Properties

Label 1690.2.b.b.339.1
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,2,2,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.1
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.b.339.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.21432i q^{3} -1.00000 q^{4} +(-2.21432 + 0.311108i) q^{5} -2.21432 q^{6} +3.90321i q^{7} +1.00000i q^{8} -1.90321 q^{9} +(0.311108 + 2.21432i) q^{10} -1.06668 q^{11} +2.21432i q^{12} +3.90321 q^{14} +(0.688892 + 4.90321i) q^{15} +1.00000 q^{16} +1.31111i q^{17} +1.90321i q^{18} -6.59210 q^{19} +(2.21432 - 0.311108i) q^{20} +8.64296 q^{21} +1.06668i q^{22} -2.14764i q^{23} +2.21432 q^{24} +(4.80642 - 1.37778i) q^{25} -2.42864i q^{27} -3.90321i q^{28} +9.05086 q^{29} +(4.90321 - 0.688892i) q^{30} +6.92396 q^{31} -1.00000i q^{32} +2.36196i q^{33} +1.31111 q^{34} +(-1.21432 - 8.64296i) q^{35} +1.90321 q^{36} -5.02074i q^{37} +6.59210i q^{38} +(-0.311108 - 2.21432i) q^{40} +5.95407 q^{41} -8.64296i q^{42} -2.00000i q^{43} +1.06668 q^{44} +(4.21432 - 0.592104i) q^{45} -2.14764 q^{46} +0.0967881i q^{47} -2.21432i q^{48} -8.23506 q^{49} +(-1.37778 - 4.80642i) q^{50} +2.90321 q^{51} +1.49532i q^{53} -2.42864 q^{54} +(2.36196 - 0.331851i) q^{55} -3.90321 q^{56} +14.5970i q^{57} -9.05086i q^{58} +7.18421 q^{59} +(-0.688892 - 4.90321i) q^{60} +7.88739 q^{61} -6.92396i q^{62} -7.42864i q^{63} -1.00000 q^{64} +2.36196 q^{66} +8.42864i q^{67} -1.31111i q^{68} -4.75557 q^{69} +(-8.64296 + 1.21432i) q^{70} +15.4795 q^{71} -1.90321i q^{72} -15.3526i q^{73} -5.02074 q^{74} +(-3.05086 - 10.6430i) q^{75} +6.59210 q^{76} -4.16346i q^{77} -4.30174 q^{79} +(-2.21432 + 0.311108i) q^{80} -11.0874 q^{81} -5.95407i q^{82} +9.69381i q^{83} -8.64296 q^{84} +(-0.407896 - 2.90321i) q^{85} -2.00000 q^{86} -20.0415i q^{87} -1.06668i q^{88} +4.52543 q^{89} +(-0.592104 - 4.21432i) q^{90} +2.14764i q^{92} -15.3319i q^{93} +0.0967881 q^{94} +(14.5970 - 2.05086i) q^{95} -2.21432 q^{96} +4.26025i q^{97} +8.23506i q^{98} +2.03011 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 2 q^{9} + 2 q^{10} - 6 q^{11} + 10 q^{14} + 4 q^{15} + 6 q^{16} - 26 q^{19} + 12 q^{21} + 2 q^{25} + 28 q^{29} + 16 q^{30} - 12 q^{31} + 8 q^{34} + 6 q^{35} - 2 q^{36} - 2 q^{40} - 4 q^{41}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.21432i 1.27844i −0.769025 0.639219i \(-0.779258\pi\)
0.769025 0.639219i \(-0.220742\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.21432 + 0.311108i −0.990274 + 0.139132i
\(6\) −2.21432 −0.903992
\(7\) 3.90321i 1.47528i 0.675197 + 0.737638i \(0.264059\pi\)
−0.675197 + 0.737638i \(0.735941\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.90321 −0.634404
\(10\) 0.311108 + 2.21432i 0.0983809 + 0.700229i
\(11\) −1.06668 −0.321615 −0.160808 0.986986i \(-0.551410\pi\)
