0.918539 + 1.59096i 0.801636 + 0.597813i \(0.203963\pi\)
0.116903 + 0.993143i \(0.462703\pi\)
\(72\) −0.951606 1.64823i −0.112148 0.194246i
\(73\) −15.3526 −1.79689 −0.898443 0.439091i \(-0.855301\pi\)
−0.898443 + 0.439091i \(0.855301\pi\)
\(74\) −2.51037 4.34809i −0.291825 0.505455i
\(75\) 0 0
\(76\) 3.29605 5.70893i 0.378083 0.654859i
\(77\) −4.16346 −0.474471
\(78\) 1.18098 7.89601i 0.133720 0.894048i
\(79\) 4.30174 0.483984 0.241992 0.970278i \(-0.422199\pi\)
0.241992 + 0.970278i \(0.422199\pi\)
\(80\) 0 0
\(81\) 5.54371 9.60199i 0.615968 1.06689i
\(82\) 2.97703 + 5.15637i 0.328758 + 0.569426i
\(83\) 9.69381 1.06403 0.532017 0.846734i \(-0.321434\pi\)
0.532017 + 0.846734i \(0.321434\pi\)
\(84\) 4.32148 + 7.48502i 0.471512 + 0.816683i
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 10.0207 + 17.3564i 1.07434 + 1.86081i
\(88\) −0.533338 + 0.923769i −0.0568541 + 0.0984741i
\(89\) −2.26271 + 3.91914i −0.239847 + 0.415428i −0.960670 0.277692i \(-0.910431\pi\)
0.720823 + 0.693119i \(0.243764\pi\)
\(90\) 0 0
\(91\) −2.08173 + 13.9184i −0.218225 + 1.45905i
\(92\) 2.14764 0.223907
\(93\) 7.66593 13.2778i 0.794919 1.37684i
\(94\) 0.0483940 0.0838209i 0.00499146 0.00864547i
\(95\) 0 0
\(96\) 2.21432 0.225998
\(97\) 2.13013 + 3.68949i 0.216282 + 0.374611i 0.953668 0.300860i \(-0.0972738\pi\)
−0.737387 + 0.675471i \(0.763940\pi\)
\(98\) −4.11753 7.13177i −0.415934 0.720418i
\(99\) 2.03011 0.204034
\(100\) 0 0
\(101\) −0.729376 + 1.26332i −0.0725756 + 0.125705i −0.900029 0.435829i \(-0.856455\pi\)
0.827454 + 0.561534i \(0.189789\pi\)
\(102\) −1.45161 + 2.51426i −0.143730 + 0.248948i
\(103\) −10.2444 −1.00941 −0.504707 0.863291i \(-0.668399\pi\)
−0.504707 + 0.863291i \(0.668399\pi\)
\(104\) 2.82148 + 2.24483i 0.276669 + 0.220123i
\(105\) 0 0
\(106\) 0.747658 1.29498i 0.0726190 0.125780i
\(107\) 1.10716 1.91766i 0.107033 0.185387i −0.807534 0.589821i \(-0.799198\pi\)
0.914567 + 0.404434i \(0.132532\pi\)
\(108\) 1.21432 + 2.10326i 0.116848 + 0.202387i
\(109\) 0.133353 0.0127729 0.00638645 0.999980i \(-0.497967\pi\)
0.00638645 + 0.999980i \(0.497967\pi\)
\(110\) 0 0
\(111\) −5.55877 9.62806i −0.527615 0.913855i
\(112\) −3.90321 −0.368819
\(113\) 7.00000 + 12.1244i 0.658505 + 1.14056i 0.981003 + 0.193993i \(0.0621440\pi\)
−0.322498 + 0.946570i \(0.604523\pi\)
\(114\) 7.29851 12.6414i 0.683568 1.18398i
\(115\) 0 0
\(116\) −9.05086 −0.840351
\(117\) 1.01506 6.78664i 0.0938419 0.627425i
\(118\) 7.18421 0.661360
\(119\) 2.55877 4.43191i 0.234562 0.406273i
\(120\) 0 0
\(121\) 4.93110 + 8.54092i 0.448282 + 0.776447i
\(122\) 7.88739 0.714091
\(123\) 6.59210 + 11.4179i 0.594390 + 1.02951i
\(124\) 3.46198 + 5.99632i 0.310895 + 0.538486i
\(125\) 0 0
\(126\) 3.71432 + 6.43339i 0.330898 + 0.573132i
\(127\) −4.99532 + 8.65214i −0.443263 + 0.767753i −0.997929 0.0643192i \(-0.979512\pi\)
0.554667 + 0.832073i \(0.312846\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 4.42864 0.389920
\(130\) 0 0
\(131\) 9.25581 0.808684 0.404342 0.914608i \(-0.367501\pi\)
0.404342 + 0.914608i \(0.367501\pi\)
\(132\) −1.18098 + 2.04552i −0.102791 + 0.178040i
\(133\) −12.8652 + 22.2832i −1.11555 + 1.93220i
\(134\) 4.21432 + 7.29942i 0.364062 + 0.630573i
\(135\) 0 0
\(136\) −0.655554 1.13545i −0.0562133 0.0973643i
\(137\) 7.39530 + 12.8090i 0.631823 + 1.09435i 0.987179 + 0.159619i \(0.0510265\pi\)
−0.355356 + 0.934731i \(0.615640\pi\)
\(138\) 4.75557 0.404821
\(139\) 6.34691 + 10.9932i 0.538338 + 0.932428i 0.998994 + 0.0448494i \(0.0142808\pi\)
−0.460656 + 0.887579i \(0.652386\pi\)
\(140\) 0 0
\(141\) 0.107160 0.185606i 0.00902449 0.0156309i
\(142\) −15.4795 −1.29901
\(143\) −3.57851 + 1.40914i −0.299250 + 0.117838i
\(144\) 1.90321 0.158601
\(145\) 0 0
\(146\) 7.67630 13.2957i 0.635295 1.10036i
\(147\) −9.11753 15.7920i −0.752001 1.30250i
\(148\) 5.02074 0.412703
\(149\) −3.64296 6.30979i −0.298443 0.516918i 0.677337 0.735673i \(-0.263134\pi\)
−0.975780 + 0.218755i \(0.929801\pi\)
\(150\) 0 0
\(151\) 20.1082 1.63638 0.818190 0.574949i \(-0.194978\pi\)
0.818190 + 0.574949i \(0.194978\pi\)
\(152\) 3.29605 + 5.70893i 0.267345 + 0.463055i
\(153\) −1.24766 + 2.16101i −0.100867 + 0.174707i
\(154\) 2.08173 3.60567i 0.167751 0.290553i
\(155\) 0 0
\(156\) 6.24766 + 4.97077i 0.500213 + 0.397980i
\(157\) −1.98418 −0.158355 −0.0791773 0.996861i \(-0.525229\pi\)
−0.0791773 + 0.996861i \(0.525229\pi\)
\(158\) −2.15087 + 3.72542i −0.171114 + 0.296378i
\(159\) 1.65555 2.86750i 0.131294 0.227408i
\(160\) 0 0
\(161\) −8.38271 −0.660650
\(162\) 5.54371 + 9.60199i 0.435555 + 0.754403i
\(163\) 2.35159 + 4.07308i 0.184191 + 0.319028i 0.943304 0.331931i \(-0.107700\pi\)
−0.759113 + 0.650959i \(0.774367\pi\)
\(164\) −5.95407 −0.464935
\(165\) 0 0
\(166\) −4.84691 + 8.39509i −0.376193 + 0.651585i
\(167\) 4.84767 8.39642i 0.375124 0.649734i −0.615221 0.788354i \(-0.710933\pi\)
0.990346 + 0.138620i \(0.0442667\pi\)
\(168\) −8.64296 −0.666819
\(169\) 2.92149 + 12.6675i 0.224730 + 0.974421i
\(170\) 0 0
\(171\) 6.27309 10.8653i 0.479715 0.830890i
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) −12.0358 20.8466i −0.915065 1.58494i −0.806806 0.590816i \(-0.798806\pi\)
−0.108259 0.994123i \(-0.534527\pi\)
\(174\) −20.0415 −1.51934
\(175\) 0 0
\(176\) −0.533338 0.923769i −0.0402019 0.0696317i
\(177\) 15.9081 1.19573
\(178\) −2.26271 3.91914i −0.169598 0.293752i
\(179\) −1.52543 + 2.64212i −0.114016 + 0.197481i −0.917386 0.397999i \(-0.869705\pi\)
0.803370 + 0.595480i \(0.203038\pi\)
\(180\) 0 0
\(181\) 10.6430 0.791085 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(182\) −11.0128 8.76204i −0.816325 0.649486i
\(183\) 17.4652 1.29107
\(184\) −1.07382 + 1.85991i −0.0791632 + 0.137115i
\(185\) 0 0
