Properties

Label 130.2.n.a.29.3
Level $130$
Weight $2$
Character 130.29
Analytic conductor $1.038$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(9,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.3
Root \(1.98293 - 0.531325i\) of defining polynomial
Character \(\chi\) \(=\) 130.29
Dual form 130.2.n.a.9.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(1.91766 - 1.10716i) q^{3} +(0.500000 - 0.866025i) q^{4} +(2.21432 + 0.311108i) q^{5} +(-1.10716 + 1.91766i) q^{6} +(-3.38028 - 1.95161i) q^{7} +1.00000i q^{8} +(0.951606 - 1.64823i) q^{9} +(-2.07321 + 0.837733i) q^{10} +(-0.533338 - 0.923769i) q^{11} -2.21432i q^{12} +(2.24483 + 2.82148i) q^{13} +3.90321 q^{14} +(4.59075 - 1.85501i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.13545 + 0.655554i) q^{17} +1.90321i q^{18} +(-3.29605 + 5.70893i) q^{19} +(1.37659 - 1.76210i) q^{20} -8.64296 q^{21} +(0.923769 + 0.533338i) q^{22} +(1.85991 - 1.07382i) q^{23} +(1.10716 + 1.91766i) q^{24} +(4.80642 + 1.37778i) q^{25} +(-3.35482 - 1.32106i) q^{26} +2.42864i q^{27} +(-3.38028 + 1.95161i) q^{28} +(-4.52543 - 7.83827i) q^{29} +(-3.04820 + 3.90186i) q^{30} -6.92396 q^{31} +(0.866025 + 0.500000i) q^{32} +(-2.04552 - 1.18098i) q^{33} -1.31111 q^{34} +(-6.87786 - 5.37311i) q^{35} +(-0.951606 - 1.64823i) q^{36} +(-4.34809 + 2.51037i) q^{37} -6.59210i q^{38} +(7.42864 + 2.92525i) q^{39} +(-0.311108 + 2.21432i) q^{40} +(2.97703 + 5.15637i) q^{41} +(7.48502 - 4.32148i) q^{42} +(-1.73205 - 1.00000i) q^{43} -1.06668 q^{44} +(2.61994 - 3.35366i) q^{45} +(-1.07382 + 1.85991i) q^{46} +0.0967881i q^{47} +(-1.91766 - 1.10716i) q^{48} +(4.11753 + 7.13177i) q^{49} +(-4.85138 + 1.21002i) q^{50} +2.90321 q^{51} +(3.56589 - 0.533338i) q^{52} -1.49532i q^{53} +(-1.21432 - 2.10326i) q^{54} +(-0.893590 - 2.21145i) q^{55} +(1.95161 - 3.38028i) q^{56} +14.5970i q^{57} +(7.83827 + 4.52543i) q^{58} +(3.59210 - 6.22171i) q^{59} +(0.688892 - 4.90321i) q^{60} +(-3.94370 + 6.83068i) q^{61} +(5.99632 - 3.46198i) q^{62} +(-6.43339 + 3.71432i) q^{63} -1.00000 q^{64} +(4.09298 + 6.94604i) q^{65} +2.36196 q^{66} +(7.29942 - 4.21432i) q^{67} +(1.13545 - 0.655554i) q^{68} +(2.37778 - 4.11844i) q^{69} +(8.64296 + 1.21432i) q^{70} +(7.73975 - 13.4056i) q^{71} +(1.64823 + 0.951606i) q^{72} -15.3526i q^{73} +(2.51037 - 4.34809i) q^{74} +(10.7425 - 2.67936i) q^{75} +(3.29605 + 5.70893i) q^{76} +4.16346i q^{77} +(-7.89601 + 1.18098i) q^{78} -4.30174 q^{79} +(-0.837733 - 2.07321i) q^{80} +(5.54371 + 9.60199i) q^{81} +(-5.15637 - 2.97703i) q^{82} +9.69381i q^{83} +(-4.32148 + 7.48502i) q^{84} +(2.31031 + 1.80485i) q^{85} +2.00000 q^{86} +(-17.3564 - 10.0207i) q^{87} +(0.923769 - 0.533338i) q^{88} +(2.26271 + 3.91914i) q^{89} +(-0.592104 + 4.21432i) q^{90} +(-2.08173 - 13.9184i) q^{91} -2.14764i q^{92} +(-13.2778 + 7.66593i) q^{93} +(-0.0483940 - 0.0838209i) q^{94} +(-9.07461 + 11.6160i) q^{95} +2.21432 q^{96} +(-3.68949 - 2.13013i) q^{97} +(-7.13177 - 4.11753i) q^{98} -2.03011 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{9} - 2 q^{10} - 6 q^{11} + 20 q^{14} + 4 q^{15} - 6 q^{16} - 26 q^{19} - 24 q^{21} + 4 q^{25} - 28 q^{29} - 16 q^{30} + 24 q^{31} - 16 q^{34} - 6 q^{35} + 2 q^{36} + 36 q^{39} - 4 q^{40}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 1.91766 1.10716i 1.10716 0.639219i 0.169068 0.985604i \(-0.445924\pi\)
0.938092 + 0.346385i \(0.112591\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.21432 + 0.311108i 0.990274 + 0.139132i
\(6\) −1.10716 + 1.91766i −0.451996 + 0.782880i
\(7\) −3.38028 1.95161i −1.27763 0.737638i −0.301215 0.953556i \(-0.597392\pi\)
−0.976411 + 0.215919i \(0.930725\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.951606 1.64823i 0.317202 0.549410i
\(10\) −2.07321 + 0.837733i −0.655607 + 0.264914i
\(11\) −0.533338 0.923769i −0.160808 0.278527i 0.774351 0.632756i \(-0.218077\pi\)
−0.935159 + 0.354229i \(0.884743\pi\)
\(12\) 2.21432i 0.639219i
\(13\) 2.24483 + 2.82148i 0.622603 + 0.782538i
\(14\) 3.90321 1.04318
\(15\) 4.59075 1.85501i 1.18533 0.478961i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.13545 + 0.655554i 0.275388 + 0.158995i 0.631334 0.775511i \(-0.282508\pi\)
−0.355946 + 0.934507i \(0.615841\pi\)
\(18\) 1.90321i 0.448591i
\(19\) −3.29605 + 5.70893i −0.756166 + 1.30972i 0.188626 + 0.982049i \(0.439597\pi\)
−0.944792 + 0.327669i \(0.893737\pi\)
\(20\) 1.37659 1.76210i 0.307814 0.394018i
\(21\) −8.64296 −1.88605
\(22\) 0.923769 + 0.533338i 0.196948 + 0.113708i
\(23\) 1.85991 1.07382i 0.387819 0.223907i −0.293396 0.955991i \(-0.594785\pi\)
0.681215 + 0.732084i \(0.261452\pi\)
\(24\) 1.10716 + 1.91766i 0.225998 + 0.391440i
\(25\) 4.80642 + 1.37778i 0.961285 + 0.275557i
\(26\) −3.35482 1.32106i −0.657934 0.259081i
\(27\) 2.42864i 0.467392i
\(28\) −3.38028 + 1.95161i −0.638813 + 0.368819i
\(29\) −4.52543 7.83827i −0.840351 1.45553i −0.889598 0.456744i \(-0.849016\pi\)
0.0492475 0.998787i \(-0.484318\pi\)
\(30\) −3.04820 + 3.90186i −0.556523 + 0.712379i
\(31\) −6.92396 −1.24358 −0.621790 0.783184i \(-0.713594\pi\)
−0.621790 + 0.783184i \(0.713594\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −2.04552 1.18098i −0.356079 0.205582i
\(34\) −1.31111 −0.224853
\(35\) −6.87786 5.37311i −1.16257 0.908222i
\(36\) −0.951606 1.64823i −0.158601 0.274705i
\(37\) −4.34809 + 2.51037i −0.714822 + 0.412703i −0.812844 0.582482i \(-0.802082\pi\)
0.0980220 + 0.995184i \(0.468748\pi\)
\(38\) 6.59210i 1.06938i
\(39\) 7.42864 + 2.92525i 1.18953 + 0.468414i
\(40\) −0.311108 + 2.21432i −0.0491905 + 0.350115i
\(41\) 2.97703 + 5.15637i 0.464935 + 0.805290i 0.999199 0.0400274i \(-0.0127445\pi\)
−0.534264 + 0.845318i \(0.679411\pi\)
\(42\) 7.48502 4.32148i 1.15496 0.666819i
\(43\) −1.73205 1.00000i −0.264135 0.152499i 0.362084 0.932145i \(-0.382065\pi\)
−0.626219 + 0.779647i \(0.715399\pi\)
\(44\) −1.06668 −0.160808
\(45\) 2.61994 3.35366i 0.390557 0.499934i
\(46\) −1.07382 + 1.85991i −0.158326 + 0.274229i
\(47\) 0.0967881i 0.0141180i 0.999975 + 0.00705900i \(0.00224697\pi\)
−0.999975 + 0.00705900i \(0.997753\pi\)
\(48\) −1.91766 1.10716i −0.276790 0.159805i
\(49\) 4.11753 + 7.13177i 0.588219 + 1.01882i
\(50\) −4.85138 + 1.21002i −0.686088 + 0.171122i
\(51\) 2.90321 0.406531
\(52\) 3.56589 0.533338i 0.494500 0.0739607i
\(53\) 1.49532i 0.205397i −0.994713 0.102699i \(-0.967252\pi\)
0.994713 0.102699i \(-0.0327478\pi\)
\(54\) −1.21432 2.10326i −0.165248 0.286218i
\(55\) −0.893590 2.21145i −0.120492 0.298191i
\(56\) 1.95161 3.38028i 0.260794 0.451709i
\(57\) 14.5970i 1.93342i
\(58\) 7.83827 + 4.52543i 1.02922 + 0.594218i
\(59\) 3.59210 6.22171i 0.467652 0.809997i −0.531665 0.846955i \(-0.678433\pi\)
0.999317 + 0.0369577i \(0.0117667\pi\)
\(60\) 0.688892 4.90321i 0.0889356 0.633002i
\(61\) −3.94370 + 6.83068i −0.504938 + 0.874579i 0.495045 + 0.868867i \(0.335151\pi\)
−0.999984 + 0.00571183i \(0.998182\pi\)
\(62\) 5.99632 3.46198i 0.761534 0.439672i
\(63\) −6.43339 + 3.71432i −0.810531 + 0.467960i
\(64\) −1.00000 −0.125000
\(65\) 4.09298 + 6.94604i 0.507672 + 0.861550i
\(66\) 2.36196 0.290738
\(67\) 7.29942 4.21432i 0.891766 0.514861i 0.0172460 0.999851i \(-0.494510\pi\)
0.874520 + 0.484990i \(0.161177\pi\)
\(68\) 1.13545 0.655554i 0.137694 0.0794976i
\(69\) 2.37778 4.11844i 0.286252 0.495802i
\(70\) 8.64296 + 1.21432i 1.03303 + 0.145139i
\(71\) 7.73975 13.4056i 0.918539 1.59096i 0.116903 0.993143i \(-0.462703\pi\)
0.801636 0.597813i \(-0.203963\pi\)
\(72\) 1.64823 + 0.951606i 0.194246 + 0.112148i
\(73\) 15.3526i 1.79689i −0.439091 0.898443i \(-0.644699\pi\)