−0.160808 + 0.986986i \(0.551410\pi\)
\(12\) 2.21432i 0.639219i
\(13\) 0 0
\(14\) 3.90321 1.04318
\(15\) 0.688892 + 4.90321i 0.177871 + 1.26600i
\(16\) 1.00000 0.250000
\(17\) 1.31111i 0.317990i 0.987279 + 0.158995i \(0.0508254\pi\)
−0.987279 + 0.158995i \(0.949175\pi\)
\(18\) 1.90321i 0.448591i
\(19\) −6.59210 −1.51233 −0.756166 0.654380i \(-0.772930\pi\)
−0.756166 + 0.654380i \(0.772930\pi\)
\(20\) 2.21432 0.311108i 0.495137 0.0695658i
\(21\) 8.64296 1.88605
\(22\) 1.06668i 0.227416i
\(23\) 2.14764i 0.447815i −0.974610 0.223907i \(-0.928119\pi\)
0.974610 0.223907i \(-0.0718813\pi\)
\(24\) 2.21432 0.451996
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) 2.42864i 0.467392i
\(28\) 3.90321i 0.737638i
\(29\) 9.05086 1.68070 0.840351 0.542043i \(-0.182349\pi\)
0.840351 + 0.542043i \(0.182349\pi\)
\(30\) 4.90321 0.688892i 0.895200 0.125774i
\(31\) 6.92396 1.24358 0.621790 0.783184i \(-0.286406\pi\)
0.621790 + 0.783184i \(0.286406\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.36196i 0.411165i
\(34\) 1.31111 0.224853
\(35\) −1.21432 8.64296i −0.205257 1.46093i
\(36\) 1.90321 0.317202
\(37\) 5.02074i 0.825405i −0.910866 0.412703i \(-0.864585\pi\)
0.910866 0.412703i \(-0.135415\pi\)
\(38\) 6.59210i 1.06938i
\(39\) 0 0
\(40\) −0.311108 2.21432i −0.0491905 0.350115i
\(41\) 5.95407 0.929869 0.464935 0.885345i \(-0.346078\pi\)
0.464935 + 0.885345i \(0.346078\pi\)
\(42\) 8.64296i 1.33364i
\(43\) 2.00000i 0.304997i −0.988304 0.152499i \(-0.951268\pi\)
0.988304 0.152499i \(-0.0487319\pi\)
\(44\) 1.06668 0.160808
\(45\) 4.21432 0.592104i 0.628234 0.0882657i
\(46\) −2.14764 −0.316653
\(47\) 0.0967881i 0.0141180i 0.999975 + 0.00705900i \(0.00224697\pi\)
−0.999975 + 0.00705900i \(0.997753\pi\)
\(48\) 2.21432i 0.319610i
\(49\) −8.23506 −1.17644
\(50\) −1.37778 4.80642i −0.194848 0.679731i
\(51\) 2.90321 0.406531
\(52\) 0 0
\(53\) 1.49532i 0.205397i 0.994713 + 0.102699i \(0.0327478\pi\)
−0.994713 + 0.102699i \(0.967252\pi\)
\(54\) −2.42864 −0.330496
\(55\) 2.36196 0.331851i 0.318487 0.0447468i
\(56\) −3.90321 −0.521589
\(57\) 14.5970i 1.93342i
\(58\) 9.05086i 1.18844i
\(59\) 7.18421 0.935304 0.467652 0.883913i \(-0.345100\pi\)
0.467652 + 0.883913i \(0.345100\pi\)
\(60\) −0.688892 4.90321i −0.0889356 0.633002i
\(61\) 7.88739 1.00988 0.504938 0.863155i \(-0.331515\pi\)
0.504938 + 0.863155i \(0.331515\pi\)
\(62\) 6.92396i 0.879343i
\(63\) 7.42864i 0.935921i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 2.36196 0.290738
\(67\) 8.42864i 1.02972i 0.857274 + 0.514861i \(0.172157\pi\)
−0.857274 + 0.514861i \(0.827843\pi\)
\(68\) 1.31111i 0.158995i
\(69\) −4.75557 −0.572503
\(70\) −8.64296 + 1.21432i −1.03303 + 0.145139i
\(71\) 15.4795 1.83708 0.918539 0.395330i \(-0.129370\pi\)