\(186\) 7.66593 + 13.2778i 0.562093 + 0.973574i
\(187\) 1.39853 0.102270
\(188\) 0.0483940 + 0.0838209i 0.00352950 + 0.00611327i
\(189\) −4.73975 8.20948i −0.344766 0.597152i
\(190\) 0 0
\(191\) −7.36519 12.7569i −0.532926 0.923056i −0.999261 0.0384470i \(-0.987759\pi\)
0.466334 0.884609i \(-0.345574\pi\)
\(192\) −1.10716 + 1.91766i −0.0799024 + 0.138395i
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) −4.26025 −0.305868
\(195\) 0 0
\(196\) 8.23506 0.588219
\(197\) 5.20641 9.01776i 0.370941 0.642489i −0.618769 0.785573i \(-0.712368\pi\)
0.989711 + 0.143084i \(0.0457018\pi\)
\(198\) −1.01506 + 1.75813i −0.0721369 + 0.124945i
\(199\) 2.18421 + 3.78316i 0.154834 + 0.268181i 0.932999 0.359880i \(-0.117182\pi\)
−0.778164 + 0.628061i \(0.783849\pi\)
\(200\) 0 0
\(201\) 9.33185 + 16.1632i 0.658218 + 1.14007i
\(202\) −0.729376 1.26332i −0.0513187 0.0888866i
\(203\) 35.3274 2.47950
\(204\) −1.45161 2.51426i −0.101633 0.176033i
\(205\) 0 0
\(206\) 5.12222 8.87194i 0.356882 0.618137i
\(207\) 4.08742 0.284095
\(208\) −3.35482 + 1.32106i −0.232615 + 0.0915990i
\(209\) −7.03164 −0.486389
\(210\) 0 0
\(211\) −2.74766 + 4.75908i −0.189157 + 0.327629i −0.944969 0.327159i \(-0.893909\pi\)
0.755813 + 0.654788i \(0.227242\pi\)
\(212\) 0.747658 + 1.29498i 0.0513494 + 0.0889397i
\(213\) −34.2766 −2.34859
\(214\) 1.10716 + 1.91766i 0.0756839 + 0.131088i
\(215\) 0 0
\(216\) −2.42864 −0.165248
\(217\) −13.5128 23.4049i −0.917311 1.58883i
\(218\) −0.0666765 + 0.115487i −0.00451591 + 0.00782178i
\(219\) 16.9978 29.4410i 1.14860 1.98944i
\(220\) 0 0
\(221\) 0.699264 4.67526i 0.0470376 0.314492i
\(222\) 11.1175 0.746160
\(223\) 10.0484 17.4043i 0.672890 1.16548i −0.304191 0.952611i \(-0.598386\pi\)
0.977081 0.212869i \(-0.0682807\pi\)
\(224\) 1.95161 3.38028i 0.130397 0.225855i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) −9.67952 16.7654i −0.642453 1.11276i −0.984884 0.173218i \(-0.944584\pi\)
0.342431 0.939543i \(-0.388750\pi\)
\(228\) 7.29851 + 12.6414i 0.483356 + 0.837197i
\(229\) 15.7255 1.03917 0.519584 0.854420i \(-0.326087\pi\)
0.519584 + 0.854420i \(0.326087\pi\)
\(230\) 0 0
\(231\) 4.60962 7.98410i 0.303291 0.525315i
\(232\) 4.52543 7.83827i 0.297109 0.514608i
\(233\) −14.8825 −0.974983 −0.487491 0.873128i \(-0.662088\pi\)
−0.487491 + 0.873128i \(0.662088\pi\)
\(234\) 5.36987 + 4.27238i 0.351040 + 0.279294i
\(235\) 0 0
\(236\) −3.59210 + 6.22171i −0.233826 + 0.404999i
\(237\) −4.76271 + 8.24926i −0.309372 + 0.535847i
\(238\) 2.55877 + 4.43191i 0.165860 + 0.287278i
\(239\) 4.42219 0.286047 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(240\) 0 0
\(241\) 5.64050 + 9.76963i 0.363336 + 0.629317i 0.988508 0.151170i \(-0.0483042\pi\)
−0.625171 + 0.780488i \(0.714971\pi\)
\(242\) −9.86220 −0.633966
\(243\) 8.63259 + 14.9521i 0.553781 + 0.959176i
\(244\) −3.94370 + 6.83068i −0.252469 + 0.437290i
\(245\) 0 0
\(246\) −13.1842 −0.840594
\(247\) −3.51582 + 23.5067i −0.223706 + 1.49570i
\(248\) −6.92396 −0.439672
\(249\) −10.7326 + 18.5894i −0.680151 + 1.17806i
\(250\) 0 0
\(251\) −1.32616 2.29698i −0.0837067 0.144984i 0.821133 0.570737i \(-0.193343\pi\)
−0.904839 + 0.425753i \(0.860009\pi\)
\(252\) −7.42864 −0.467960
\(253\) −1.14542 1.98393i −0.0720120 0.124728i
\(254\) −4.99532 8.65214i −0.313434 0.542884i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.05086 + 3.55219i −0.127929 + 0.221579i −0.922874 0.385102i \(-0.874166\pi\)
0.794945 + 0.606681i \(0.207500\pi\)
\(258\) −2.21432 + 3.83531i −0.137858 + 0.238776i
\(259\) −19.5970 −1.21770
\(260\) 0 0
\(261\) −17.2257 −1.06624
\(262\) −4.62790 + 8.01576i −0.285913 + 0.495216i
\(263\) 5.40099 9.35479i 0.333039 0.576841i −0.650067 0.759877i \(-0.725259\pi\)
0.983106 + 0.183036i \(0.0585925\pi\)
\(264\) −1.18098 2.04552i −0.0726844 0.125893i
\(265\) 0 0
\(266\) −12.8652 22.2832i −0.788815 1.36627i
\(267\) −5.01037 8.67822i −0.306630 0.531098i
\(268\) −8.42864 −0.514861
\(269\) 9.29137 + 16.0931i 0.566505 + 0.981215i 0.996908 + 0.0785782i \(0.0250380\pi\)
−0.430403 + 0.902637i \(0.641629\pi\)
\(270\) 0 0
\(271\) −9.88739 + 17.1255i −0.600616 + 1.04030i 0.392112 + 0.919918i \(0.371745\pi\)
−0.992728 + 0.120380i \(0.961589\pi\)
\(272\) 1.31111 0.0794976
\(273\) −24.3859 19.4020i −1.47590 1.17426i
\(274\) −14.7906 −0.893533
\(275\) 0 0
\(276\) −2.37778 + 4.11844i −0.143126 + 0.247901i
\(277\) −0.102476 0.177493i −0.00615718 0.0106645i 0.862930 0.505323i \(-0.168627\pi\)
−0.869088 + 0.494658i \(0.835293\pi\)
\(278\) −12.6938 −0.761324
\(279\) 6.58888 + 11.4123i 0.394466 + 0.683235i
\(280\) 0 0
\(281\) −20.4558 −1.22029 −0.610146 0.792289i \(-0.708889\pi\)
−0.610146 + 0.792289i \(0.708889\pi\)
\(282\) 0.107160 + 0.185606i 0.00638128 + 0.0110527i
\(283\) −0.719004 + 1.24535i −0.0427403 + 0.0740284i −0.886604 0.462529i \(-0.846942\pi\)
0.843864 + 0.536557i \(0.180275\pi\)
\(284\) 7.73975 13.4056i 0.459270 0.795478i
\(285\) 0 0
\(286\) 0.568899 3.80365i 0.0336397 0.224914i
\(287\) 23.2400 1.37181
\(288\) −0.951606 + 1.64823i −0.0560739 + 0.0971229i
\(289\) 7.64050 13.2337i 0.449441 0.778455i
\(290\) 0 0
\(291\) −9.43356 −0.553005
\(292\) 7.67630 + 13.2957i 0.449221 + 0.778074i
\(293\) 10.4573 + 18.1126i 0.610922 + 1.05815i 0.991085 + 0.133228i \(0.0425343\pi\)
−0.380164 + 0.924919i \(0.624132\pi\)
\(294\) 18.2351 1.06349
\(295\) 0 0
\(296\) −2.51037 + 4.34809i −0.145912 + 0.252728i
\(297\) 1.29529 2.24350i 0.0751601 0.130181i
\(298\) 7.28592 0.422062
\(299\) −7.20495 + 2.83716i −0.416673 + 0.164077i
\(300\) 0 0
\(301\) 3.90321 6.76056i 0.224977 0.389672i
\(302\) −10.0541 + 17.4142i −0.578547 + 1.00207i
\(303\) −1.61507 2.79738i −0.0927834 0.160706i
\(304\) −6.59210 −0.378083
\(305\) 0 0
\(306\) −1.24766 2.16101i −0.0713239 0.123537i