0.439091 0.898443i \(-0.355301\pi\)
\(74\) 2.51037 4.34809i 0.291825 0.505455i
\(75\) 10.7425 2.67936i 1.24044 0.309386i
\(76\) 3.29605 + 5.70893i 0.378083 + 0.654859i
\(77\) 4.16346i 0.474471i
\(78\) −7.89601 + 1.18098i −0.894048 + 0.133720i
\(79\) −4.30174 −0.483984 −0.241992 0.970278i \(-0.577801\pi\)
−0.241992 + 0.970278i \(0.577801\pi\)
\(80\) −0.837733 2.07321i −0.0936614 0.231792i
\(81\) 5.54371 + 9.60199i 0.615968 + 1.06689i
\(82\) −5.15637 2.97703i −0.569426 0.328758i
\(83\) 9.69381i 1.06403i 0.846734 + 0.532017i \(0.178566\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(84\) −4.32148 + 7.48502i −0.471512 + 0.816683i
\(85\) 2.31031 + 1.80485i 0.250588 + 0.195764i
\(86\) 2.00000 0.215666
\(87\) −17.3564 10.0207i −1.86081 1.07434i
\(88\) 0.923769 0.533338i 0.0984741 0.0568541i
\(89\) 2.26271 + 3.91914i 0.239847 + 0.415428i 0.960670 0.277692i \(-0.0895693\pi\)
−0.720823 + 0.693119i \(0.756236\pi\)
\(90\) −0.592104 + 4.21432i −0.0624133 + 0.444228i
\(91\) −2.08173 13.9184i −0.218225 1.45905i
\(92\) 2.14764i 0.223907i
\(93\) −13.2778 + 7.66593i −1.37684 + 0.794919i
\(94\) −0.0483940 0.0838209i −0.00499146 0.00864547i
\(95\) −9.07461 + 11.6160i −0.931035 + 1.19177i
\(96\) 2.21432 0.225998
\(97\) −3.68949 2.13013i −0.374611 0.216282i 0.300860 0.953668i \(-0.402726\pi\)
−0.675471 + 0.737387i \(0.736060\pi\)
\(98\) −7.13177 4.11753i −0.720418 0.415934i
\(99\) −2.03011 −0.204034
\(100\) 3.59641 3.47359i 0.359641 0.347359i
\(101\) −0.729376 1.26332i −0.0725756 0.125705i 0.827454 0.561534i \(-0.189789\pi\)
−0.900029 + 0.435829i \(0.856455\pi\)
\(102\) −2.51426 + 1.45161i −0.248948 + 0.143730i
\(103\) 10.2444i 1.00941i −0.863291 0.504707i \(-0.831601\pi\)
0.863291 0.504707i \(-0.168399\pi\)
\(104\) −2.82148 + 2.24483i −0.276669 + 0.220123i
\(105\) −19.1383 2.68889i −1.86770 0.262409i
\(106\) 0.747658 + 1.29498i 0.0726190 + 0.125780i
\(107\) 1.91766 1.10716i 0.185387 0.107033i −0.404434 0.914567i \(-0.632532\pi\)
0.589821 + 0.807534i \(0.299198\pi\)
\(108\) 2.10326 + 1.21432i 0.202387 + 0.116848i
\(109\) −0.133353 −0.0127729 −0.00638645 0.999980i \(-0.502033\pi\)
−0.00638645 + 0.999980i \(0.502033\pi\)
\(110\) 1.87959 + 1.46837i 0.179212 + 0.140004i
\(111\) −5.55877 + 9.62806i −0.527615 + 0.913855i
\(112\) 3.90321i 0.368819i
\(113\) 12.1244 + 7.00000i 1.14056 + 0.658505i 0.946570 0.322498i \(-0.104523\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(114\) −7.29851 12.6414i −0.683568 1.18398i
\(115\) 4.45252 1.79915i 0.415199 0.167772i
\(116\) −9.05086 −0.840351
\(117\) 6.78664 1.01506i 0.627425 0.0938419i
\(118\) 7.18421i 0.661360i
\(119\) −2.55877 4.43191i −0.234562 0.406273i
\(120\) 1.85501 + 4.59075i 0.169338 + 0.419076i
\(121\) 4.93110 8.54092i 0.448282 0.776447i
\(122\) 7.88739i 0.714091i
\(123\) 11.4179 + 6.59210i 1.02951 + 0.594390i
\(124\) −3.46198 + 5.99632i −0.310895 + 0.538486i
\(125\) 10.2143 + 4.54617i 0.913597 + 0.406622i
\(126\) 3.71432 6.43339i 0.330898 0.573132i
\(127\) −8.65214 + 4.99532i −0.767753 + 0.443263i −0.832073 0.554667i \(-0.812846\pi\)
0.0643192 + 0.997929i \(0.479512\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −4.42864 −0.389920
\(130\) −7.01765 3.96896i −0.615488 0.348101i
\(131\) 9.25581 0.808684 0.404342 0.914608i \(-0.367501\pi\)
0.404342 + 0.914608i \(0.367501\pi\)
\(132\) −2.04552 + 1.18098i −0.178040 + 0.102791i
\(133\) 22.2832 12.8652i 1.93220 1.11555i
\(134\) −4.21432 + 7.29942i −0.364062 + 0.630573i
\(135\) −0.755569 + 5.37778i −0.0650290 + 0.462846i
\(136\) −0.655554 + 1.13545i −0.0562133 + 0.0973643i
\(137\) −12.8090 7.39530i −1.09435 0.631823i −0.159619 0.987179i \(-0.551026\pi\)
−0.934731 + 0.355356i \(0.884360\pi\)
\(138\) 4.75557i 0.404821i
\(139\) −6.34691 + 10.9932i −0.538338 + 0.932428i 0.460656 + 0.887579i \(0.347614\pi\)
−0.998994 + 0.0448494i \(0.985719\pi\)
\(140\) −8.09218 + 3.26985i −0.683914 + 0.276353i
\(141\) 0.107160 + 0.185606i 0.00902449 + 0.0156309i
\(142\) 15.4795i 1.29901i
\(143\) 1.40914 3.57851i 0.117838 0.299250i
\(144\) −1.90321 −0.158601
\(145\) −7.58220 18.7643i −0.629667 1.55829i
\(146\) 7.67630 + 13.2957i 0.635295 + 1.10036i
\(147\) 15.7920 + 9.11753i 1.30250 + 0.752001i
\(148\) 5.02074i 0.412703i
\(149\) 3.64296 6.30979i 0.298443 0.516918i −0.677337 0.735673i \(-0.736866\pi\)
0.975780 + 0.218755i \(0.0701994\pi\)
\(150\) −7.96360 + 7.69165i −0.650225 + 0.628020i
\(151\) 20.1082 1.63638 0.818190 0.574949i \(-0.194978\pi\)
0.818190 + 0.574949i \(0.194978\pi\)
\(152\) −5.70893 3.29605i −0.463055 0.267345i
\(153\) 2.16101 1.24766i 0.174707 0.100867i
\(154\) −2.08173 3.60567i −0.167751 0.290553i
\(155\) −15.3319 2.15410i −1.23148 0.173021i
\(156\) 6.24766 4.97077i 0.500213 0.397980i
\(157\) 1.98418i 0.158355i 0.996861 + 0.0791773i \(0.0252293\pi\)
−0.996861 + 0.0791773i \(0.974771\pi\)
\(158\) 3.72542 2.15087i 0.296378 0.171114i
\(159\) −1.65555 2.86750i −0.131294 0.227408i
\(160\) 1.76210 + 1.37659i 0.139306 + 0.108829i
\(161\) −8.38271 −0.660650
\(162\) −9.60199 5.54371i −0.754403 0.435555i
\(163\) 4.07308 + 2.35159i 0.319028 + 0.184191i 0.650959 0.759113i \(-0.274367\pi\)
−0.331931 + 0.943304i \(0.607700\pi\)
\(164\) 5.95407 0.464935
\(165\) −4.16202 3.25145i −0.324013 0.253125i
\(166\) −4.84691 8.39509i −0.376193 0.651585i
\(167\) 8.39642 4.84767i 0.649734 0.375124i −0.138620 0.990346i \(-0.544267\pi\)
0.788354 + 0.615221i \(0.210933\pi\)
\(168\) 8.64296i 0.666819i
\(169\) −2.92149 + 12.6675i −0.224730 + 0.974421i
\(170\) −2.90321 0.407896i −0.222666 0.0312842i
\(171\) 6.27309 + 10.8653i 0.479715 + 0.830890i
\(172\) −1.73205 + 1.00000i −0.132068 + 0.0762493i
\(173\) −20.8466 12.0358i −1.58494 0.915065i −0.994123 0.108259i \(-0.965473\pi\)
−0.590816 0.806806i \(-0.701194\pi\)
\(174\) 20.0415 1.51934
\(175\) −13.5582 14.0375i −1.02490 1.06114i
\(176\) −0.533338 + 0.923769i −0.0402019 + 0.0696317i
\(177\) 15.9081i 1.19573i
\(178\) −3.91914 2.26271i −0.293752 0.169598i
\(179\) 1.52543 + 2.64212i 0.114016 + 0.197481i 0.917386 0.397999i \(-0.130295\pi\)
−0.803370 + 0.595480i \(0.796962\pi\)
\(180\) −1.59438 3.94576i −0.118838 0.294100i
\(181\) 10.6430 0.791085 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(182\) 8.76204 + 11.0128i 0.649486 + 0.816325i
\(183\) 17.4652i 1.29107i
\(184\) 1.07382 + 1.85991i 0.0791632 + 0.137115i
\(185\) −10.4091 + 4.20604i −0.765289 + 0.309234i
\(186\) 7.66593 13.2778i 0.562093 0.973574i
\(187\) 1.39853i 0.102270i
\(188\) 0.0838209 + 0.0483940i 0.00611327 + 0.00352950i
\(189\) 4.73975 8.20948i 0.344766 0.597152i
\(190\) 2.05086 14.5970i 0.148785 1.05898i
\(191\) −7.36519 + 12.7569i −0.532926 + 0.923056i 0.466334 + 0.884609i \(0.345574\pi\)
−0.999261 + 0.0384470i \(0.987759\pi\)
\(192\) −1.91766 + 1.10716i −0.138395 + 0.0799024i
\(193\) −12.1244 + 7.00000i −0.872730 + 0.503871i −0.868255 0.496119i \(-0.834758\pi\)
−0.00447566 + 0.999990i \(0.501425\pi\)
\(194\) 4.26025 0.305868
\(195\) 15.5393 + 8.78854i 1.11279 + 0.629360i
\(196\) 8.23506 0.588219
\(197\) 9.01776 5.20641i 0.642489 0.370941i −0.143084 0.989711i \(-0.545702\pi\)
0.785573 + 0.618769i \(0.212368\pi\)
\(198\) 1.75813 1.01506i 0.124945 0.0721369i
\(199\) −2.18421 + 3.78316i −0.154834 + 0.268181i −0.932999 0.359880i \(-0.882818\pi\)
0.778164 + 0.628061i \(0.216151\pi\)
\(200\) −1.37778 + 4.80642i −0.0974241 + 0.339865i
\(201\) 9.33185 16.1632i 0.658218 1.14007i
\(202\) 1.26332 + 0.729376i 0.0888866 + 0.0513187i
\(203\) 35.3274i 2.47950i
\(204\) 1.45161 2.51426i 0.101633 0.176033i