0.918539 + 0.395330i \(0.129370\pi\)
\(72\) 1.90321i 0.224296i
\(73\) 15.3526i 1.79689i −0.439091 0.898443i \(-0.644699\pi\)
0.439091 0.898443i \(-0.355301\pi\)
\(74\) −5.02074 −0.583650
\(75\) −3.05086 10.6430i −0.352282 1.22894i
\(76\) 6.59210 0.756166
\(77\) 4.16346i 0.474471i
\(78\) 0 0
\(79\) −4.30174 −0.483984 −0.241992 0.970278i \(-0.577801\pi\)
−0.241992 + 0.970278i \(0.577801\pi\)
\(80\) −2.21432 + 0.311108i −0.247568 + 0.0347829i
\(81\) −11.0874 −1.23194
\(82\) 5.95407i 0.657517i
\(83\) 9.69381i 1.06403i 0.846734 + 0.532017i \(0.178566\pi\)
−0.846734 + 0.532017i \(0.821434\pi\)
\(84\) −8.64296 −0.943024
\(85\) −0.407896 2.90321i −0.0442425 0.314898i
\(86\) −2.00000 −0.215666
\(87\) 20.0415i 2.14867i
\(88\) 1.06668i 0.113708i
\(89\) 4.52543 0.479694 0.239847 0.970811i \(-0.422903\pi\)
0.239847 + 0.970811i \(0.422903\pi\)
\(90\) −0.592104 4.21432i −0.0624133 0.444228i
\(91\) 0 0
\(92\) 2.14764i 0.223907i
\(93\) 15.3319i 1.58984i
\(94\) 0.0967881 0.00998293
\(95\) 14.5970 2.05086i 1.49762 0.210413i
\(96\) −2.21432 −0.225998
\(97\) 4.26025i 0.432563i 0.976331 + 0.216282i \(0.0693929\pi\)
−0.976331 + 0.216282i \(0.930607\pi\)
\(98\) 8.23506i 0.831867i
\(99\) 2.03011 0.204034
\(100\) −4.80642 + 1.37778i −0.480642 + 0.137778i
\(101\) 1.45875 0.145151 0.0725756 0.997363i \(-0.476878\pi\)
0.0725756 + 0.997363i \(0.476878\pi\)
\(102\) 2.90321i 0.287461i
\(103\) 10.2444i 1.00941i 0.863291 + 0.504707i \(0.168399\pi\)
−0.863291 + 0.504707i \(0.831601\pi\)
\(104\) 0 0
\(105\) −19.1383 + 2.68889i −1.86770 + 0.262409i
\(106\) 1.49532 0.145238
\(107\) 2.21432i 0.214066i −0.994255 0.107033i \(-0.965865\pi\)
0.994255 0.107033i \(-0.0341351\pi\)
\(108\) 2.42864i 0.233696i
\(109\) 0.133353 0.0127729 0.00638645 0.999980i \(-0.497967\pi\)
0.00638645 + 0.999980i \(0.497967\pi\)
\(110\) −0.331851 2.36196i −0.0316408 0.225204i
\(111\) −11.1175 −1.05523
\(112\) 3.90321i 0.368819i
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 14.5970 1.36714
\(115\) 0.668149 + 4.75557i 0.0623052 + 0.443459i
\(116\) −9.05086 −0.840351
\(117\) 0 0
\(118\) 7.18421i 0.661360i
\(119\) −5.11753 −0.469123
\(120\) −4.90321 + 0.688892i −0.447600 + 0.0628870i
\(121\) −9.86220 −0.896564
\(122\) 7.88739i 0.714091i
\(123\) 13.1842i 1.18878i
\(124\) −6.92396 −0.621790
\(125\) −10.2143 + 4.54617i −0.913597 + 0.406622i
\(126\) −7.42864 −0.661796
\(127\) 9.99063i 0.886525i 0.896392 + 0.443263i \(0.146179\pi\)
−0.896392 + 0.443263i \(0.853821\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −4.42864 −0.389920
\(130\) 0 0
\(131\) 9.25581 0.808684 0.404342 0.914608i \(-0.367501\pi\)
0.404342 + 0.914608i \(0.367501\pi\)
\(132\) 2.36196i 0.205582i
\(133\) 25.7304i 2.23111i
\(134\) 8.42864 0.728124