\(307\) 12.5303 0.715145 0.357572 0.933885i \(-0.383605\pi\)
0.357572 + 0.933885i \(0.383605\pi\)
\(308\) 2.08173 + 3.60567i 0.118618 + 0.205452i
\(309\) 11.3422 19.6453i 0.645237 1.11758i
\(310\) 0 0
\(311\) −9.78123 −0.554643 −0.277321 0.960777i \(-0.589447\pi\)
−0.277321 + 0.960777i \(0.589447\pi\)
\(312\) −7.42864 + 2.92525i −0.420564 + 0.165610i
\(313\) 17.2128 0.972924 0.486462 0.873702i \(-0.338287\pi\)
0.486462 + 0.873702i \(0.338287\pi\)
\(314\) 0.992089 1.71835i 0.0559868 0.0969720i
\(315\) 0 0
\(316\) −2.15087 3.72542i −0.120996 0.209571i
\(317\) 13.7447 0.771978 0.385989 0.922503i \(-0.373860\pi\)
0.385989 + 0.922503i \(0.373860\pi\)
\(318\) 1.65555 + 2.86750i 0.0928389 + 0.160802i
\(319\) 4.82717 + 8.36090i 0.270269 + 0.468120i
\(320\) 0 0
\(321\) 2.45161 + 4.24631i 0.136835 + 0.237006i
\(322\) 4.19135 7.25964i 0.233575 0.404564i
\(323\) 4.32148 7.48502i 0.240454 0.416478i
\(324\) −11.0874 −0.615968
\(325\) 0 0
\(326\) −4.70318 −0.260485
\(327\) −0.147643 + 0.255726i −0.00816469 + 0.0141417i
\(328\) 2.97703 5.15637i 0.164379 0.284713i
\(329\) −0.188892 0.327171i −0.0104140 0.0180375i
\(330\) 0 0
\(331\) −9.69381 16.7902i −0.532820 0.922872i −0.999265 0.0383216i \(-0.987799\pi\)
0.466445 0.884550i \(-0.345534\pi\)
\(332\) −4.84691 8.39509i −0.266009 0.460740i
\(333\) 9.55554 0.523640
\(334\) 4.84767 + 8.39642i 0.265253 + 0.459431i
\(335\) 0 0
\(336\) 4.32148 7.48502i 0.235756 0.408341i
\(337\) 0.555539 0.0302621 0.0151311 0.999886i \(-0.495183\pi\)
0.0151311 + 0.999886i \(0.495183\pi\)
\(338\) −12.4311 3.80365i −0.676163 0.206891i
\(339\) −31.0005 −1.68371
\(340\) 0 0
\(341\) 3.69281 6.39614i 0.199977 0.346370i
\(342\) 6.27309 + 10.8653i 0.339210 + 0.587528i
\(343\) −4.82071 −0.260294
\(344\) −1.00000 1.73205i −0.0539164 0.0933859i
\(345\) 0 0
\(346\) 24.0716 1.29410
\(347\) −3.34222 5.78890i −0.179420 0.310764i 0.762262 0.647269i \(-0.224089\pi\)
−0.941682 + 0.336504i \(0.890755\pi\)
\(348\) 10.0207 17.3564i 0.537168 0.930403i
\(349\) −5.29137 + 9.16492i −0.283240 + 0.490587i −0.972181 0.234231i \(-0.924743\pi\)
0.688941 + 0.724818i \(0.258076\pi\)
\(350\) 0 0
\(351\) −6.85236 5.45188i −0.365752 0.291000i
\(352\) 1.06668 0.0568541
\(353\) 4.60470 7.97557i 0.245083 0.424497i −0.717072 0.696999i \(-0.754518\pi\)
0.962155 + 0.272503i \(0.0878513\pi\)
\(354\) −7.95407 + 13.7768i −0.422754 + 0.732231i
\(355\) 0 0
\(356\) 4.52543 0.239847
\(357\) 5.66593 + 9.81367i 0.299873 + 0.519395i
\(358\) −1.52543 2.64212i −0.0806214 0.139640i
\(359\) −4.19358 −0.221328 −0.110664 0.993858i \(-0.535298\pi\)
−0.110664 + 0.993858i \(0.535298\pi\)
\(360\) 0 0
\(361\) −12.2279 + 21.1794i −0.643575 + 1.11470i
\(362\) −5.32148 + 9.21707i −0.279691 + 0.484439i
\(363\) −21.8381 −1.14620
\(364\) 13.0946 5.15637i 0.686342 0.270267i
\(365\) 0 0
\(366\) −8.73260 + 15.1253i −0.456460 + 0.790613i
\(367\) −6.98418 + 12.0970i −0.364571 + 0.631456i −0.988707 0.149860i \(-0.952118\pi\)
0.624136 + 0.781316i \(0.285451\pi\)
\(368\) −1.07382 1.85991i −0.0559768 0.0969547i
\(369\) −11.3319 −0.589913
\(370\) 0 0
\(371\) −2.91827 5.05459i −0.151509 0.262421i
\(372\) −15.3319 −0.794919
\(373\) −5.92396 10.2606i −0.306731 0.531273i 0.670914 0.741535i \(-0.265902\pi\)
−0.977645 + 0.210262i \(0.932568\pi\)
\(374\) −0.699264 + 1.21116i −0.0361581 + 0.0626276i
\(375\) 0 0
\(376\) −0.0967881 −0.00499146
\(377\) 30.3640 11.9567i 1.56382 0.615802i
\(378\) 9.47949 0.487573
\(379\) −0.303197 + 0.525153i −0.0155742 + 0.0269753i −0.873707 0.486452i \(-0.838291\pi\)
0.858133 + 0.513427i \(0.171624\pi\)
\(380\) 0 0
\(381\) −11.0612 19.1586i −0.566684 0.981525i
\(382\) 14.7304 0.753672
\(383\) 17.3899 + 30.1201i 0.888580 + 1.53907i 0.841555 + 0.540172i \(0.181641\pi\)
0.0470252 + 0.998894i \(0.485026\pi\)
\(384\) −1.10716 1.91766i −0.0564995 0.0978600i
\(385\) 0 0
\(386\) 7.00000 + 12.1244i 0.356291 + 0.617113i
\(387\) −1.90321 + 3.29646i −0.0967457 + 0.167568i
\(388\) 2.13013 3.68949i 0.108141 0.187305i
\(389\) −18.6844 −0.947339 −0.473670 0.880703i \(-0.657071\pi\)
−0.473670 + 0.880703i \(0.657071\pi\)
\(390\) 0 0
\(391\) 2.81579 0.142401
\(392\) −4.11753 + 7.13177i −0.207967 + 0.360209i
\(393\) −10.2477 + 17.7495i −0.516926 + 0.895342i
\(394\) 5.20641 + 9.01776i 0.262295 + 0.454308i
\(395\) 0 0
\(396\) −1.01506 1.75813i −0.0510085 0.0883493i
\(397\) −11.4874 19.8968i −0.576536 0.998590i −0.995873 0.0907594i \(-0.971071\pi\)
0.419337 0.907831i \(-0.362263\pi\)
\(398\) −4.36842 −0.218969
\(399\) −28.4876 49.3420i −1.42617 2.47019i
\(400\) 0 0
\(401\) 2.18667 3.78742i 0.109197 0.189135i −0.806248 0.591577i \(-0.798505\pi\)
0.915445 + 0.402443i \(0.131839\pi\)
\(402\) −18.6637 −0.930861
\(403\) −19.5358 15.5431i −0.973147 0.774256i
\(404\) 1.45875 0.0725756
\(405\) 0 0
\(406\) −17.6637 + 30.5944i −0.876635 + 1.51838i
\(407\) −2.67775 4.63801i −0.132731 0.229897i
\(408\) 2.90321 0.143730
\(409\) 1.88493 + 3.26479i 0.0932038 + 0.161434i 0.908858 0.417107i \(-0.136956\pi\)
−0.815654 + 0.578540i \(0.803623\pi\)
\(410\) 0 0
\(411\) −32.7511 −1.61549
\(412\) 5.12222 + 8.87194i 0.252353 + 0.437089i
\(413\) 14.0207 24.2846i 0.689916 1.19497i
\(414\) −2.04371 + 3.53981i −0.100443 + 0.173972i
\(415\) 0 0
\(416\) 0.533338 3.56589i 0.0261491 0.174832i
\(417\) −28.1082 −1.37646
\(418\) 3.51582 6.08958i 0.171964 0.297851i
\(419\) −3.72615 + 6.45388i −0.182034 + 0.315293i −0.942573 0.334000i \(-0.891602\pi\)
0.760539 + 0.649292i \(0.224935\pi\)
\(420\) 0 0
\(421\) 27.6751 1.34880 0.674400 0.738366i \(-0.264402\pi\)
0.674400 + 0.738366i \(0.264402\pi\)
\(422\) −2.74766 4.75908i −0.133754 0.231669i
\(423\) 0.0921041 + 0.159529i 0.00447825 + 0.00775657i
\(424\) −1.49532 −0.0726190
\(425\) 0 0
\(426\) 17.1383 29.6844i 0.830352 1.43821i