\(205\) 4.98792 + 12.3440i 0.348371 + 0.862145i
\(206\) 5.12222 + 8.87194i 0.356882 + 0.618137i
\(207\) 4.08742i 0.284095i
\(208\) 1.32106 3.35482i 0.0915990 0.232615i
\(209\) 7.03164 0.486389
\(210\) 17.9187 7.24049i 1.23651 0.499641i
\(211\) −2.74766 4.75908i −0.189157 0.327629i 0.755813 0.654788i \(-0.227242\pi\)
−0.944969 + 0.327159i \(0.893909\pi\)
\(212\) −1.29498 0.747658i −0.0889397 0.0513494i
\(213\) 34.2766i 2.34859i
\(214\) −1.10716 + 1.91766i −0.0756839 + 0.131088i
\(215\) −3.52421 2.75317i −0.240349 0.187765i
\(216\) −2.42864 −0.165248
\(217\) 23.4049 + 13.5128i 1.58883 + 0.917311i
\(218\) 0.115487 0.0666765i 0.00782178 0.00451591i
\(219\) −16.9978 29.4410i −1.14860 1.98944i
\(220\) −2.36196 0.331851i −0.159244 0.0223734i
\(221\) 0.699264 + 4.67526i 0.0470376 + 0.314492i
\(222\) 11.1175i 0.746160i
\(223\) −17.4043 + 10.0484i −1.16548 + 0.672890i −0.952611 0.304191i \(-0.901614\pi\)
−0.212869 + 0.977081i \(0.568281\pi\)
\(224\) −1.95161 3.38028i −0.130397 0.225855i
\(225\) 6.84473 6.61098i 0.456315 0.440732i
\(226\) −14.0000 −0.931266
\(227\) 16.7654 + 9.67952i 1.11276 + 0.642453i 0.939543 0.342431i \(-0.111250\pi\)
0.173218 + 0.984884i \(0.444584\pi\)
\(228\) 12.6414 + 7.29851i 0.837197 + 0.483356i
\(229\) −15.7255 −1.03917 −0.519584 0.854420i \(-0.673913\pi\)
−0.519584 + 0.854420i \(0.673913\pi\)
\(230\) −2.95642 + 3.78437i −0.194940 + 0.249534i
\(231\) 4.60962 + 7.98410i 0.303291 + 0.525315i
\(232\) 7.83827 4.52543i 0.514608 0.297109i
\(233\) 14.8825i 0.974983i −0.873128 0.487491i \(-0.837912\pi\)
0.873128 0.487491i \(-0.162088\pi\)
\(234\) −5.36987 + 4.27238i −0.351040 + 0.279294i
\(235\) −0.0301115 + 0.214320i −0.00196426 + 0.0139807i
\(236\) −3.59210 6.22171i −0.233826 0.404999i
\(237\) −8.24926 + 4.76271i −0.535847 + 0.309372i
\(238\) 4.43191 + 2.55877i 0.287278 + 0.165860i
\(239\) −4.42219 −0.286047 −0.143024 0.989719i \(-0.545683\pi\)
−0.143024 + 0.989719i \(0.545683\pi\)
\(240\) −3.90186 3.04820i −0.251864 0.196761i
\(241\) 5.64050 9.76963i 0.363336 0.629317i −0.625171 0.780488i \(-0.714971\pi\)
0.988508 + 0.151170i \(0.0483042\pi\)
\(242\) 9.86220i 0.633966i
\(243\) 14.9521 + 8.63259i 0.959176 + 0.553781i
\(244\) 3.94370 + 6.83068i 0.252469 + 0.437290i
\(245\) 6.89878 + 17.0730i 0.440747 + 1.09076i
\(246\) −13.1842 −0.840594
\(247\) −23.5067 + 3.51582i −1.49570 + 0.223706i
\(248\) 6.92396i 0.439672i
\(249\) 10.7326 + 18.5894i 0.680151 + 1.17806i
\(250\) −11.1189 + 1.17006i −0.703224 + 0.0740011i
\(251\) −1.32616 + 2.29698i −0.0837067 + 0.144984i −0.904839 0.425753i \(-0.860009\pi\)
0.821133 + 0.570737i \(0.193343\pi\)
\(252\) 7.42864i 0.467960i
\(253\) −1.98393 1.14542i −0.124728 0.0720120i
\(254\) 4.99532 8.65214i 0.313434 0.542884i
\(255\) 6.42864 + 0.903212i 0.402577 + 0.0565613i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.55219 + 2.05086i −0.221579 + 0.127929i −0.606681 0.794945i \(-0.707500\pi\)
0.385102 + 0.922874i \(0.374166\pi\)
\(258\) 3.83531 2.21432i 0.238776 0.137858i
\(259\) 19.5970 1.21770
\(260\) 8.06194 0.0716061i 0.499980 0.00444082i
\(261\) −17.2257 −1.06624
\(262\) −8.01576 + 4.62790i −0.495216 + 0.285913i
\(263\) −9.35479 + 5.40099i −0.576841 + 0.333039i −0.759877 0.650067i \(-0.774741\pi\)
0.183036 + 0.983106i \(0.441407\pi\)
\(264\) 1.18098 2.04552i 0.0726844 0.125893i
\(265\) 0.465205 3.31111i 0.0285773 0.203400i
\(266\) −12.8652 + 22.2832i −0.788815 + 1.36627i
\(267\) 8.67822 + 5.01037i 0.531098 + 0.306630i
\(268\) 8.42864i 0.514861i
\(269\) −9.29137 + 16.0931i −0.566505 + 0.981215i 0.430403 + 0.902637i \(0.358371\pi\)
−0.996908 + 0.0785782i \(0.974962\pi\)
\(270\) −2.03455 5.03508i −0.123819 0.306425i
\(271\) −9.88739 17.1255i −0.600616 1.04030i −0.992728 0.120380i \(-0.961589\pi\)
0.392112 0.919918i \(-0.371745\pi\)
\(272\) 1.31111i 0.0794976i
\(273\) −19.4020 24.3859i −1.17426 1.47590i
\(274\) 14.7906 0.893533
\(275\) −1.29070 5.17485i −0.0778319 0.312055i
\(276\) −2.37778 4.11844i −0.143126 0.247901i
\(277\) 0.177493 + 0.102476i 0.0106645 + 0.00615718i 0.505323 0.862930i \(-0.331373\pi\)
−0.494658 + 0.869088i \(0.664707\pi\)
\(278\) 12.6938i 0.761324i
\(279\) −6.58888 + 11.4123i −0.394466 + 0.683235i
\(280\) 5.37311 6.87786i 0.321105 0.411031i
\(281\) −20.4558 −1.22029 −0.610146 0.792289i \(-0.708889\pi\)
−0.610146 + 0.792289i \(0.708889\pi\)
\(282\) −0.185606 0.107160i −0.0110527 0.00638128i
\(283\) 1.24535 0.719004i 0.0740284 0.0427403i −0.462529 0.886604i \(-0.653058\pi\)
0.536557 + 0.843864i \(0.319725\pi\)
\(284\) −7.73975 13.4056i −0.459270 0.795478i
\(285\) −4.54125 + 32.3225i −0.269000 + 1.91462i
\(286\) 0.568899 + 3.80365i 0.0336397 + 0.224914i
\(287\) 23.2400i 1.37181i
\(288\) 1.64823 0.951606i 0.0971229 0.0560739i
\(289\) −7.64050 13.2337i −0.449441 0.778455i
\(290\) 15.9485 + 12.4593i 0.936531 + 0.731635i
\(291\) −9.43356 −0.553005
\(292\) −13.2957 7.67630i −0.778074 0.449221i
\(293\) 18.1126 + 10.4573i 1.05815 + 0.610922i 0.924919 0.380164i \(-0.124132\pi\)
0.133228 + 0.991085i \(0.457466\pi\)
\(294\) −18.2351 −1.06349
\(295\) 9.88969 12.6593i 0.575800 0.737054i
\(296\) −2.51037 4.34809i −0.145912 0.252728i
\(297\) 2.24350 1.29529i 0.130181 0.0751601i
\(298\) 7.28592i 0.422062i
\(299\) 7.20495 + 2.83716i 0.416673 + 0.164077i
\(300\) 3.05086 10.6430i 0.176141 0.614472i
\(301\) 3.90321 + 6.76056i 0.224977 + 0.389672i
\(302\) −17.4142 + 10.0541i −1.00207 + 0.578547i
\(303\) −2.79738 1.61507i −0.160706 0.0927834i
\(304\) 6.59210 0.378083
\(305\) −10.8577 + 13.8984i −0.621709 + 0.795820i
\(306\) −1.24766 + 2.16101i −0.0713239 + 0.123537i
\(307\) 12.5303i 0.715145i −0.933885 0.357572i \(-0.883605\pi\)
0.933885 0.357572i \(-0.116395\pi\)
\(308\) 3.60567 + 2.08173i 0.205452 + 0.118618i
\(309\) −11.3422 19.6453i −0.645237 1.11758i
\(310\) 14.3548 5.80042i 0.815299 0.329442i
\(311\) −9.78123 −0.554643 −0.277321 0.960777i \(-0.589447\pi\)
−0.277321 + 0.960777i \(0.589447\pi\)
\(312\) −2.92525 + 7.42864i −0.165610 + 0.420564i
\(313\) 17.2128i 0.972924i 0.873702 + 0.486462i \(0.161713\pi\)
−0.873702 + 0.486462i \(0.838287\pi\)
\(314\) −0.992089 1.71835i −0.0559868 0.0969720i
\(315\) −15.4011 + 6.22321i −0.867756 + 0.350638i
\(316\) −2.15087 + 3.72542i −0.120996 + 0.209571i
\(317\) 13.7447i 0.771978i −0.922503 0.385989i \(-0.873860\pi\)
0.922503 0.385989i \(-0.126140\pi\)
\(318\) 2.86750 + 1.65555i 0.160802 + 0.0928389i
\(319\) −4.82717 + 8.36090i −0.270269 + 0.468120i
\(320\) −2.21432 0.311108i −0.123784 0.0173915i
\(321\) 2.45161 4.24631i 0.136835 0.237006i
\(322\) 7.25964 4.19135i 0.404564 0.233575i
\(323\) −7.48502 + 4.32148i −0.416478 + 0.240454i
\(324\) 11.0874 0.615968
\(325\) 6.90220 + 16.6541i 0.382865 + 0.923804i
\(326\) −4.70318 −0.260485
\(327\) −0.255726 + 0.147643i −0.0141417 + 0.00816469i
\(328\) −5.15637 + 2.97703i −0.284713 + 0.164379i
\(329\) 0.188892 0.327171i 0.0104140 0.0180375i
\(330\) 5.23014 + 0.734825i 0.287910 + 0.0404508i
\(331\) −9.69381 + 16.7902i −0.532820 + 0.922872i 0.466445 + 0.884550i \(0.345534\pi\)
−0.999265 + 0.0383216i \(0.987799\pi\)
\(332\) 8.39509 + 4.84691i 0.460740 + 0.266009i
\(333\) 9.55554i 0.523640i
\(334\) −4.84767 + 8.39642i −0.265253 + 0.459431i
\(335\) 17.4743 7.06095i 0.954726 0.385781i
\(336\) 4.32148 + 7.48502i 0.235756 + 0.408341i
\(337\) 0.555539i 0.0302621i −0.999886 0.0151311i \(-0.995183\pi\)
0.999886 0.0151311i \(-0.00481655\pi\)
\(338\) −3.80365 12.4311i −0.206891 0.676163i
\(339\) 31.0005 1.68371
\(340\) 2.71820 1.09836i 0.147415 0.0595668i