\(135\) 0.755569 + 5.37778i 0.0650290 + 0.462846i
\(136\) −1.31111 −0.112427
\(137\) 14.7906i 1.26365i 0.775113 + 0.631823i \(0.217693\pi\)
−0.775113 + 0.631823i \(0.782307\pi\)
\(138\) 4.75557i 0.404821i
\(139\) 12.6938 1.07668 0.538338 0.842729i \(-0.319053\pi\)
0.538338 + 0.842729i \(0.319053\pi\)
\(140\) 1.21432 + 8.64296i 0.102629 + 0.730463i
\(141\) 0.214320 0.0180490
\(142\) 15.4795i 1.29901i
\(143\) 0 0
\(144\) −1.90321 −0.158601
\(145\) −20.0415 + 2.81579i −1.66435 + 0.233839i
\(146\) −15.3526 −1.27059
\(147\) 18.2351i 1.50400i
\(148\) 5.02074i 0.412703i
\(149\) 7.28592 0.596886 0.298443 0.954428i \(-0.403533\pi\)
0.298443 + 0.954428i \(0.403533\pi\)
\(150\) −10.6430 + 3.05086i −0.868994 + 0.249101i
\(151\) −20.1082 −1.63638 −0.818190 0.574949i \(-0.805022\pi\)
−0.818190 + 0.574949i \(0.805022\pi\)
\(152\) 6.59210i 0.534690i
\(153\) 2.49532i 0.201734i
\(154\) −4.16346 −0.335502
\(155\) −15.3319 + 2.15410i −1.23148 + 0.173021i
\(156\) 0 0
\(157\) 1.98418i 0.158355i −0.996861 0.0791773i \(-0.974771\pi\)
0.996861 0.0791773i \(-0.0252293\pi\)
\(158\) 4.30174i 0.342228i
\(159\) 3.31111 0.262588
\(160\) 0.311108 + 2.21432i 0.0245952 + 0.175057i
\(161\) 8.38271 0.660650
\(162\) 11.0874i 0.871110i
\(163\) 4.70318i 0.368382i −0.982891 0.184191i \(-0.941034\pi\)
0.982891 0.184191i \(-0.0589664\pi\)
\(164\) −5.95407 −0.464935
\(165\) −0.734825 5.23014i −0.0572061 0.407166i
\(166\) 9.69381 0.752386
\(167\) 9.69535i 0.750248i 0.926975 + 0.375124i \(0.122400\pi\)
−0.926975 + 0.375124i \(0.877600\pi\)
\(168\) 8.64296i 0.666819i
\(169\) 0 0
\(170\) −2.90321 + 0.407896i −0.222666 + 0.0312842i
\(171\) 12.5462 0.959430
\(172\) 2.00000i 0.152499i
\(173\) 24.0716i 1.83013i −0.403307 0.915065i \(-0.632139\pi\)
0.403307 0.915065i \(-0.367861\pi\)
\(174\) −20.0415 −1.51934
\(175\) 5.37778 + 18.7605i 0.406522 + 1.41816i
\(176\) −1.06668 −0.0804038
\(177\) 15.9081i 1.19573i
\(178\) 4.52543i 0.339195i
\(179\) −3.05086 −0.228032 −0.114016 0.993479i \(-0.536371\pi\)
−0.114016 + 0.993479i \(0.536371\pi\)
\(180\) −4.21432 + 0.592104i −0.314117 + 0.0441328i
\(181\) 10.6430 0.791085 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(182\) 0 0
\(183\) 17.4652i 1.29107i
\(184\) 2.14764 0.158326
\(185\) 1.56199 + 11.1175i 0.114840 + 0.817377i
\(186\) −15.3319 −1.12419
\(187\) 1.39853i 0.102270i
\(188\) 0.0967881i 0.00705900i
\(189\) 9.47949 0.689532
\(190\) −2.05086 14.5970i −0.148785 1.05898i
\(191\) 14.7304 1.06585 0.532926 0.846162i \(-0.321092\pi\)
0.532926 + 0.846162i \(0.321092\pi\)
\(192\) 2.21432i 0.159805i
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 4.26025 0.305868
\(195\) 0 0
\(196\) 8.23506 0.588219
\(197\) 10.4128i 0.741883i 0.928656 + 0.370941i \(0.120965\pi\)
−0.928656 + 0.370941i \(0.879035\pi\)