\(427\) 15.3931 26.6616i 0.744923 1.29024i
\(428\) −2.21432 −0.107033
\(429\) 1.25973 8.42249i 0.0608201 0.406642i
\(430\) 0 0
\(431\) −9.84468 + 17.0515i −0.474202 + 0.821342i −0.999564 0.0295373i \(-0.990597\pi\)
0.525362 + 0.850879i \(0.323930\pi\)
\(432\) 1.21432 2.10326i 0.0584240 0.101193i
\(433\) 6.87310 + 11.9046i 0.330300 + 0.572097i 0.982571 0.185890i \(-0.0595167\pi\)
−0.652270 + 0.757986i \(0.726183\pi\)
\(434\) 27.0257 1.29727
\(435\) 0 0
\(436\) −0.0666765 0.115487i −0.00319323 0.00553083i
\(437\) −14.1575 −0.677244
\(438\) 16.9978 + 29.4410i 0.812185 + 1.40675i
\(439\) −20.9114 + 36.2195i −0.998045 + 1.72866i −0.444894 + 0.895583i \(0.646758\pi\)
−0.553151 + 0.833081i \(0.686575\pi\)
\(440\) 0 0
\(441\) 15.6731 0.746337
\(442\) 3.69926 + 2.94321i 0.175956 + 0.139994i
\(443\) −23.6829 −1.12521 −0.562605 0.826726i \(-0.690201\pi\)
−0.562605 + 0.826726i \(0.690201\pi\)
\(444\) −5.55877 + 9.62806i −0.263807 + 0.456928i
\(445\) 0 0
\(446\) 10.0484 + 17.4043i 0.475805 + 0.824119i
\(447\) 16.1334 0.763081
\(448\) 1.95161 + 3.38028i 0.0922047 + 0.159703i
\(449\) −3.52789 6.11048i −0.166491 0.288371i 0.770693 0.637207i \(-0.219910\pi\)
−0.937184 + 0.348836i \(0.886577\pi\)
\(450\) 0 0
\(451\) 3.17553 + 5.50018i 0.149530 + 0.258993i
\(452\) 7.00000 12.1244i 0.329252 0.570282i
\(453\) −22.2630 + 38.5606i −1.04600 + 1.81173i
\(454\) 19.3590 0.908565
\(455\) 0 0
\(456\) −14.5970 −0.683568
\(457\) 17.8398 30.8994i 0.834509 1.44541i −0.0599208 0.998203i \(-0.519085\pi\)
0.894430 0.447209i \(-0.147582\pi\)
\(458\) −7.86273 + 13.6186i −0.367401 + 0.636358i
\(459\) 1.59210 + 2.75761i 0.0743131 + 0.128714i
\(460\) 0 0
\(461\) 7.30074 + 12.6452i 0.340029 + 0.588948i 0.984438 0.175734i \(-0.0562297\pi\)
−0.644409 + 0.764681i \(0.722896\pi\)
\(462\) 4.60962 + 7.98410i 0.214459 + 0.371454i
\(463\) 30.7511 1.42913 0.714563 0.699571i \(-0.246626\pi\)
0.714563 + 0.699571i \(0.246626\pi\)
\(464\) 4.52543 + 7.83827i 0.210088 + 0.363883i
\(465\) 0 0
\(466\) 7.44123 12.8886i 0.344709 0.597053i
\(467\) −20.5620 −0.951496 −0.475748 0.879582i \(-0.657822\pi\)
−0.475748 + 0.879582i \(0.657822\pi\)
\(468\) −6.38493 + 2.51426i −0.295143 + 0.116221i
\(469\) 32.8988 1.51912
\(470\) 0 0
\(471\) 2.19680 3.80497i 0.101223 0.175324i
\(472\) −3.59210 6.22171i −0.165340 0.286377i
\(473\) 2.13335 0.0980917
\(474\) −4.76271 8.24926i −0.218759 0.378901i
\(475\) 0 0
\(476\) −5.11753 −0.234562
\(477\) 1.42295 + 2.46462i 0.0651525 + 0.112847i
\(478\) −2.21109 + 3.82973i −0.101133 + 0.175168i
\(479\) −5.96666 + 10.3346i −0.272624 + 0.472198i −0.969533 0.244961i \(-0.921225\pi\)
0.696909 + 0.717159i \(0.254558\pi\)
\(480\) 0 0
\(481\) −16.8437 + 6.63270i −0.768006 + 0.302425i
\(482\) −11.2810 −0.513835
\(483\) 9.28100 16.0752i 0.422300 0.731445i
\(484\) 4.93110 8.54092i 0.224141 0.388223i
\(485\) 0 0
\(486\) −17.2652 −0.783164
\(487\) 13.9859 + 24.2244i 0.633764 + 1.09771i 0.986776 + 0.162092i \(0.0518242\pi\)
−0.353012 + 0.935619i \(0.614842\pi\)
\(488\) −3.94370 6.83068i −0.178523 0.309210i
\(489\) −10.4143 −0.470953
\(490\) 0 0
\(491\) 10.3906 17.9971i 0.468922 0.812197i −0.530447 0.847718i \(-0.677976\pi\)
0.999369 + 0.0355214i \(0.0113092\pi\)
\(492\) 6.59210 11.4179i 0.297195 0.514757i
\(493\) −11.8666 −0.534447
\(494\) −18.5995 14.7981i −0.836830 0.665800i
\(495\) 0 0
\(496\) 3.46198 5.99632i 0.155447 0.269243i
\(497\) −30.2099 + 52.3250i −1.35510 + 2.34710i
\(498\) −10.7326 18.5894i −0.480939 0.833011i
\(499\) 34.2908 1.53507 0.767534 0.641008i \(-0.221483\pi\)
0.767534 + 0.641008i \(0.221483\pi\)
\(500\) 0 0
\(501\) 10.7343 + 18.5923i 0.479573 + 0.830645i
\(502\) 2.65233 0.118379
\(503\) 10.1128 + 17.5160i 0.450910 + 0.780998i 0.998443 0.0557857i \(-0.0177663\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(504\) 3.71432 6.43339i 0.165449 0.286566i
\(505\) 0 0
\(506\) 2.29084 0.101840
\(507\) −27.5264 8.42249i −1.22249 0.374056i
\(508\) 9.99063 0.443263
\(509\) 13.6889 23.7099i 0.606749 1.05092i −0.385023 0.922907i \(-0.625806\pi\)
0.991772 0.128014i \(-0.0408602\pi\)
\(510\) 0 0
\(511\) −29.9622 51.8961i −1.32545 2.29575i
\(512\) 1.00000 0.0441942
\(513\) −8.00492 13.8649i −0.353426 0.612152i
\(514\) −2.05086 3.55219i −0.0904593 0.156680i
\(515\) 0 0
\(516\) −2.21432 3.83531i −0.0974800 0.168840i
\(517\) 0.0516208 0.0894098i 0.00227028 0.00393224i
\(518\) 9.79851 16.9715i 0.430522 0.745686i
\(519\) 53.3022 2.33971
\(520\) 0 0
\(521\) −31.2034 −1.36705 −0.683523 0.729929i \(-0.739553\pi\)
−0.683523 + 0.729929i \(0.739553\pi\)
\(522\) 8.61285 14.9179i 0.376974 0.652938i
\(523\) 4.92396 8.52854i 0.215310 0.372927i −0.738059 0.674736i \(-0.764257\pi\)
0.953368 + 0.301809i \(0.0975906\pi\)
\(524\) −4.62790 8.01576i −0.202171 0.350170i
\(525\) 0 0
\(526\) 5.40099 + 9.35479i 0.235494 + 0.407888i
\(527\) 4.53903 + 7.86182i 0.197723 + 0.342466i
\(528\) 2.36196 0.102791
\(529\) 9.19381 + 15.9242i 0.399731 + 0.692355i
\(530\) 0 0
\(531\) −6.83654 + 11.8412i −0.296680 + 0.513865i
\(532\) 25.7304 1.11555
\(533\) 19.9748 7.86567i 0.865205 0.340700i
\(534\) 10.0207 0.433640
\(535\) 0 0
\(536\) 4.21432 7.29942i 0.182031 0.315287i
\(537\) −3.37778 5.85049i −0.145762 0.252467i
\(538\) −18.5827 −0.801159
\(539\) −4.39207 7.60730i −0.189180 0.327669i
\(540\) 0 0
\(541\) 41.6149 1.78916 0.894581 0.446905i \(-0.147474\pi\)
0.894581 + 0.446905i \(0.147474\pi\)
\(542\) −9.88739 17.1255i −0.424700 0.735602i
\(543\) −11.7835 + 20.4095i −0.505677 + 0.875857i
\(544\) −0.655554 + 1.13545i −0.0281066 + 0.0486821i
\(545\) 0 0
\(546\) 28.9956 11.4179i 1.24090 0.488639i
\(547\) 6.77430 0.289648 0.144824 0.989457i \(-0.453738\pi\)
0.144824 + 0.989457i \(0.453738\pi\)
\(548\) 7.39530 12.8090i 0.315912 0.547175i