\(341\) 3.69281 + 6.39614i 0.199977 + 0.346370i
\(342\) −10.8653 6.27309i −0.587528 0.339210i
\(343\) 4.82071i 0.260294i
\(344\) 1.00000 1.73205i 0.0539164 0.0933859i
\(345\) 6.54645 8.37980i 0.352449 0.451153i
\(346\) 24.0716 1.29410
\(347\) 5.78890 + 3.34222i 0.310764 + 0.179420i 0.647269 0.762262i \(-0.275911\pi\)
−0.336504 + 0.941682i \(0.609245\pi\)
\(348\) −17.3564 + 10.0207i −0.930403 + 0.537168i
\(349\) 5.29137 + 9.16492i 0.283240 + 0.490587i 0.972181 0.234231i \(-0.0752572\pi\)
−0.688941 + 0.724818i \(0.741924\pi\)
\(350\) 18.7605 + 5.37778i 1.00279 + 0.287455i
\(351\) −6.85236 + 5.45188i −0.365752 + 0.291000i
\(352\) 1.06668i 0.0568541i
\(353\) −7.97557 + 4.60470i −0.424497 + 0.245083i −0.696999 0.717072i \(-0.745482\pi\)
0.272503 + 0.962155i \(0.412149\pi\)
\(354\) 7.95407 + 13.7768i 0.422754 + 0.732231i
\(355\) 21.3089 27.2765i 1.13096 1.44768i
\(356\) 4.52543 0.239847
\(357\) −9.81367 5.66593i −0.519395 0.299873i
\(358\) −2.64212 1.52543i −0.139640 0.0806214i
\(359\) 4.19358 0.221328 0.110664 0.993858i \(-0.464702\pi\)
0.110664 + 0.993858i \(0.464702\pi\)
\(360\) 3.35366 + 2.61994i 0.176753 + 0.138083i
\(361\) −12.2279 21.1794i −0.643575 1.11470i
\(362\) −9.21707 + 5.32148i −0.484439 + 0.279691i
\(363\) 21.8381i 1.14620i
\(364\) −13.0946 5.15637i −0.686342 0.270267i
\(365\) 4.77631 33.9956i 0.250004 1.77941i
\(366\) −8.73260 15.1253i −0.456460 0.790613i
\(367\) −12.0970 + 6.98418i −0.631456 + 0.364571i −0.781316 0.624136i \(-0.785451\pi\)
0.149860 + 0.988707i \(0.452118\pi\)
\(368\) −1.85991 1.07382i −0.0969547 0.0559768i
\(369\) 11.3319 0.589913
\(370\) 6.91149 8.84707i 0.359311 0.459937i
\(371\) −2.91827 + 5.05459i −0.151509 + 0.262421i
\(372\) 15.3319i 0.794919i
\(373\) −10.2606 5.92396i −0.531273 0.306731i 0.210262 0.977645i \(-0.432568\pi\)
−0.741535 + 0.670914i \(0.765902\pi\)
\(374\) 0.699264 + 1.21116i 0.0361581 + 0.0626276i
\(375\) 24.6209 2.59089i 1.27142 0.133793i
\(376\) −0.0967881 −0.00499146
\(377\) 11.9567 30.3640i 0.615802 1.56382i
\(378\) 9.47949i 0.487573i
\(379\) 0.303197 + 0.525153i 0.0155742 + 0.0269753i 0.873707 0.486452i \(-0.161709\pi\)
−0.858133 + 0.513427i \(0.828376\pi\)
\(380\) 5.52242 + 13.6668i 0.283294 + 0.701093i
\(381\) −11.0612 + 19.1586i −0.566684 + 0.981525i
\(382\) 14.7304i 0.753672i
\(383\) 30.1201 + 17.3899i 1.53907 + 0.888580i 0.998894 + 0.0470252i \(0.0149741\pi\)
0.540172 + 0.841555i \(0.318359\pi\)
\(384\) 1.10716 1.91766i 0.0564995 0.0978600i
\(385\) −1.29529 + 9.21924i −0.0660139 + 0.469856i
\(386\) 7.00000 12.1244i 0.356291 0.617113i
\(387\) −3.29646 + 1.90321i −0.167568 + 0.0967457i
\(388\) −3.68949 + 2.13013i −0.187305 + 0.108141i
\(389\) 18.6844 0.947339 0.473670 0.880703i \(-0.342929\pi\)
0.473670 + 0.880703i \(0.342929\pi\)
\(390\) −17.8517 + 0.158559i −0.903957 + 0.00802894i
\(391\) 2.81579 0.142401
\(392\) −7.13177 + 4.11753i −0.360209 + 0.207967i
\(393\) 17.7495 10.2477i 0.895342 0.516926i
\(394\) −5.20641 + 9.01776i −0.262295 + 0.454308i
\(395\) −9.52543 1.33830i −0.479276 0.0673374i
\(396\) −1.01506 + 1.75813i −0.0510085 + 0.0883493i
\(397\) 19.8968 + 11.4874i 0.998590 + 0.576536i 0.907831 0.419337i \(-0.137737\pi\)
0.0907594 + 0.995873i \(0.471071\pi\)
\(398\) 4.36842i 0.218969i
\(399\) 28.4876 49.3420i 1.42617 2.47019i
\(400\) −1.21002 4.85138i −0.0605008 0.242569i
\(401\) 2.18667 + 3.78742i 0.109197 + 0.189135i 0.915445 0.402443i \(-0.131839\pi\)
−0.806248 + 0.591577i \(0.798505\pi\)
\(402\) 18.6637i 0.930861i
\(403\) −15.5431 19.5358i −0.774256 0.973147i
\(404\) −1.45875 −0.0725756
\(405\) 9.28829 + 22.9866i 0.461539 + 1.14221i
\(406\) −17.6637 30.5944i −0.876635 1.51838i
\(407\) 4.63801 + 2.67775i 0.229897 + 0.132731i
\(408\) 2.90321i 0.143730i
\(409\) −1.88493 + 3.26479i −0.0932038 + 0.161434i −0.908858 0.417107i \(-0.863044\pi\)
0.815654 + 0.578540i \(0.196377\pi\)
\(410\) −10.4917 8.19629i −0.518147 0.404786i
\(411\) −32.7511 −1.61549
\(412\) −8.87194 5.12222i −0.437089 0.252353i
\(413\) −24.2846 + 14.0207i −1.19497 + 0.689916i
\(414\) 2.04371 + 3.53981i 0.100443 + 0.173972i
\(415\) −3.01582 + 21.4652i −0.148041 + 1.05369i
\(416\) 0.533338 + 3.56589i 0.0261491 + 0.174832i
\(417\) 28.1082i 1.37646i
\(418\) −6.08958 + 3.51582i −0.297851 + 0.171964i
\(419\) 3.72615 + 6.45388i 0.182034 + 0.315293i 0.942573 0.334000i \(-0.108398\pi\)
−0.760539 + 0.649292i \(0.775065\pi\)
\(420\) −11.8978 + 15.2298i −0.580553 + 0.743137i
\(421\) 27.6751 1.34880 0.674400 0.738366i \(-0.264402\pi\)
0.674400 + 0.738366i \(0.264402\pi\)
\(422\) 4.75908 + 2.74766i 0.231669 + 0.133754i
\(423\) 0.159529 + 0.0921041i 0.00775657 + 0.00447825i
\(424\) 1.49532 0.0726190
\(425\) 4.55425 + 4.71528i 0.220914 + 0.228725i
\(426\) 17.1383 + 29.6844i 0.830352 + 1.43821i
\(427\) 26.6616 15.3931i 1.29024 0.744923i
\(428\) 2.21432i 0.107033i
\(429\) −1.25973 8.42249i −0.0608201 0.406642i
\(430\) 4.42864 + 0.622216i 0.213568 + 0.0300059i
\(431\) −9.84468 17.0515i −0.474202 0.821342i 0.525362 0.850879i \(-0.323930\pi\)
−0.999564 + 0.0295373i \(0.990597\pi\)
\(432\) 2.10326 1.21432i 0.101193 0.0584240i
\(433\) 11.9046 + 6.87310i 0.572097 + 0.330300i 0.757986 0.652270i \(-0.226183\pi\)
−0.185890 + 0.982571i \(0.559517\pi\)
\(434\) −27.0257 −1.29727
\(435\) −35.3152 27.5889i −1.69323 1.32278i
\(436\) −0.0666765 + 0.115487i −0.00319323 + 0.00553083i
\(437\) 14.1575i 0.677244i
\(438\) 29.4410 + 16.9978i 1.40675 + 0.812185i
\(439\) 20.9114 + 36.2195i 0.998045 + 1.72866i 0.553151 + 0.833081i \(0.313425\pi\)
0.444894 + 0.895583i \(0.353242\pi\)
\(440\) 2.21145 0.893590i 0.105427 0.0426002i
\(441\) 15.6731 0.746337
\(442\) −2.94321 3.69926i −0.139994 0.175956i
\(443\) 23.6829i 1.12521i −0.826726 0.562605i \(-0.809799\pi\)
0.826726 0.562605i \(-0.190201\pi\)
\(444\) 5.55877 + 9.62806i 0.263807 + 0.456928i
\(445\) 3.79110 + 9.38217i 0.179715 + 0.444757i
\(446\) 10.0484 17.4043i 0.475805 0.824119i
\(447\) 16.1334i 0.763081i
\(448\) 3.38028 + 1.95161i 0.159703 + 0.0922047i
\(449\) 3.52789 6.11048i 0.166491 0.288371i −0.770693 0.637207i \(-0.780090\pi\)
0.937184 + 0.348836i \(0.113423\pi\)
\(450\) −2.62222 + 9.14764i −0.123612 + 0.431224i
\(451\) 3.17553 5.50018i 0.149530 0.258993i
\(452\) 12.1244 7.00000i 0.570282 0.329252i
\(453\) 38.5606 22.2630i 1.81173 1.04600i
\(454\) −19.3590 −0.908565
\(455\) −0.279494 31.4675i −0.0131029 1.47522i
\(456\) −14.5970 −0.683568
\(457\) 30.8994 17.8398i 1.44541 0.834509i 0.447209 0.894430i \(-0.352418\pi\)
0.998203 + 0.0599208i \(0.0190848\pi\)
\(458\) 13.6186 7.86273i 0.636358 0.367401i
\(459\) −1.59210 + 2.75761i −0.0743131 + 0.128714i
\(460\) 0.668149 4.75557i 0.0311526 0.221730i
\(461\) 7.30074 12.6452i 0.340029 0.588948i −0.644409 0.764681i \(-0.722896\pi\)
0.984438 + 0.175734i \(0.0562297\pi\)
\(462\) −7.98410 4.60962i −0.371454 0.214459i
\(463\) 30.7511i 1.42913i 0.699571 + 0.714563i \(0.253374\pi\)
−0.699571 + 0.714563i \(0.746626\pi\)
\(464\) −4.52543 + 7.83827i −0.210088 + 0.363883i
\(465\) −31.7862 + 12.8440i −1.47405 + 0.595626i
\(466\) 7.44123 + 12.8886i 0.344709 + 0.597053i
\(467\) 20.5620i 0.951496i 0.879582 + 0.475748i \(0.157822\pi\)
−0.879582 + 0.475748i \(0.842178\pi\)
\(468\) 2.51426 6.38493i 0.116221 0.295143i
\(469\) −32.8988 −1.51912
\(470\) −0.0810825 0.200662i −0.00374006 0.00925585i
\(471\) 2.19680 + 3.80497i 0.101223 + 0.175324i
\(472\) 6.22171 + 3.59210i 0.286377 + 0.165340i
\(473\) 2.13335i 0.0980917i
\(474\) 4.76271 8.24926i 0.218759 0.378901i
\(475\) −23.7079 + 22.8983i −1.08779 + 1.05065i
\(476\) −5.11753 −0.234562