\(549\) −7.50569 + 13.0002i −0.320335 + 0.554836i
\(550\) 0 0
\(551\) 59.6642 2.54178
\(552\) −2.37778 4.11844i −0.101205 0.175293i
\(553\) 8.39530 + 14.5411i 0.357005 + 0.618350i
\(554\) 0.204952 0.00870757
\(555\) 0 0
\(556\) 6.34691 10.9932i 0.269169 0.466214i
\(557\) −12.7225 + 22.0360i −0.539068 + 0.933694i 0.459886 + 0.887978i \(0.347890\pi\)
−0.998954 + 0.0457158i \(0.985443\pi\)
\(558\) −13.1778 −0.557859
\(559\) 1.06668 7.13177i 0.0451156 0.301642i
\(560\) 0 0
\(561\) −1.54839 + 2.68190i −0.0653732 + 0.113230i
\(562\) 10.2279 17.7153i 0.431439 0.747274i
\(563\) −6.59210 11.4179i −0.277824 0.481205i 0.693020 0.720919i \(-0.256280\pi\)
−0.970844 + 0.239713i \(0.922947\pi\)
\(564\) −0.214320 −0.00902449
\(565\) 0 0
\(566\) −0.719004 1.24535i −0.0302220 0.0523460i
\(567\) 43.2766 1.81744
\(568\) 7.73975 + 13.4056i 0.324753 + 0.562488i
\(569\) 12.2304 21.1836i 0.512724 0.888064i −0.487167 0.873309i \(-0.661970\pi\)
0.999891 0.0147555i \(-0.00469698\pi\)
\(570\) 0 0
\(571\) 24.3526 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(572\) 3.00961 + 2.39451i 0.125838 + 0.100119i
\(573\) 32.6178 1.36263
\(574\) −11.6200 + 20.1264i −0.485009 + 0.840060i
\(575\) 0 0
\(576\) −0.951606 1.64823i −0.0396502 0.0686762i
\(577\) −42.0479 −1.75048 −0.875239 0.483690i \(-0.839296\pi\)
−0.875239 + 0.483690i \(0.839296\pi\)
\(578\) 7.64050 + 13.2337i 0.317803 + 0.550451i
\(579\) 15.5002 + 26.8472i 0.644168 + 1.11573i
\(580\) 0 0
\(581\) 18.9185 + 32.7678i 0.784872 + 1.35944i
\(582\) 4.71678 8.16970i 0.195517 0.338645i
\(583\) 0.797509 1.38133i 0.0330295 0.0572087i
\(584\) −15.3526 −0.635295
\(585\) 0 0
\(586\) −20.9146 −0.863974
\(587\) 3.67307 6.36195i 0.151604 0.262586i −0.780213 0.625513i \(-0.784890\pi\)
0.931817 + 0.362928i \(0.118223\pi\)
\(588\) −9.11753 + 15.7920i −0.376001 + 0.651252i
\(589\) −22.8217 39.5284i −0.940353 1.62874i
\(590\) 0 0
\(591\) 11.5287 + 19.9682i 0.474225 + 0.821383i
\(592\) −2.51037 4.34809i −0.103176 0.178705i
\(593\) 4.19358 0.172210 0.0861048 0.996286i \(-0.472558\pi\)
0.0861048 + 0.996286i \(0.472558\pi\)
\(594\) 1.29529 + 2.24350i 0.0531462 + 0.0920520i
\(595\) 0 0
\(596\) −3.64296 + 6.30979i −0.149221 + 0.258459i
\(597\) −9.67307 −0.395892
\(598\) 1.14542 7.65825i 0.0468397 0.313169i
\(599\) 9.33630 0.381471 0.190735 0.981641i \(-0.438913\pi\)
0.190735 + 0.981641i \(0.438913\pi\)
\(600\) 0 0
\(601\) 1.48571 2.57333i 0.0606034 0.104968i −0.834132 0.551565i \(-0.814031\pi\)
0.894735 + 0.446597i \(0.147364\pi\)
\(602\) 3.90321 + 6.76056i 0.159083 + 0.275540i
\(603\) −16.0415 −0.653260
\(604\) −10.0541 17.4142i −0.409095 0.708573i
\(605\) 0 0
\(606\) 3.23014 0.131216
\(607\) 8.57160 + 14.8464i 0.347910 + 0.602599i 0.985878 0.167465i \(-0.0535580\pi\)
−0.637968 + 0.770063i \(0.720225\pi\)
\(608\) 3.29605 5.70893i 0.133673 0.231528i
\(609\) −39.1131 + 67.7459i −1.58494 + 2.74520i
\(610\) 0 0
\(611\) −0.273086 0.217273i −0.0110479 0.00878991i
\(612\) 2.49532 0.100867
\(613\) 14.6422 25.3610i 0.591393 1.02432i −0.402653 0.915353i \(-0.631912\pi\)
0.994045 0.108969i \(-0.0347550\pi\)
\(614\) −6.26517 + 10.8516i −0.252842 + 0.437935i
\(615\) 0 0
\(616\) −4.16346 −0.167751
\(617\) 6.60793 + 11.4453i 0.266025 + 0.460769i 0.967832 0.251599i \(-0.0809563\pi\)
−0.701807 + 0.712368i \(0.747623\pi\)
\(618\) 11.3422 + 19.6453i 0.456251 + 0.790250i
\(619\) −18.9333 −0.760995 −0.380497 0.924782i \(-0.624247\pi\)
−0.380497 + 0.924782i \(0.624247\pi\)
\(620\) 0 0
\(621\) 2.60793 4.51706i 0.104652 0.181263i
\(622\) 4.89062 8.47080i 0.196096 0.339648i
\(623\) −17.6637 −0.707681
\(624\) 1.18098 7.89601i 0.0472771 0.316094i
\(625\) 0 0
\(626\) −8.60639 + 14.9067i −0.343981 + 0.595792i
\(627\) 7.78515 13.4843i 0.310909 0.538510i
\(628\) 0.992089 + 1.71835i 0.0395887 + 0.0685696i
\(629\) 6.58274 0.262471
\(630\) 0 0
\(631\) −1.21432 2.10326i −0.0483413 0.0837296i 0.840842 0.541280i \(-0.182060\pi\)
−0.889184 + 0.457551i \(0.848727\pi\)
\(632\) 4.30174 0.171114
\(633\) −6.08419 10.5381i −0.241825 0.418853i
\(634\) −6.87233 + 11.9032i −0.272935 + 0.472738i
\(635\) 0 0
\(636\) −3.31111 −0.131294
\(637\) −27.6271 + 10.8790i −1.09463 + 0.431042i
\(638\) −9.65433 −0.382219
\(639\) 14.7304 25.5138i 0.582725 1.00931i
\(640\) 0 0
\(641\) −7.54371 13.0661i −0.297959 0.516079i 0.677710 0.735329i \(-0.262972\pi\)
−0.975669 + 0.219250i \(0.929639\pi\)
\(642\) −4.90321 −0.193514
\(643\) 3.35159 + 5.80513i 0.132174 + 0.228932i 0.924514 0.381147i \(-0.124471\pi\)
−0.792340 + 0.610079i \(0.791138\pi\)
\(644\) 4.19135 + 7.25964i 0.165162 + 0.286070i
\(645\) 0 0
\(646\) 4.32148 + 7.48502i 0.170026 + 0.294494i
\(647\) −11.1867 + 19.3759i −0.439793 + 0.761744i −0.997673 0.0681773i \(-0.978282\pi\)
0.557880 + 0.829922i \(0.311615\pi\)
\(648\) 5.54371 9.60199i 0.217777 0.377202i
\(649\) 7.66323 0.300808
\(650\) 0 0
\(651\) 59.8435 2.34545
\(652\) 2.35159 4.07308i 0.0920954 0.159514i
\(653\) −8.20641 + 14.2139i −0.321142 + 0.556234i −0.980724 0.195399i \(-0.937400\pi\)
0.659582 + 0.751632i \(0.270733\pi\)
\(654\) −0.147643 0.255726i −0.00577331 0.00999966i
\(655\) 0 0
\(656\) 2.97703 + 5.15637i 0.116234 + 0.201323i
\(657\) 14.6096 + 25.3046i 0.569976 + 0.987227i
\(658\) 0.377784 0.0147276
\(659\) −4.33407 7.50684i −0.168832 0.292425i 0.769178 0.639035i \(-0.220666\pi\)
−0.938009 + 0.346610i \(0.887333\pi\)
\(660\) 0 0
\(661\) −8.71509 + 15.0950i −0.338978 + 0.587126i −0.984241 0.176834i \(-0.943414\pi\)
0.645263 + 0.763960i \(0.276748\pi\)
\(662\) 19.3876 0.753522
\(663\) 8.19135 + 6.51721i 0.318126 + 0.253108i
\(664\) 9.69381 0.376193
\(665\) 0 0
\(666\) −4.77777 + 8.27534i −0.185135 + 0.320663i
\(667\) 9.71900 + 16.8338i 0.376321 + 0.651808i
\(668\) −9.69535 −0.375124