\(477\) −2.46462 1.42295i −0.112847 0.0651525i
\(478\) 3.82973 2.21109i 0.175168 0.101133i
\(479\) 5.96666 + 10.3346i 0.272624 + 0.472198i 0.969533 0.244961i \(-0.0787753\pi\)
−0.696909 + 0.717159i \(0.745442\pi\)
\(480\) 4.90321 + 0.688892i 0.223800 + 0.0314435i
\(481\) −16.8437 6.63270i −0.768006 0.302425i
\(482\) 11.2810i 0.513835i
\(483\) −16.0752 + 9.28100i −0.731445 + 0.422300i
\(484\) −4.93110 8.54092i −0.224141 0.388223i
\(485\) −7.50701 5.86461i −0.340876 0.266298i
\(486\) −17.2652 −0.783164
\(487\) −24.2244 13.9859i −1.09771 0.633764i −0.162092 0.986776i \(-0.551824\pi\)
−0.935619 + 0.353012i \(0.885158\pi\)
\(488\) −6.83068 3.94370i −0.309210 0.178523i
\(489\) 10.4143 0.470953
\(490\) −14.5110 11.3363i −0.655542 0.512121i
\(491\) 10.3906 + 17.9971i 0.468922 + 0.812197i 0.999369 0.0355214i \(-0.0113092\pi\)
−0.530447 + 0.847718i \(0.677976\pi\)
\(492\) 11.4179 6.59210i 0.514757 0.297195i
\(493\) 11.8666i 0.534447i
\(494\) 18.5995 14.7981i 0.836830 0.665800i
\(495\) −4.49532 0.631584i −0.202049 0.0283876i
\(496\) 3.46198 + 5.99632i 0.155447 + 0.269243i
\(497\) −52.3250 + 30.2099i −2.34710 + 1.35510i
\(498\) −18.5894 10.7326i −0.833011 0.480939i
\(499\) −34.2908 −1.53507 −0.767534 0.641008i \(-0.778517\pi\)
−0.767534 + 0.641008i \(0.778517\pi\)
\(500\) 9.04426 6.57277i 0.404472 0.293943i
\(501\) 10.7343 18.5923i 0.479573 0.830645i
\(502\) 2.65233i 0.118379i
\(503\) 17.5160 + 10.1128i 0.780998 + 0.450910i 0.836784 0.547533i \(-0.184433\pi\)
−0.0557857 + 0.998443i \(0.517766\pi\)
\(504\) −3.71432 6.43339i −0.165449 0.286566i
\(505\) −1.22204 3.02430i −0.0543802 0.134580i
\(506\) 2.29084 0.101840
\(507\) 8.42249 + 27.5264i 0.374056 + 1.22249i
\(508\) 9.99063i 0.443263i
\(509\) −13.6889 23.7099i −0.606749 1.05092i −0.991772 0.128014i \(-0.959140\pi\)
0.385023 0.922907i \(-0.374194\pi\)
\(510\) −6.01897 + 2.43212i −0.266525 + 0.107696i
\(511\) −29.9622 + 51.8961i −1.32545 + 2.29575i
\(512\) 1.00000i 0.0441942i
\(513\) −13.8649 8.00492i −0.612152 0.353426i
\(514\) 2.05086 3.55219i 0.0904593 0.156680i
\(515\) 3.18712 22.6844i 0.140441 0.999596i
\(516\) −2.21432 + 3.83531i −0.0974800 + 0.168840i
\(517\) 0.0894098 0.0516208i 0.00393224 0.00227028i
\(518\) −16.9715 + 9.79851i −0.745686 + 0.430522i
\(519\) −53.3022 −2.33971
\(520\) −6.94604 + 4.09298i −0.304604 + 0.179489i
\(521\) −31.2034 −1.36705 −0.683523 0.729929i \(-0.739553\pi\)
−0.683523 + 0.729929i \(0.739553\pi\)
\(522\) 14.9179 8.61285i 0.652938 0.376974i
\(523\) −8.52854 + 4.92396i −0.372927 + 0.215310i −0.674736 0.738059i \(-0.735743\pi\)
0.301809 + 0.953368i \(0.402409\pi\)
\(524\) 4.62790 8.01576i 0.202171 0.350170i
\(525\) −41.5417 11.9081i −1.81303 0.519714i
\(526\) 5.40099 9.35479i 0.235494 0.407888i
\(527\) −7.86182 4.53903i −0.342466 0.197723i
\(528\) 2.36196i 0.102791i
\(529\) −9.19381 + 15.9242i −0.399731 + 0.692355i
\(530\) 1.25267 + 3.10011i 0.0544127 + 0.134660i
\(531\) −6.83654 11.8412i −0.296680 0.513865i
\(532\) 25.7304i 1.11555i
\(533\) −7.86567 + 19.9748i −0.340700 + 0.865205i
\(534\) −10.0207 −0.433640
\(535\) 4.59075 1.85501i 0.198476 0.0801990i
\(536\) 4.21432 + 7.29942i 0.182031 + 0.315287i
\(537\) 5.85049 + 3.37778i 0.252467 + 0.145762i
\(538\) 18.5827i 0.801159i
\(539\) 4.39207 7.60730i 0.189180 0.327669i
\(540\) 4.27951 + 3.34323i 0.184161 + 0.143870i
\(541\) 41.6149 1.78916 0.894581 0.446905i \(-0.147474\pi\)
0.894581 + 0.446905i \(0.147474\pi\)
\(542\) 17.1255 + 9.88739i 0.735602 + 0.424700i
\(543\) 20.4095 11.7835i 0.875857 0.505677i
\(544\) 0.655554 + 1.13545i 0.0281066 + 0.0486821i
\(545\) −0.295286 0.0414872i −0.0126487 0.00177712i
\(546\) 28.9956 + 11.4179i 1.24090 + 0.488639i
\(547\) 6.77430i 0.289648i −0.989457 0.144824i \(-0.953738\pi\)
0.989457 0.144824i \(-0.0462617\pi\)
\(548\) −12.8090 + 7.39530i −0.547175 + 0.315912i
\(549\) 7.50569 + 13.0002i 0.320335 + 0.554836i
\(550\) 3.70520 + 3.83620i 0.157990 + 0.163576i
\(551\) 59.6642 2.54178
\(552\) 4.11844 + 2.37778i 0.175293 + 0.101205i
\(553\) 14.5411 + 8.39530i 0.618350 + 0.357005i
\(554\) −0.204952 −0.00870757
\(555\) −15.3043 + 19.5902i −0.649629 + 0.831559i
\(556\) 6.34691 + 10.9932i 0.269169 + 0.466214i
\(557\) −22.0360 + 12.7225i −0.933694 + 0.539068i −0.887978 0.459886i \(-0.847890\pi\)
−0.0457158 + 0.998954i \(0.514557\pi\)
\(558\) 13.1778i 0.557859i
\(559\) −1.06668 7.13177i −0.0451156 0.301642i
\(560\) −1.21432 + 8.64296i −0.0513144 + 0.365232i
\(561\) −1.54839 2.68190i −0.0653732 0.113230i
\(562\) 17.7153 10.2279i 0.747274 0.431439i
\(563\) −11.4179 6.59210i −0.481205 0.277824i 0.239713 0.970844i \(-0.422947\pi\)
−0.720919 + 0.693020i \(0.756280\pi\)
\(564\) 0.214320 0.00902449
\(565\) 24.6694 + 19.2722i 1.03785 + 0.810788i
\(566\) −0.719004 + 1.24535i −0.0302220 + 0.0523460i
\(567\) 43.2766i 1.81744i
\(568\) 13.4056 + 7.73975i 0.562488 + 0.324753i
\(569\) −12.2304 21.1836i −0.512724 0.888064i −0.999891 0.0147555i \(-0.995303\pi\)
0.487167 0.873309i \(-0.338030\pi\)
\(570\) −12.2284 30.2627i −0.512192 1.26757i
\(571\) 24.3526 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(572\) −2.39451 3.00961i −0.100119 0.125838i
\(573\) 32.6178i 1.36263i
\(574\) 11.6200 + 20.1264i 0.485009 + 0.840060i
\(575\) 10.4190 2.59868i 0.434503 0.108373i
\(576\) −0.951606 + 1.64823i −0.0396502 + 0.0686762i
\(577\) 42.0479i 1.75048i 0.483690 + 0.875239i \(0.339296\pi\)
−0.483690 + 0.875239i \(0.660704\pi\)
\(578\) 13.2337 + 7.64050i 0.550451 + 0.317803i
\(579\) −15.5002 + 26.8472i −0.644168 + 1.11573i
\(580\) −20.0415 2.81579i −0.832177 0.116919i
\(581\) 18.9185 32.7678i 0.784872 1.35944i
\(582\) 8.16970 4.71678i 0.338645 0.195517i
\(583\) −1.38133 + 0.797509i −0.0572087 + 0.0330295i
\(584\) 15.3526 0.635295
\(585\) 15.3436 0.136282i 0.634379 0.00563455i
\(586\) −20.9146 −0.863974
\(587\) 6.36195 3.67307i 0.262586 0.151604i −0.362928 0.931817i \(-0.618223\pi\)
0.625513 + 0.780213i \(0.284890\pi\)
\(588\) 15.7920 9.11753i 0.651252 0.376001i
\(589\) 22.8217 39.5284i 0.940353 1.62874i
\(590\) −2.23506 + 15.9081i −0.0920161 + 0.654928i
\(591\) 11.5287 19.9682i 0.474225 0.821383i
\(592\) 4.34809 + 2.51037i 0.178705 + 0.103176i
\(593\) 4.19358i 0.172210i 0.996286 + 0.0861048i \(0.0274420\pi\)
−0.996286 + 0.0861048i \(0.972558\pi\)
\(594\) −1.29529 + 2.24350i −0.0531462 + 0.0920520i
\(595\) −4.28712 10.6097i −0.175755 0.434956i
\(596\) −3.64296 6.30979i −0.149221 0.258459i
\(597\) 9.67307i 0.395892i
\(598\) −7.65825 + 1.14542i −0.313169 + 0.0468397i
\(599\) −9.33630 −0.381471 −0.190735 0.981641i \(-0.561087\pi\)
−0.190735 + 0.981641i \(0.561087\pi\)
\(600\) 2.67936 + 10.7425i 0.109384 + 0.438561i
\(601\) 1.48571 + 2.57333i 0.0606034 + 0.104968i 0.894735 0.446597i \(-0.147364\pi\)
−0.834132 + 0.551565i \(0.814031\pi\)
\(602\) −6.76056 3.90321i −0.275540 0.159083i
\(603\) 16.0415i 0.653260i
\(604\) 10.0541 17.4142i 0.409095 0.708573i
\(605\) 13.5762 17.3782i 0.551950 0.706525i
\(606\) 3.23014 0.131216
\(607\) −14.8464 8.57160i −0.602599 0.347910i 0.167465 0.985878i \(-0.446442\pi\)
−0.770063 + 0.637968i \(0.779775\pi\)
\(608\) −5.70893 + 3.29605i −0.231528 + 0.133673i
\(609\) 39.1131 + 67.7459i 1.58494 + 2.74520i
\(610\) 2.45383 17.4652i 0.0993526 0.707145i
\(611\) −0.273086 + 0.217273i −0.0110479 + 0.00878991i
\(612\) 2.49532i 0.100867i
\(613\) −25.3610 + 14.6422i −1.02432 + 0.591393i −0.915353 0.402653i \(-0.868088\pi\)
−0.108969 + 0.994045i \(0.534755\pi\)
\(614\) 6.26517 + 10.8516i 0.252842 + 0.437935i
\(615\) 23.2319 + 18.1492i 0.936802 + 0.731847i