\(669\) 22.2504 + 38.5387i 0.860249 + 1.48999i
\(670\) 0 0
\(671\) 8.41329 0.324792
\(672\) 4.32148 + 7.48502i 0.166705 + 0.288741i
\(673\) −20.2415 + 35.0593i −0.780253 + 1.35144i 0.151541 + 0.988451i \(0.451576\pi\)
−0.931794 + 0.362987i \(0.881757\pi\)
\(674\) −0.277770 + 0.481111i −0.0106993 + 0.0185317i
\(675\) 0 0
\(676\) 9.50961 8.86382i 0.365754 0.340916i
\(677\) 40.0228 1.53820 0.769100 0.639129i \(-0.220705\pi\)
0.769100 + 0.639129i \(0.220705\pi\)
\(678\) 15.5002 26.8472i 0.595283 1.03106i
\(679\) −8.31433 + 14.4008i −0.319075 + 0.552654i
\(680\) 0 0
\(681\) 42.8671 1.64267
\(682\) 3.69281 + 6.39614i 0.141405 + 0.244921i
\(683\) −21.6543 37.5064i −0.828580 1.43514i −0.899152 0.437636i \(-0.855816\pi\)
0.0705721 0.997507i \(-0.477518\pi\)
\(684\) −12.5462 −0.479715
\(685\) 0 0
\(686\) 2.41036 4.17486i 0.0920279 0.159397i
\(687\) −17.4106 + 30.1560i −0.664256 + 1.15052i
\(688\) 2.00000 0.0762493
\(689\) −4.21900 3.35673i −0.160731 0.127881i
\(690\) 0 0
\(691\) −14.1741 + 24.5502i −0.539207 + 0.933934i 0.459740 + 0.888054i \(0.347943\pi\)
−0.998947 + 0.0458806i \(0.985391\pi\)
\(692\) −12.0358 + 20.8466i −0.457532 + 0.792469i
\(693\) 3.96198 + 6.86235i 0.150503 + 0.260679i
\(694\) 6.68445 0.253738
\(695\) 0 0
\(696\) 10.0207 + 17.3564i 0.379835 + 0.657894i
\(697\) −7.80642 −0.295689
\(698\) −5.29137 9.16492i −0.200281 0.346897i
\(699\) 16.4773 28.5395i 0.623228 1.07946i
\(700\) 0 0
\(701\) 12.8080 0.483750 0.241875 0.970307i \(-0.422238\pi\)
0.241875 + 0.970307i \(0.422238\pi\)
\(702\) 8.14764 3.20838i 0.307513 0.121092i
\(703\) −33.0973 −1.24829
\(704\) −0.533338 + 0.923769i −0.0201009 + 0.0348159i
\(705\) 0 0
\(706\) 4.60470 + 7.97557i 0.173300 + 0.300165i
\(707\) −5.69381 −0.214138
\(708\) −7.95407 13.7768i −0.298932 0.517766i
\(709\) −1.26126 2.18456i −0.0473675 0.0820429i 0.841370 0.540460i \(-0.181750\pi\)
−0.888737 + 0.458417i \(0.848417\pi\)
\(710\) 0 0
\(711\) −4.09356 7.09026i −0.153521 0.265905i
\(712\) −2.26271 + 3.91914i −0.0847988 + 0.146876i
\(713\) 7.43509 12.8780i 0.278446 0.482283i
\(714\) −11.3319 −0.424084
\(715\) 0 0
\(716\) 3.05086 0.114016
\(717\) −4.89607 + 8.48024i −0.182847 + 0.316700i
\(718\) 2.09679 3.63174i 0.0782514 0.135535i
\(719\) −8.51114 14.7417i −0.317412 0.549773i 0.662535 0.749031i \(-0.269480\pi\)
−0.979947 + 0.199257i \(0.936147\pi\)
\(720\) 0 0
\(721\) −19.9931 34.6291i −0.744582 1.28965i
\(722\) −12.2279 21.1794i −0.455076 0.788215i
\(723\) −24.9797 −0.929006
\(724\) −5.32148 9.21707i −0.197771 0.342550i
\(725\) 0 0
\(726\) 10.9190 18.9123i 0.405243 0.701902i
\(727\) −30.5353 −1.13249 −0.566245 0.824237i \(-0.691605\pi\)
−0.566245 + 0.824237i \(0.691605\pi\)
\(728\) −2.08173 + 13.9184i −0.0771541 + 0.515851i
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) −1.31111 + 2.27091i −0.0484931 + 0.0839925i
\(732\) −8.73260 15.1253i −0.322766 0.559048i
\(733\) 24.4499 0.903076 0.451538 0.892252i \(-0.350876\pi\)
0.451538 + 0.892252i \(0.350876\pi\)
\(734\) −6.98418 12.0970i −0.257791 0.446507i
\(735\) 0 0
\(736\) 2.14764 0.0791632
\(737\) 4.49532 + 7.78612i 0.165587 + 0.286805i
\(738\) 5.66593 9.81367i 0.208566 0.361246i
\(739\) 5.39776 9.34920i 0.198560 0.343916i −0.749502 0.662002i \(-0.769707\pi\)
0.948062 + 0.318086i \(0.103040\pi\)
\(740\) 0 0
\(741\) −41.1852 32.7678i −1.51298 1.20376i
\(742\) 5.83654 0.214266
\(743\) −14.9677 + 25.9248i −0.549110 + 0.951087i 0.449225 + 0.893418i \(0.351700\pi\)
−0.998336 + 0.0576686i \(0.981633\pi\)
\(744\) 7.66593 13.2778i 0.281046 0.486787i
\(745\) 0 0
\(746\) 11.8479 0.433783
\(747\) −9.22469 15.9776i −0.337514 0.584591i
\(748\) −0.699264 1.21116i −0.0255676 0.0442844i
\(749\) 8.64296 0.315807
\(750\) 0 0
\(751\) −13.4588 + 23.3112i −0.491117 + 0.850639i −0.999948 0.0102272i \(-0.996745\pi\)
0.508831 + 0.860866i \(0.330078\pi\)
\(752\) 0.0483940 0.0838209i 0.00176475 0.00305663i
\(753\) 5.87310 0.214028
\(754\) −4.82717 + 32.2743i −0.175795 + 1.17536i
\(755\) 0 0
\(756\) −4.73975 + 8.20948i −0.172383 + 0.298576i
\(757\) 17.9533 31.0960i 0.652524 1.13020i −0.329985 0.943986i \(-0.607044\pi\)
0.982508 0.186218i \(-0.0596231\pi\)
\(758\) −0.303197 0.525153i −0.0110126 0.0190744i
\(759\) 5.07265 0.184126
\(760\) 0 0
\(761\) −11.2699 19.5200i −0.408532 0.707598i 0.586193 0.810171i \(-0.300626\pi\)
−0.994725 + 0.102573i \(0.967293\pi\)
\(762\) 22.1225 0.801412
\(763\) 0.260253 + 0.450771i 0.00942178 + 0.0163190i
\(764\) −7.36519 + 12.7569i −0.266463 + 0.461528i
\(765\) 0 0
\(766\) −34.7797 −1.25664
\(767\) 3.83161 25.6181i 0.138352 0.925015i
\(768\) 2.21432 0.0799024
\(769\) −1.23729 + 2.14304i −0.0446177 + 0.0772801i −0.887472 0.460862i \(-0.847540\pi\)
0.842854 + 0.538142i \(0.180874\pi\)
\(770\) 0 0
\(771\) −4.54125 7.86567i −0.163549 0.283275i
\(772\) −14.0000 −0.503871
\(773\) 22.1003 + 38.2788i 0.794891 + 1.37679i 0.922908 + 0.385019i \(0.125805\pi\)
−0.128018 + 0.991772i \(0.540861\pi\)
\(774\) −1.90321 3.29646i −0.0684095 0.118489i
\(775\) 0 0
\(776\) 2.13013 + 3.68949i 0.0764671 + 0.132445i
\(777\) 21.6970 37.5804i 0.778377 1.34819i
\(778\) 9.34222 16.1812i 0.334935 0.580124i
\(779\) 39.2498 1.40627
\(780\) 0 0
\(781\) −16.5116 −0.590832
\(782\) −1.40790 + 2.43855i −0.0503463 + 0.0872023i
\(783\) −10.9906 + 19.0363i −0.392773 + 0.680303i
\(784\) −4.11753 7.13177i −0.147055 0.254706i
\(785\) 0 0
\(786\) −10.2477 17.7495i −0.365522 0.633102i
\(787\) −17.0153 29.4714i −0.606530 1.05054i −0.991808 0.127740i \(-0.959228\pi\)
0.385278 0.922801i \(-0.374106\pi\)
\(788\) −10.4128 −0.370941
\(789\) 11.9595 + 20.7145i 0.425770 + 0.737455i
\(790\) 0 0
\(791\) −27.3225 + 47.3239i −0.971476 + 1.68265i
\(792\) 2.03011 0.0721369
\(793\) 4.20665 28.1255i 0.149382 0.998767i
\(794\) 22.9748 0.815346