\(616\) −4.16346 −0.167751
\(617\) −11.4453 6.60793i −0.460769 0.266025i 0.251599 0.967832i \(-0.419044\pi\)
−0.712368 + 0.701807i \(0.752377\pi\)
\(618\) 19.6453 + 11.3422i 0.790250 + 0.456251i
\(619\) 18.9333 0.760995 0.380497 0.924782i \(-0.375753\pi\)
0.380497 + 0.924782i \(0.375753\pi\)
\(620\) −9.53143 + 12.2007i −0.382791 + 0.489993i
\(621\) 2.60793 + 4.51706i 0.104652 + 0.181263i
\(622\) 8.47080 4.89062i 0.339648 0.196096i
\(623\) 17.6637i 0.707681i
\(624\) −1.18098 7.89601i −0.0472771 0.316094i
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) −8.60639 14.9067i −0.343981 0.595792i
\(627\) 13.4843 7.78515i 0.538510 0.310909i
\(628\) 1.71835 + 0.992089i 0.0685696 + 0.0395887i
\(629\) −6.58274 −0.262471
\(630\) 10.2262 13.0900i 0.407420 0.521519i
\(631\) −1.21432 + 2.10326i −0.0483413 + 0.0837296i −0.889184 0.457551i \(-0.848727\pi\)
0.840842 + 0.541280i \(0.182060\pi\)
\(632\) 4.30174i 0.171114i
\(633\) −10.5381 6.08419i −0.418853 0.241825i
\(634\) 6.87233 + 11.9032i 0.272935 + 0.472738i
\(635\) −20.7127 + 8.36948i −0.821958 + 0.332133i
\(636\) −3.31111 −0.131294
\(637\) −10.8790 + 27.6271i −0.431042 + 1.09463i
\(638\) 9.65433i 0.382219i
\(639\) −14.7304 25.5138i −0.582725 1.00931i
\(640\) 2.07321 0.837733i 0.0819509 0.0331143i
\(641\) −7.54371 + 13.0661i −0.297959 + 0.516079i −0.975669 0.219250i \(-0.929639\pi\)
0.677710 + 0.735329i \(0.262972\pi\)
\(642\) 4.90321i 0.193514i
\(643\) 5.80513 + 3.35159i 0.228932 + 0.132174i 0.610079 0.792340i \(-0.291138\pi\)
−0.381147 + 0.924514i \(0.624471\pi\)
\(644\) −4.19135 + 7.25964i −0.165162 + 0.286070i
\(645\) −9.80642 1.37778i −0.386128 0.0542502i
\(646\) 4.32148 7.48502i 0.170026 0.294494i
\(647\) −19.3759 + 11.1867i −0.761744 + 0.439793i −0.829922 0.557880i \(-0.811615\pi\)
0.0681773 + 0.997673i \(0.478282\pi\)
\(648\) −9.60199 + 5.54371i −0.377202 + 0.217777i
\(649\) −7.66323 −0.300808
\(650\) −14.3045 10.9718i −0.561070 0.430349i
\(651\) 59.8435 2.34545
\(652\) 4.07308 2.35159i 0.159514 0.0920954i
\(653\) 14.2139 8.20641i 0.556234 0.321142i −0.195399 0.980724i \(-0.562600\pi\)
0.751632 + 0.659582i \(0.229267\pi\)
\(654\) 0.147643 0.255726i 0.00577331 0.00999966i
\(655\) 20.4953 + 2.87955i 0.800818 + 0.112513i
\(656\) 2.97703 5.15637i 0.116234 0.201323i
\(657\) −25.3046 14.6096i −0.987227 0.569976i
\(658\) 0.377784i 0.0147276i
\(659\) 4.33407 7.50684i 0.168832 0.292425i −0.769178 0.639035i \(-0.779334\pi\)
0.938009 + 0.346610i \(0.112667\pi\)
\(660\) −4.89685 + 1.97869i −0.190610 + 0.0770205i
\(661\) −8.71509 15.0950i −0.338978 0.587126i 0.645263 0.763960i \(-0.276748\pi\)
−0.984241 + 0.176834i \(0.943414\pi\)
\(662\) 19.3876i 0.753522i
\(663\) 6.51721 + 8.19135i 0.253108 + 0.318126i
\(664\) −9.69381 −0.376193
\(665\) 53.3445 21.5552i 2.06861 0.835874i
\(666\) −4.77777 8.27534i −0.185135 0.320663i
\(667\) −16.8338 9.71900i −0.651808 0.376321i
\(668\) 9.69535i 0.375124i
\(669\) −22.2504 + 38.5387i −0.860249 + 1.48999i
\(670\) −11.6028 + 14.8521i −0.448254 + 0.573788i
\(671\) 8.41329 0.324792
\(672\) −7.48502 4.32148i −0.288741 0.166705i
\(673\) 35.0593 20.2415i 1.35144 0.780253i 0.362987 0.931794i \(-0.381757\pi\)
0.988451 + 0.151541i \(0.0484236\pi\)
\(674\) 0.277770 + 0.481111i 0.0106993 + 0.0185317i
\(675\) −3.34614 + 11.6731i −0.128793 + 0.449297i
\(676\) 9.50961 + 8.86382i 0.365754 + 0.340916i
\(677\) 40.0228i 1.53820i −0.639129 0.769100i \(-0.720705\pi\)
0.639129 0.769100i \(-0.279295\pi\)
\(678\) −26.8472 + 15.5002i −1.03106 + 0.595283i
\(679\) 8.31433 + 14.4008i 0.319075 + 0.552654i
\(680\) −1.80485 + 2.31031i −0.0692130 + 0.0885962i
\(681\) 42.8671 1.64267
\(682\) −6.39614 3.69281i −0.244921 0.141405i
\(683\) −37.5064 21.6543i −1.43514 0.828580i −0.437636 0.899152i \(-0.644184\pi\)
−0.997507 + 0.0705721i \(0.977518\pi\)
\(684\) 12.5462 0.479715
\(685\) −26.0626 20.3606i −0.995800 0.777937i
\(686\) 2.41036 + 4.17486i 0.0920279 + 0.159397i
\(687\) −30.1560 + 17.4106i −1.15052 + 0.664256i
\(688\) 2.00000i 0.0762493i
\(689\) 4.21900 3.35673i 0.160731 0.127881i
\(690\) −1.47949 + 10.5303i −0.0563234 + 0.400884i
\(691\) −14.1741 24.5502i −0.539207 0.933934i −0.998947 0.0458806i \(-0.985391\pi\)
0.459740 0.888054i \(-0.347943\pi\)
\(692\) −20.8466 + 12.0358i −0.792469 + 0.457532i
\(693\) 6.86235 + 3.96198i 0.260679 + 0.150503i
\(694\) −6.68445 −0.253738
\(695\) −17.4741 + 22.3678i −0.662832 + 0.848459i
\(696\) 10.0207 17.3564i 0.379835 0.657894i
\(697\) 7.80642i 0.295689i
\(698\) −9.16492 5.29137i −0.346897 0.200281i
\(699\) −16.4773 28.5395i −0.623228 1.07946i
\(700\) −18.9360 + 4.72295i −0.715712 + 0.178511i
\(701\) 12.8080 0.483750 0.241875 0.970307i \(-0.422238\pi\)
0.241875 + 0.970307i \(0.422238\pi\)
\(702\) 3.20838 8.14764i 0.121092 0.307513i
\(703\) 33.0973i 1.24829i
\(704\) 0.533338 + 0.923769i 0.0201009 + 0.0348159i
\(705\) 0.179543 + 0.444330i 0.00676197 + 0.0167344i
\(706\) 4.60470 7.97557i 0.173300 0.300165i
\(707\) 5.69381i 0.214138i
\(708\) −13.7768 7.95407i −0.517766 0.298932i
\(709\) 1.26126 2.18456i 0.0473675 0.0820429i −0.841370 0.540460i \(-0.818250\pi\)
0.888737 + 0.458417i \(0.151583\pi\)
\(710\) −4.81579 + 34.2766i −0.180733 + 1.28638i
\(711\) −4.09356 + 7.09026i −0.153521 + 0.265905i
\(712\) −3.91914 + 2.26271i −0.146876 + 0.0847988i
\(713\) −12.8780 + 7.43509i −0.482283 + 0.278446i
\(714\) 11.3319 0.424084
\(715\) 4.23359 7.48556i 0.158327 0.279944i
\(716\) 3.05086 0.114016
\(717\) −8.48024 + 4.89607i −0.316700 + 0.182847i
\(718\) −3.63174 + 2.09679i −0.135535 + 0.0782514i
\(719\) 8.51114 14.7417i 0.317412 0.549773i −0.662535 0.749031i \(-0.730520\pi\)
0.979947 + 0.199257i \(0.0638529\pi\)
\(720\) −4.21432 0.592104i −0.157058 0.0220664i
\(721\) −19.9931 + 34.6291i −0.744582 + 1.28965i
\(722\) 21.1794 + 12.2279i 0.788215 + 0.455076i
\(723\) 24.9797i 0.929006i
\(724\) 5.32148 9.21707i 0.197771 0.342550i
\(725\) −10.9517 43.9091i −0.406735 1.63074i
\(726\) 10.9190 + 18.9123i 0.405243 + 0.701902i
\(727\) 30.5353i 1.13249i 0.824237 + 0.566245i \(0.191605\pi\)
−0.824237 + 0.566245i \(0.808395\pi\)
\(728\) 13.9184 2.08173i 0.515851 0.0771541i
\(729\) 4.96836 0.184013
\(730\) 12.8614 + 31.8292i 0.476021 + 1.17805i
\(731\) −1.31111 2.27091i −0.0484931 0.0839925i
\(732\) 15.1253 + 8.73260i 0.559048 + 0.322766i
\(733\) 24.4499i 0.903076i 0.892252 + 0.451538i \(0.149124\pi\)
−0.892252 + 0.451538i \(0.850876\pi\)
\(734\) 6.98418 12.0970i 0.257791 0.446507i
\(735\) 32.1321 + 25.1022i 1.18521 + 0.925907i
\(736\) 2.14764 0.0791632
\(737\) −7.78612 4.49532i −0.286805 0.165587i
\(738\) −9.81367 + 5.66593i −0.361246 + 0.208566i
\(739\) −5.39776 9.34920i −0.198560 0.343916i 0.749502 0.662002i \(-0.230293\pi\)
−0.948062 + 0.318086i \(0.896960\pi\)
\(740\) −1.56199 + 11.1175i −0.0574200 + 0.408689i
\(741\) −41.1852 + 32.7678i −1.51298 + 1.20376i
\(742\) 5.83654i 0.214266i
\(743\) 25.9248 14.9677i 0.951087 0.549110i 0.0576686 0.998336i \(-0.481633\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(744\) −7.66593 13.2778i −0.281046 0.486787i
\(745\) 10.0297 12.8385i 0.367460 0.470368i
\(746\) 11.8479 0.433783
\(747\) 15.9776 + 9.22469i 0.584591 + 0.337514i
\(748\) −1.21116 0.699264i −0.0442844 0.0255676i
\(749\) −8.64296 −0.315807
\(750\) −20.0269 + 14.5542i −0.731278 + 0.531445i
\(751\) −13.4588 23.3112i −0.491117 0.850639i 0.508831 0.860866i \(-0.330078\pi\)
−0.999948 + 0.0102272i \(0.996745\pi\)
\(752\) 0.0838209 0.0483940i 0.00305663 0.00176475i
\(753\) 5.87310i 0.214028i
\(754\) 4.82717 + 32.2743i 0.175795 + 1.17536i