\(795\) 0 0
\(796\) 2.18421 3.78316i 0.0774172 0.134091i
\(797\) −4.06890 7.04754i −0.144128 0.249637i 0.784919 0.619598i \(-0.212704\pi\)
−0.929047 + 0.369961i \(0.879371\pi\)
\(798\) 56.9753 2.01690
\(799\) 0.0634498 + 0.109898i 0.00224469 + 0.00388792i
\(800\) 0 0
\(801\) 8.61285 0.304320
\(802\) 2.18667 + 3.78742i 0.0772140 + 0.133739i
\(803\) 8.18813 14.1823i 0.288953 0.500481i
\(804\) 9.33185 16.1632i 0.329109 0.570034i
\(805\) 0 0
\(806\) 23.2286 9.14695i 0.818193 0.322188i
\(807\) −41.1481 −1.44848
\(808\) −0.729376 + 1.26332i −0.0256593 + 0.0444433i
\(809\) 3.92618 6.80034i 0.138037 0.239087i −0.788716 0.614757i \(-0.789254\pi\)
0.926754 + 0.375670i \(0.122587\pi\)
\(810\) 0 0
\(811\) 9.33477 0.327788 0.163894 0.986478i \(-0.447595\pi\)
0.163894 + 0.986478i \(0.447595\pi\)
\(812\) −17.6637 30.5944i −0.619874 1.07365i
\(813\) −21.8938 37.9213i −0.767851 1.32996i
\(814\) 5.35551 0.187711
\(815\) 0 0
\(816\) −1.45161 + 2.51426i −0.0508164 + 0.0880165i
\(817\) 6.59210 11.4179i 0.230629 0.399460i
\(818\) −3.76986 −0.131810
\(819\) 24.9217 9.81367i 0.870836 0.342917i
\(820\) 0 0
\(821\) 23.7659 41.1638i 0.829437 1.43663i −0.0690434 0.997614i \(-0.521995\pi\)
0.898480 0.439013i \(-0.144672\pi\)
\(822\) 16.3756 28.3633i 0.571163 0.989284i
\(823\) 0.693576 + 1.20131i 0.0241765 + 0.0418750i 0.877861 0.478916i \(-0.158970\pi\)
−0.853684 + 0.520791i \(0.825637\pi\)
\(824\) −10.2444 −0.356882
\(825\) 0 0
\(826\) 14.0207 + 24.2846i 0.487844 + 0.844971i
\(827\) −31.5131 −1.09582 −0.547910 0.836537i \(-0.684576\pi\)
−0.547910 + 0.836537i \(0.684576\pi\)
\(828\) −2.04371 3.53981i −0.0710238 0.123017i
\(829\) 14.4128 24.9637i 0.500578 0.867026i −0.499422 0.866359i \(-0.666454\pi\)
1.00000 0.000667386i \(-0.000212436\pi\)
\(830\) 0 0
\(831\) 0.453829 0.0157431
\(832\) 2.82148 + 2.24483i 0.0978172 + 0.0778254i
\(833\) 10.7971 0.374096
\(834\) 14.0541 24.3424i 0.486653 0.842908i
\(835\) 0 0
\(836\) 3.51582 + 6.08958i 0.121597 + 0.210613i
\(837\) 16.8158 0.581239
\(838\) −3.72615 6.45388i −0.128718 0.222946i
\(839\) −4.21755 7.30500i −0.145606 0.252197i 0.783993 0.620770i \(-0.213180\pi\)
−0.929599 + 0.368573i \(0.879846\pi\)
\(840\) 0 0
\(841\) −26.4590 45.8283i −0.912379 1.58029i
\(842\) −13.8375 + 23.9673i −0.476873 + 0.825968i
\(843\) 22.6479 39.2273i 0.780034 1.35106i
\(844\) 5.49532 0.189157
\(845\) 0 0
\(846\) −0.184208 −0.00633321
\(847\) −19.2471 + 33.3370i −0.661339 + 1.14547i
\(848\) 0.747658 1.29498i 0.0256747 0.0444699i
\(849\) −1.59210 2.75761i −0.0546409 0.0946408i
\(850\) 0 0
\(851\) −5.39138 9.33815i −0.184814 0.320108i
\(852\) 17.1383 + 29.6844i 0.587148 + 1.01697i
\(853\) −40.0656 −1.37182 −0.685910 0.727686i \(-0.740596\pi\)
−0.685910 + 0.727686i \(0.740596\pi\)
\(854\) 15.3931 + 26.6616i 0.526740 + 0.912341i
\(855\) 0 0
\(856\) 1.10716 1.91766i 0.0378419 0.0655442i
\(857\) 32.0479 1.09474 0.547368 0.836892i \(-0.315630\pi\)
0.547368 + 0.836892i \(0.315630\pi\)
\(858\) 6.66423 + 5.30220i 0.227513 + 0.181014i
\(859\) −26.6894 −0.910630 −0.455315 0.890331i \(-0.650473\pi\)
−0.455315 + 0.890331i \(0.650473\pi\)
\(860\) 0 0
\(861\) −25.7304 + 44.5663i −0.876889 + 1.51882i
\(862\) −9.84468 17.0515i −0.335311 0.580776i
\(863\) 30.6593 1.04365 0.521827 0.853052i \(-0.325251\pi\)
0.521827 + 0.853052i \(0.325251\pi\)
\(864\) 1.21432 + 2.10326i 0.0413120 + 0.0715545i
\(865\) 0 0
\(866\) −13.7462 −0.467115
\(867\) 16.9185 + 29.3037i 0.574583 + 0.995206i
\(868\) −13.5128 + 23.4049i −0.458655 + 0.794415i
\(869\) −2.29428 + 3.97381i −0.0778282 + 0.134802i
\(870\) 0 0
\(871\) 28.2766 11.1347i 0.958114 0.377286i
\(872\) 0.133353 0.00451591
\(873\) 4.05408 7.02188i 0.137210 0.237654i
\(874\) 7.07874 12.2607i 0.239442 0.414726i
\(875\) 0 0
\(876\) −33.9956 −1.14860
\(877\) −10.4652 18.1263i −0.353385 0.612081i 0.633455 0.773779i \(-0.281636\pi\)
−0.986840 + 0.161699i \(0.948303\pi\)
\(878\) −20.9114 36.2195i −0.705724 1.22235i
\(879\) −46.3116 −1.56205
\(880\) 0 0
\(881\) −10.7351 + 18.5937i −0.361673 + 0.626437i −0.988236 0.152934i \(-0.951128\pi\)
0.626563 + 0.779371i \(0.284461\pi\)
\(882\) −7.83654 + 13.5733i −0.263870 + 0.457036i
\(883\) −7.73530 −0.260314 −0.130157 0.991493i \(-0.541548\pi\)
−0.130157 + 0.991493i \(0.541548\pi\)
\(884\) −4.39853 + 1.73205i −0.147939 + 0.0582552i
\(885\) 0 0
\(886\) 11.8415 20.5100i 0.397822 0.689047i
\(887\) 24.2232 41.9559i 0.813337 1.40874i −0.0971796 0.995267i \(-0.530982\pi\)
0.910516 0.413473i \(-0.135685\pi\)
\(888\) −5.55877 9.62806i −0.186540 0.323097i
\(889\) −38.9956 −1.30787
\(890\) 0 0
\(891\) 5.91335 + 10.2422i 0.198105 + 0.343127i
\(892\) −20.0968 −0.672890
\(893\) −0.319019 0.552556i −0.0106755 0.0184906i
\(894\) −8.06668 + 13.9719i −0.269790 + 0.467290i
\(895\) 0 0
\(896\) −3.90321 −0.130397
\(897\) 2.53633 16.9578i 0.0846855 0.566205i
\(898\) 7.05578 0.235454
\(899\) −31.3339 + 54.2718i −1.04504 + 1.81007i
\(900\) 0 0
\(901\) 0.980260 + 1.69786i 0.0326572 + 0.0565639i
\(902\) −6.35106 −0.211467
\(903\) 8.64296 + 14.9700i 0.287620 + 0.498172i
\(904\) 7.00000 + 12.1244i 0.232817 + 0.403250i
\(905\) 0 0
\(906\) −22.2630 38.5606i −0.739637 1.28109i
\(907\) −6.00545 + 10.4017i −0.199408 + 0.345384i −0.948337 0.317266i \(-0.897235\pi\)
0.748929 + 0.662650i \(0.230568\pi\)
\(908\) −9.67952 + 16.7654i −0.321226 + 0.556380i
\(909\) 2.77631 0.0920845
\(910\) 0 0
\(911\) −8.10171 −0.268422 −0.134211 0.990953i \(-0.542850\pi\)
−0.134211 + 0.990953i \(0.542850\pi\)
\(912\) 7.29851 12.6414i 0.241678 0.418598i
\(913\) −5.17008 + 8.95485i −0.171105 + 0.296362i
\(914\) 17.8398 + 30.8994i 0.590087 + 1.02206i
\(915\) 0 0
\(916\) −7.86273 13.6186i −0.259792 0.449973i
\(917\) 18.0637 + 31.2872i 0.596516 + 1.03320i
\(918\) −3.18421 −0.105095
\(919\) −8.29682 14.3705i −0.273687 0.474039i 0.696116 0.717929i \(-0.254910\pi\)
−0.969803 + 0.243890i \(0.921576\pi\)
\(920\) 0 0
\(921\) −13.8731 + 24.0289i −0.457134 + 0.791780i
\(922\) −14.6015 −0.480874
\(923\) −8.25581 + 55.1981i −0.271743 + 1.81687i
\(924\) −9.21924 −0.303291
\(925\) 0 0
\(926\) −15.3756 + 26.6313i −0.505272 + 0.875157i
\(927\) 9.74866 + 16.8852i 0.320188 + 0.554582i
\(928\) −9.05086 −0.297109
\(929\) −28.5605 49.4682i −0.937038 1.62300i −0.770958 0.636886i \(-0.780222\pi\)
−0.166080 0.986112i \(-0.553111\pi\)
\(930\) 0 0
\(931\) −54.2864 −1.77916
\(932\) 7.44123 + 12.8886i 0.243746 + 0.422180i
\(933\) 10.8294 18.7571i 0.354538 0.614078i
\(934\) 10.2810 17.8072i 0.336404 0.582670i
\(935\) 0 0
\(936\) 1.01506 6.78664i 0.0331781 0.221828i
\(937\) −11.1842 −0.365372 −0.182686 0.983171i \(-0.558479\pi\)
−0.182686 + 0.983171i \(0.558479\pi\)
\(938\) −16.4494 + 28.4912i −0.537091 + 0.930270i
\(939\) −19.0573 + 33.0082i −0.621912 + 1.07718i
\(940\) 0 0
\(941\) −7.68598 −0.250556 −0.125278 0.992122i \(-0.539982\pi\)
−0.125278 + 0.992122i \(0.539982\pi\)
\(942\) 2.19680 + 3.80497i 0.0715757 + 0.123973i
\(943\) 6.39361 + 11.0741i 0.208204 + 0.360621i
\(944\) 7.18421 0.233826
\(945\) 0 0
\(946\) −1.06668 + 1.84754i −0.0346806 + 0.0600686i
\(947\) −10.3373 + 17.9047i −0.335917 + 0.581826i −0.983661 0.180033i \(-0.942380\pi\)
0.647743 + 0.761859i \(0.275713\pi\)
\(948\) 9.52543 0.309372
\(949\) −43.3170 34.4639i −1.40613 1.11875i
\(950\) 0 0
\(951\) −15.2175 + 26.3576i −0.493463 + 0.854703i
\(952\) 2.55877 4.43191i 0.0829301 0.143639i
\(953\) 15.4876 + 26.8254i 0.501694 + 0.868959i 0.999998 + 0.00195715i \(0.000622981\pi\)
−0.498304 + 0.867002i \(0.666044\pi\)
\(954\) −2.84590 −0.0921395
\(955\) 0 0
\(956\) −2.21109 3.82973i −0.0715119 0.123862i
\(957\) −21.3778 −0.691046
\(958\) −5.96666 10.3346i −0.192774 0.333895i
\(959\) −28.8654 + 49.9964i −0.932113 + 1.61447i
\(960\) 0 0
\(961\) 16.9412 0.546489
\(962\) 2.67775 17.9034i 0.0863343 0.577229i
\(963\) −4.21432 −0.135805
\(964\) 5.64050 9.76963i 0.181668 0.314659i
\(965\) 0 0
\(966\) 9.28100 + 16.0752i 0.298611 + 0.517210i
\(967\) −0.529873 −0.0170396 −0.00851979 0.999964i \(-0.502712\pi\)
−0.00851979 + 0.999964i \(0.502712\pi\)
\(968\) 4.93110 + 8.54092i 0.158492 + 0.274515i
\(969\) 9.56914 + 16.5742i 0.307405 + 0.532441i
\(970\) 0 0
\(971\) 17.1620 + 29.7255i 0.550755 + 0.953936i 0.998220 + 0.0596344i \(0.0189935\pi\)
−0.447465 + 0.894301i \(0.647673\pi\)
\(972\) 8.63259 14.9521i 0.276890 0.479588i
\(973\) −24.7733 + 42.9087i −0.794196 + 1.37559i
\(974\) −27.9719 −0.896277
\(975\) 0 0
\(976\) 7.88739 0.252469
\(977\) −9.98418 + 17.2931i −0.319422 + 0.553255i −0.980368 0.197179i \(-0.936822\pi\)
0.660945 + 0.750434i \(0.270155\pi\)
\(978\) 5.20717 9.01909i 0.166507 0.288399i
\(979\) −2.41358 4.18045i −0.0771385 0.133608i
\(980\) 0 0
\(981\) −0.126900 0.219797i −0.00405159 0.00701756i
\(982\) 10.3906 + 17.9971i 0.331578 + 0.574310i
\(983\) −20.8524 −0.665087 −0.332543 0.943088i \(-0.607907\pi\)
−0.332543 + 0.943088i \(0.607907\pi\)
\(984\) 6.59210 + 11.4179i 0.210149 + 0.363988i
\(985\) 0 0
\(986\) 5.93332 10.2768i 0.188956 0.327281i
\(987\) 0.836535 0.0266272
\(988\) 22.1153 8.70856i 0.703582 0.277056i
\(989\) 4.29529 0.136582
\(990\) 0 0
\(991\) 1.47949 2.56256i 0.0469977 0.0814024i −0.841570 0.540149i \(-0.818368\pi\)
0.888567 + 0.458746i \(0.151701\pi\)
\(992\) 3.46198 + 5.99632i 0.109918 + 0.190383i
\(993\) 42.9304 1.36236
\(994\) −30.2099 52.3250i −0.958199 1.65965i
\(995\) 0 0
\(996\) 21.4652 0.680151
\(997\) 10.5240 + 18.2281i 0.333297 + 0.577288i 0.983156 0.182767i \(-0.0585053\pi\)
−0.649859 + 0.760055i \(0.725172\pi\)
\(998\) −17.1454 + 29.6967i −0.542729 + 0.940034i
\(999\) 6.09679 10.5599i 0.192894 0.334102i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.j.451.1 6
5.2 odd 4 130.2.n.a.9.3 12
5.3 odd 4 130.2.n.a.9.4 yes 12
5.4 even 2 650.2.e.k.451.3 6
13.3 even 3 inner 650.2.e.j.601.1 6
13.4 even 6 8450.2.a.bt.1.3 3
13.9 even 3 8450.2.a.cb.1.3 3
15.2 even 4 1170.2.bp.h.919.4 12
15.8 even 4 1170.2.bp.h.919.1 12
20.3 even 4 1040.2.dh.b.529.6 12
20.7 even 4 1040.2.dh.b.529.1 12
65.3 odd 12 130.2.n.a.29.3 yes 12
65.4 even 6 8450.2.a.ca.1.1 3
65.7 even 12 1690.2.c.b.1689.1 6
65.9 even 6 8450.2.a.bu.1.1 3
65.17 odd 12 1690.2.b.b.339.1 6
65.22 odd 12 1690.2.b.c.339.4 6
65.29 even 6 650.2.e.k.601.3 6
65.32 even 12 1690.2.c.c.1689.1 6
65.33 even 12 1690.2.c.c.1689.6 6
65.42 odd 12 130.2.n.a.29.4 yes 12
65.43 odd 12 1690.2.b.b.339.6 6
65.48 odd 12 1690.2.b.c.339.3 6
65.58 even 12 1690.2.c.b.1689.6 6
195.68 even 12 1170.2.bp.h.289.4 12
195.107 even 12 1170.2.bp.h.289.1 12
260.3 even 12 1040.2.dh.b.289.1 12
260.107 even 12 1040.2.dh.b.289.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.3 12 5.2 odd 4
130.2.n.a.9.4 yes 12 5.3 odd 4
130.2.n.a.29.3 yes 12 65.3 odd 12
130.2.n.a.29.4 yes 12 65.42 odd 12
650.2.e.j.451.1 6 1.1 even 1 trivial
650.2.e.j.601.1 6 13.3 even 3 inner
650.2.e.k.451.3 6 5.4 even 2
650.2.e.k.601.3 6 65.29 even 6
1040.2.dh.b.289.1 12 260.3 even 12
1040.2.dh.b.289.6 12 260.107 even 12
1040.2.dh.b.529.1 12 20.7 even 4
1040.2.dh.b.529.6 12 20.3 even 4
1170.2.bp.h.289.1 12 195.107 even 12
1170.2.bp.h.289.4 12 195.68 even 12
1170.2.bp.h.919.1 12 15.8 even 4
1170.2.bp.h.919.4 12 15.2 even 4
1690.2.b.b.339.1 6 65.17 odd 12
1690.2.b.b.339.6 6 65.43 odd 12
1690.2.b.c.339.3 6 65.48 odd 12
1690.2.b.c.339.4 6 65.22 odd 12
1690.2.c.b.1689.1 6 65.7 even 12
1690.2.c.b.1689.6 6 65.58 even 12
1690.2.c.c.1689.1 6 65.32 even 12
1690.2.c.c.1689.6 6 65.33 even 12
8450.2.a.bt.1.3 3 13.4 even 6
8450.2.a.bu.1.1 3 65.9 even 6
8450.2.a.ca.1.1 3 65.4 even 6
8450.2.a.cb.1.3 3 13.9 even 3