\(755\) 44.5259 + 6.25581i 1.62046 + 0.227672i
\(756\) −4.73975 8.20948i −0.172383 0.298576i
\(757\) 31.0960 17.9533i 1.13020 0.652524i 0.186218 0.982508i \(-0.440377\pi\)
0.943986 + 0.329985i \(0.107044\pi\)
\(758\) −0.525153 0.303197i −0.0190744 0.0110126i
\(759\) −5.07265 −0.184126
\(760\) −11.6160 9.07461i −0.421355 0.329171i
\(761\) −11.2699 + 19.5200i −0.408532 + 0.707598i −0.994725 0.102573i \(-0.967293\pi\)
0.586193 + 0.810171i \(0.300626\pi\)
\(762\) 22.1225i 0.801412i
\(763\) 0.450771 + 0.260253i 0.0163190 + 0.00942178i
\(764\) 7.36519 + 12.7569i 0.266463 + 0.461528i
\(765\) 5.17332 2.09041i 0.187042 0.0755788i
\(766\) −34.7797 −1.25664
\(767\) 25.6181 3.83161i 0.925015 0.138352i
\(768\) 2.21432i 0.0799024i
\(769\) 1.23729 + 2.14304i 0.0446177 + 0.0772801i 0.887472 0.460862i \(-0.152460\pi\)
−0.842854 + 0.538142i \(0.819126\pi\)
\(770\) −3.48787 8.63174i −0.125694 0.311066i
\(771\) −4.54125 + 7.86567i −0.163549 + 0.283275i
\(772\) 14.0000i 0.503871i
\(773\) 38.2788 + 22.1003i 1.37679 + 0.794891i 0.991772 0.128018i \(-0.0408614\pi\)
0.385019 + 0.922908i \(0.374195\pi\)
\(774\) 1.90321 3.29646i 0.0684095 0.118489i
\(775\) −33.2795 9.53972i −1.19543 0.342677i
\(776\) 2.13013 3.68949i 0.0764671 0.132445i
\(777\) 37.5804 21.6970i 1.34819 0.778377i
\(778\) −16.1812 + 9.34222i −0.580124 + 0.334935i
\(779\) −39.2498 −1.40627
\(780\) 15.3808 9.06317i 0.550719 0.324514i
\(781\) −16.5116 −0.590832
\(782\) −2.43855 + 1.40790i −0.0872023 + 0.0503463i
\(783\) 19.0363 10.9906i 0.680303 0.392773i
\(784\) 4.11753 7.13177i 0.147055 0.254706i
\(785\) −0.617293 + 4.39361i −0.0220321 + 0.156815i
\(786\) −10.2477 + 17.7495i −0.365522 + 0.633102i
\(787\) 29.4714 + 17.0153i 1.05054 + 0.606530i 0.922801 0.385278i \(-0.125894\pi\)
0.127740 + 0.991808i \(0.459228\pi\)
\(788\) 10.4128i 0.370941i
\(789\) −11.9595 + 20.7145i −0.425770 + 0.737455i
\(790\) 8.91841 3.60371i 0.317303 0.128214i
\(791\) −27.3225 47.3239i −0.971476 1.68265i
\(792\) 2.03011i 0.0721369i
\(793\) −28.1255 + 4.20665i −0.998767 + 0.149382i
\(794\) −22.9748 −0.815346
\(795\) −2.77382 6.86463i −0.0983774 0.243463i
\(796\) 2.18421 + 3.78316i 0.0774172 + 0.134091i
\(797\) 7.04754 + 4.06890i 0.249637 + 0.144128i 0.619598 0.784919i \(-0.287296\pi\)
−0.369961 + 0.929047i \(0.620629\pi\)
\(798\) 56.9753i 2.01690i
\(799\) −0.0634498 + 0.109898i −0.00224469 + 0.00388792i
\(800\) 3.47359 + 3.59641i 0.122810 + 0.127152i
\(801\) 8.61285 0.304320
\(802\) −3.78742 2.18667i −0.133739 0.0772140i
\(803\) −14.1823 + 8.18813i −0.500481 + 0.288953i
\(804\) −9.33185 16.1632i −0.329109 0.570034i
\(805\) −18.5620 2.60793i −0.654224 0.0919173i
\(806\) 23.2286 + 9.14695i 0.818193 + 0.322188i
\(807\) 41.1481i 1.44848i
\(808\) 1.26332 0.729376i 0.0444433 0.0256593i
\(809\) −3.92618 6.80034i −0.138037 0.239087i 0.788716 0.614757i \(-0.210746\pi\)
−0.926754 + 0.375670i \(0.877413\pi\)
\(810\) −19.5372 15.2628i −0.686466 0.536280i
\(811\) 9.33477 0.327788 0.163894 0.986478i \(-0.447595\pi\)
0.163894 + 0.986478i \(0.447595\pi\)
\(812\) 30.5944 + 17.6637i 1.07365 + 0.619874i
\(813\) −37.9213 21.8938i −1.32996 0.767851i
\(814\) −5.35551 −0.187711
\(815\) 8.28749 + 6.47434i 0.290298 + 0.226786i
\(816\) −1.45161 2.51426i −0.0508164 0.0880165i
\(817\) 11.4179 6.59210i 0.399460 0.230629i
\(818\) 3.76986i 0.131810i
\(819\) −24.9217 9.81367i −0.870836 0.342917i
\(820\) 13.1842 + 1.85236i 0.460413 + 0.0646871i
\(821\) 23.7659 + 41.1638i 0.829437 + 1.43663i 0.898480 + 0.439013i \(0.144672\pi\)
−0.0690434 + 0.997614i \(0.521995\pi\)
\(822\) 28.3633 16.3756i 0.989284 0.571163i
\(823\) 1.20131 + 0.693576i 0.0418750 + 0.0241765i 0.520791 0.853684i \(-0.325637\pi\)
−0.478916 + 0.877861i \(0.658970\pi\)
\(824\) 10.2444 0.356882
\(825\) −8.20450 8.49458i −0.285644 0.295743i
\(826\) 14.0207 24.2846i 0.487844 0.844971i
\(827\) 31.5131i 1.09582i 0.836537 + 0.547910i \(0.184576\pi\)
−0.836537 + 0.547910i \(0.815424\pi\)
\(828\) −3.53981 2.04371i −0.123017 0.0710238i
\(829\) −14.4128 24.9637i −0.500578 0.867026i −1.00000 0.000667386i \(-0.999788\pi\)
0.499422 0.866359i \(-0.333546\pi\)
\(830\) −8.12082 20.0973i −0.281878 0.697588i
\(831\) 0.453829 0.0157431
\(832\) −2.24483 2.82148i −0.0778254 0.0978172i
\(833\) 10.7971i 0.374096i
\(834\) −14.0541 24.3424i −0.486653 0.842908i
\(835\) 20.1005 8.12211i 0.695606 0.281077i
\(836\) 3.51582 6.08958i 0.121597 0.210613i
\(837\) 16.8158i 0.581239i
\(838\) −6.45388 3.72615i −0.222946 0.128718i
\(839\) 4.21755 7.30500i 0.145606 0.252197i −0.783993 0.620770i \(-0.786820\pi\)
0.929599 + 0.368573i \(0.120154\pi\)
\(840\) 2.68889 19.1383i 0.0927756 0.660333i
\(841\) −26.4590 + 45.8283i −0.912379 + 1.58029i
\(842\) −23.9673 + 13.8375i −0.825968 + 0.476873i
\(843\) −39.2273 + 22.6479i −1.35106 + 0.780034i
\(844\) −5.49532 −0.189157
\(845\) −10.4101 + 27.1409i −0.358117 + 0.933677i
\(846\) −0.184208 −0.00633321
\(847\) −33.3370 + 19.2471i −1.14547 + 0.661339i
\(848\) −1.29498 + 0.747658i −0.0444699 + 0.0256747i
\(849\) 1.59210 2.75761i 0.0546409 0.0946408i
\(850\) −6.30174 1.80642i −0.216148 0.0619598i
\(851\) −5.39138 + 9.33815i −0.184814 + 0.320108i
\(852\) −29.6844 17.1383i −1.01697 0.587148i
\(853\) 40.0656i 1.37182i −0.727686 0.685910i \(-0.759404\pi\)
0.727686 0.685910i \(-0.240596\pi\)
\(854\) −15.3931 + 26.6616i −0.526740 + 0.912341i
\(855\) 10.5103 + 26.0109i 0.359446 + 0.889553i
\(856\) 1.10716 + 1.91766i 0.0378419 + 0.0655442i
\(857\) 32.0479i 1.09474i −0.836892 0.547368i \(-0.815630\pi\)
0.836892 0.547368i \(-0.184370\pi\)
\(858\) 5.30220 + 6.66423i 0.181014 + 0.227513i
\(859\) 26.6894 0.910630 0.455315 0.890331i \(-0.349527\pi\)
0.455315 + 0.890331i \(0.349527\pi\)
\(860\) −4.14642 + 1.67547i −0.141392 + 0.0571329i
\(861\) −25.7304 44.5663i −0.876889 1.51882i
\(862\) 17.0515 + 9.84468i 0.580776 + 0.335311i
\(863\) 30.6593i 1.04365i 0.853052 + 0.521827i \(0.174749\pi\)
−0.853052 + 0.521827i \(0.825251\pi\)
\(864\) −1.21432 + 2.10326i −0.0413120 + 0.0715545i
\(865\) −42.4166 33.1367i −1.44221 1.12668i
\(866\) −13.7462 −0.467115
\(867\) −29.3037 16.9185i −0.995206 0.574583i
\(868\) 23.4049 13.5128i 0.794415 0.458655i
\(869\) 2.29428 + 3.97381i 0.0778282 + 0.134802i
\(870\) 44.3783 + 6.23506i 1.50456 + 0.211388i
\(871\) 28.2766 + 11.1347i 0.958114 + 0.377286i
\(872\) 0.133353i 0.00451591i
\(873\) −7.02188 + 4.05408i −0.237654 + 0.137210i
\(874\) −7.07874 12.2607i −0.239442 0.414726i
\(875\) −25.6549 35.3017i −0.867295 1.19341i
\(876\) −33.9956 −1.14860
\(877\) 18.1263 + 10.4652i 0.612081 + 0.353385i 0.773779 0.633455i \(-0.218364\pi\)
−0.161699 + 0.986840i \(0.551697\pi\)
\(878\) −36.2195 20.9114i −1.22235 0.705724i
\(879\) 46.3116 1.56205
\(880\) −1.46837 + 1.87959i −0.0494989 + 0.0633611i
\(881\) −10.7351 18.5937i −0.361673 0.626437i 0.626563 0.779371i \(-0.284461\pi\)
−0.988236 + 0.152934i \(0.951128\pi\)
\(882\) −13.5733 + 7.83654i −0.457036 + 0.263870i
\(883\) 7.73530i 0.260314i −0.991493 0.130157i \(-0.958452\pi\)
0.991493 0.130157i \(-0.0415481\pi\)
\(884\) 4.39853 + 1.73205i 0.147939 + 0.0582552i
\(885\) 4.94914 35.2257i 0.166364 1.18410i
\(886\) 11.8415 + 20.5100i 0.397822 + 0.689047i
\(887\) 41.9559 24.2232i 1.40874 0.813337i 0.413473 0.910516i \(-0.364315\pi\)
0.995267 + 0.0971796i \(0.0309821\pi\)
\(888\) −9.62806 5.55877i −0.323097 0.186540i
\(889\) 38.9956 1.30787
\(890\) −7.97427 6.22965i −0.267298 0.208818i
\(891\) 5.91335 10.2422i 0.198105 0.343127i
\(892\) 20.0968i 0.672890i
\(893\) −0.552556 0.319019i −0.0184906 0.0106755i
\(894\) 8.06668 + 13.9719i 0.269790 + 0.467290i
\(895\) 2.55580 + 6.32507i 0.0854310 + 0.211424i
\(896\) −3.90321 −0.130397
\(897\) 16.9578 2.53633i 0.566205 0.0846855i
\(898\) 7.05578i 0.235454i
\(899\) 31.3339 + 54.2718i 1.04504 + 1.81007i
\(900\) −2.30292 9.23320i −0.0767639 0.307773i
\(901\) 0.980260 1.69786i 0.0326572 0.0565639i
\(902\) 6.35106i 0.211467i
\(903\) 14.9700 + 8.64296i 0.498172 + 0.287620i
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) 23.5669 + 3.31111i 0.783391 + 0.110065i
\(906\) −22.2630 + 38.5606i −0.739637 + 1.28109i
\(907\) −10.4017 + 6.00545i −0.345384 + 0.199408i −0.662650 0.748929i \(-0.730568\pi\)
0.317266 + 0.948337i \(0.397235\pi\)
\(908\) 16.7654 9.67952i 0.556380 0.321226i
\(909\) −2.77631 −0.0920845
\(910\) 15.9758 + 27.1119i 0.529592 + 0.898750i
\(911\) −8.10171 −0.268422 −0.134211 0.990953i \(-0.542850\pi\)
−0.134211 + 0.990953i \(0.542850\pi\)
\(912\) 12.6414 7.29851i 0.418598 0.241678i
\(913\) 8.95485 5.17008i 0.296362 0.171105i
\(914\) −17.8398 + 30.8994i −0.590087 + 1.02206i
\(915\) −5.43356 + 38.6735i −0.179628 + 1.27851i
\(916\) −7.86273 + 13.6186i −0.259792 + 0.449973i
\(917\) −31.2872 18.0637i −1.03320 0.596516i
\(918\) 3.18421i 0.105095i
\(919\) 8.29682 14.3705i 0.273687 0.474039i −0.696116 0.717929i \(-0.745090\pi\)
0.969803 + 0.243890i \(0.0784235\pi\)
\(920\) 1.79915 + 4.45252i 0.0593162 + 0.146795i
\(921\) −13.8731 24.0289i −0.457134 0.791780i
\(922\) 14.6015i 0.480874i
\(923\) 55.1981 8.25581i 1.81687 0.271743i
\(924\) 9.21924 0.303291
\(925\) −24.3575 + 6.07518i −0.800870 + 0.199751i
\(926\) −15.3756 26.6313i −0.505272 0.875157i
\(927\) −16.8852 9.74866i −0.554582 0.320188i
\(928\) 9.05086i 0.297109i
\(929\) 28.5605 49.4682i 0.937038 1.62300i 0.166080 0.986112i \(-0.446889\pi\)
0.770958 0.636886i \(-0.219778\pi\)
\(930\) 21.1056 27.0163i 0.692081 0.885900i
\(931\) −54.2864 −1.77916
\(932\) −12.8886 7.44123i −0.422180 0.243746i
\(933\) −18.7571 + 10.8294i −0.614078 + 0.354538i
\(934\) −10.2810 17.8072i −0.336404 0.582670i
\(935\) 0.435093 3.09679i 0.0142291 0.101276i
\(936\) 1.01506 + 6.78664i 0.0331781 + 0.221828i
\(937\) 11.1842i 0.365372i 0.983171 + 0.182686i \(0.0584792\pi\)
−0.983171 + 0.182686i \(0.941521\pi\)
\(938\) 28.4912 16.4494i 0.930270 0.537091i
\(939\) 19.0573 + 33.0082i 0.621912 + 1.07718i
\(940\) 0.170551 + 0.133237i 0.00556275 + 0.00434572i
\(941\) −7.68598 −0.250556 −0.125278 0.992122i \(-0.539982\pi\)
−0.125278 + 0.992122i \(0.539982\pi\)
\(942\) −3.80497 2.19680i −0.123973 0.0715757i
\(943\) 11.0741 + 6.39361i 0.360621 + 0.208204i
\(944\) −7.18421 −0.233826
\(945\) 13.0494 16.7038i 0.424495 0.543376i
\(946\) −1.06668 1.84754i −0.0346806 0.0600686i
\(947\) −17.9047 + 10.3373i −0.581826 + 0.335917i −0.761859 0.647743i \(-0.775713\pi\)
0.180033 + 0.983661i \(0.442380\pi\)
\(948\) 9.52543i 0.309372i
\(949\) 43.3170 34.4639i 1.40613 1.11875i
\(950\) 9.08250 31.6844i 0.294675 1.02798i
\(951\) −15.2175 26.3576i −0.493463 0.854703i
\(952\) 4.43191 2.55877i 0.143639 0.0829301i
\(953\) 26.8254 + 15.4876i 0.868959 + 0.501694i 0.867002 0.498304i \(-0.166044\pi\)
0.00195715 + 0.999998i \(0.499377\pi\)
\(954\) 2.84590 0.0921395
\(955\) −20.2777 + 25.9564i −0.656169 + 0.839931i
\(956\) −2.21109 + 3.82973i −0.0715119 + 0.123862i
\(957\) 21.3778i 0.691046i
\(958\) −10.3346 5.96666i −0.333895 0.192774i
\(959\) 28.8654 + 49.9964i 0.932113 + 1.61447i
\(960\) −4.59075 + 1.85501i −0.148166 + 0.0598701i
\(961\) 16.9412 0.546489
\(962\) 17.9034 2.67775i 0.577229 0.0863343i
\(963\) 4.21432i 0.135805i
\(964\) −5.64050 9.76963i −0.181668 0.314659i
\(965\) −29.0250 + 11.7283i −0.934346 + 0.377546i
\(966\) 9.28100 16.0752i 0.298611 0.517210i
\(967\) 0.529873i 0.0170396i 0.999964 + 0.00851979i \(0.00271197\pi\)
−0.999964 + 0.00851979i \(0.997288\pi\)
\(968\) 8.54092 + 4.93110i 0.274515 + 0.158492i
\(969\) −9.56914 + 16.5742i −0.307405 + 0.532441i
\(970\) 9.43356 + 1.32540i 0.302893 + 0.0425560i
\(971\) 17.1620 29.7255i 0.550755 0.953936i −0.447465 0.894301i \(-0.647673\pi\)
0.998220 0.0596344i \(-0.0189935\pi\)
\(972\) 14.9521 8.63259i 0.479588 0.276890i
\(973\) 42.9087 24.7733i 1.37559 0.794196i
\(974\) 27.9719 0.896277
\(975\) 31.6748 + 24.2950i 1.01441 + 0.778064i
\(976\) 7.88739 0.252469
\(977\) −17.2931 + 9.98418i −0.553255 + 0.319422i −0.750434 0.660945i \(-0.770155\pi\)
0.197179 + 0.980368i \(0.436822\pi\)
\(978\) −9.01909 + 5.20717i −0.288399 + 0.166507i
\(979\) 2.41358 4.18045i 0.0771385 0.133608i
\(980\) 18.2351 + 2.56199i 0.582498 + 0.0818399i
\(981\) −0.126900 + 0.219797i −0.00405159 + 0.00701756i
\(982\) −17.9971 10.3906i −0.574310 0.331578i
\(983\) 20.8524i 0.665087i −0.943088 0.332543i \(-0.892093\pi\)
0.943088 0.332543i \(-0.107907\pi\)
\(984\) −6.59210 + 11.4179i −0.210149 + 0.363988i
\(985\) 21.5880 8.72316i 0.687850 0.277943i
\(986\) 5.93332 + 10.2768i 0.188956 + 0.327281i
\(987\) 0.836535i 0.0266272i
\(988\) −8.70856 + 22.1153i −0.277056 + 0.703582i
\(989\) −4.29529 −0.136582
\(990\) 4.20885 1.70069i 0.133766 0.0540515i
\(991\) 1.47949 + 2.56256i 0.0469977 + 0.0814024i 0.888567 0.458746i \(-0.151701\pi\)
−0.841570 + 0.540149i \(0.818368\pi\)
\(992\) −5.99632 3.46198i −0.190383 0.109918i
\(993\) 42.9304i 1.36236i
\(994\) 30.2099 52.3250i 0.958199 1.65965i
\(995\) −6.01351 + 7.69760i −0.190641 + 0.244030i
\(996\) 21.4652 0.680151
\(997\) −18.2281 10.5240i −0.577288 0.333297i 0.182767 0.983156i \(-0.441495\pi\)
−0.760055 + 0.649859i \(0.774828\pi\)
\(998\) 29.6967 17.1454i 0.940034 0.542729i
\(999\) −6.09679 10.5599i −0.192894 0.334102i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.n.a.29.3 yes 12
3.2 odd 2 1170.2.bp.h.289.4 12
4.3 odd 2 1040.2.dh.b.289.1 12
5.2 odd 4 650.2.e.j.601.1 6
5.3 odd 4 650.2.e.k.601.3 6
5.4 even 2 inner 130.2.n.a.29.4 yes 12
13.2 odd 12 1690.2.c.b.1689.6 6
13.3 even 3 1690.2.b.c.339.3 6
13.9 even 3 inner 130.2.n.a.9.4 yes 12
13.10 even 6 1690.2.b.b.339.6 6
13.11 odd 12 1690.2.c.c.1689.6 6
15.14 odd 2 1170.2.bp.h.289.1 12
20.19 odd 2 1040.2.dh.b.289.6 12
39.35 odd 6 1170.2.bp.h.919.1 12
52.35 odd 6 1040.2.dh.b.529.6 12
65.3 odd 12 8450.2.a.bu.1.1 3
65.9 even 6 inner 130.2.n.a.9.3 12
65.22 odd 12 650.2.e.j.451.1 6
65.23 odd 12 8450.2.a.ca.1.1 3
65.24 odd 12 1690.2.c.b.1689.1 6
65.29 even 6 1690.2.b.c.339.4 6
65.42 odd 12 8450.2.a.cb.1.3 3
65.48 odd 12 650.2.e.k.451.3 6
65.49 even 6 1690.2.b.b.339.1 6
65.54 odd 12 1690.2.c.c.1689.1 6
65.62 odd 12 8450.2.a.bt.1.3 3
195.74 odd 6 1170.2.bp.h.919.4 12
260.139 odd 6 1040.2.dh.b.529.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.3 12 65.9 even 6 inner
130.2.n.a.9.4 yes 12 13.9 even 3 inner
130.2.n.a.29.3 yes 12 1.1 even 1 trivial
130.2.n.a.29.4 yes 12 5.4 even 2 inner
650.2.e.j.451.1 6 65.22 odd 12
650.2.e.j.601.1 6 5.2 odd 4
650.2.e.k.451.3 6 65.48 odd 12
650.2.e.k.601.3 6 5.3 odd 4
1040.2.dh.b.289.1 12 4.3 odd 2
1040.2.dh.b.289.6 12 20.19 odd 2
1040.2.dh.b.529.1 12 260.139 odd 6
1040.2.dh.b.529.6 12 52.35 odd 6
1170.2.bp.h.289.1 12 15.14 odd 2
1170.2.bp.h.289.4 12 3.2 odd 2
1170.2.bp.h.919.1 12 39.35 odd 6
1170.2.bp.h.919.4 12 195.74 odd 6
1690.2.b.b.339.1 6 65.49 even 6
1690.2.b.b.339.6 6 13.10 even 6
1690.2.b.c.339.3 6 13.3 even 3
1690.2.b.c.339.4 6 65.29 even 6
1690.2.c.b.1689.1 6 65.24 odd 12
1690.2.c.b.1689.6 6 13.2 odd 12
1690.2.c.c.1689.1 6 65.54 odd 12
1690.2.c.c.1689.6 6 13.11 odd 12
8450.2.a.bt.1.3 3 65.62 odd 12
8450.2.a.bu.1.1 3 65.3 odd 12
8450.2.a.ca.1.1 3 65.23 odd 12
8450.2.a.cb.1.3 3 65.42 odd 12