\(198\) 2.03011i 0.144274i
\(199\) 4.36842 0.309669 0.154834 0.987940i \(-0.450516\pi\)
0.154834 + 0.987940i \(0.450516\pi\)
\(200\) 1.37778 + 4.80642i 0.0974241 + 0.339865i
\(201\) 18.6637 1.31644
\(202\) 1.45875i 0.102637i
\(203\) 35.3274i 2.47950i
\(204\) −2.90321 −0.203265
\(205\) −13.1842 + 1.85236i −0.920825 + 0.129374i
\(206\) 10.2444 0.713763
\(207\) 4.08742i 0.284095i
\(208\) 0 0
\(209\) 7.03164 0.486389
\(210\) 2.68889 + 19.1383i 0.185551 + 1.32067i
\(211\) 5.49532 0.378313 0.189157 0.981947i \(-0.439425\pi\)
0.189157 + 0.981947i \(0.439425\pi\)
\(212\) 1.49532i 0.102699i
\(213\) 34.2766i 2.34859i
\(214\) −2.21432 −0.151368
\(215\) 0.622216 + 4.42864i 0.0424348 + 0.302031i
\(216\) 2.42864 0.165248
\(217\) 27.0257i 1.83462i
\(218\) 0.133353i 0.00903181i
\(219\) −33.9956 −2.29721
\(220\) −2.36196 + 0.331851i −0.159244 + 0.0223734i
\(221\) 0 0
\(222\) 11.1175i 0.746160i
\(223\) 20.0968i 1.34578i −0.739742 0.672890i \(-0.765053\pi\)
0.739742 0.672890i \(-0.234947\pi\)
\(224\) 3.90321 0.260794
\(225\) −9.14764 + 2.62222i −0.609843 + 0.174814i
\(226\) 14.0000 0.931266
\(227\) 19.3590i 1.28491i −0.766325 0.642453i \(-0.777917\pi\)
0.766325 0.642453i \(-0.222083\pi\)
\(228\) 14.5970i 0.966712i
\(229\) 15.7255 1.03917 0.519584 0.854420i \(-0.326087\pi\)
0.519584 + 0.854420i \(0.326087\pi\)
\(230\) 4.75557 0.668149i 0.313573 0.0440564i
\(231\) −9.21924 −0.606582
\(232\) 9.05086i 0.594218i
\(233\) 14.8825i 0.974983i 0.873128 + 0.487491i \(0.162088\pi\)
−0.873128 + 0.487491i \(0.837912\pi\)
\(234\) 0 0
\(235\) −0.0301115 0.214320i −0.00196426 0.0139807i
\(236\) −7.18421 −0.467652
\(237\) 9.52543i 0.618743i
\(238\) 5.11753i 0.331720i
\(239\) 4.42219 0.286047 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(240\) 0.688892 + 4.90321i 0.0444678 + 0.316501i
\(241\) 11.2810 0.726673 0.363336 0.931658i \(-0.381638\pi\)
0.363336 + 0.931658i \(0.381638\pi\)
\(242\) 9.86220i 0.633966i
\(243\) 17.2652i 1.10756i
\(244\) −7.88739 −0.504938
\(245\) 18.2351 2.56199i 1.16500 0.163680i
\(246\) −13.1842 −0.840594
\(247\) 0 0
\(248\) 6.92396i 0.439672i
\(249\) 21.4652 1.36030
\(250\) 4.54617 + 10.2143i 0.287525 + 0.646010i
\(251\) 2.65233 0.167413 0.0837067 0.996490i \(-0.473324\pi\)
0.0837067 + 0.996490i \(0.473324\pi\)
\(252\) 7.42864i 0.467960i
\(253\) 2.29084i 0.144024i
\(254\) 9.99063 0.626868
\(255\) −6.42864 + 0.903212i −0.402577 + 0.0565613i
\(256\) 1.00000 0.0625000
\(257\) 4.10171i 0.255858i 0.991783 + 0.127929i \(0.0408329\pi\)
−0.991783 + 0.127929i \(0.959167\pi\)
\(258\) 4.42864i 0.275715i
\(259\) 19.5970 1.21770
\(260\) 0 0
\(261\) −17.2257 −1.06624
\(262\) 9.25581i 0.571826i
\(263\) 10.8020i 0.666079i 0.942913 + 0.333039i \(0.108074\pi\)
−0.942913 + 0.333039i \(0.891926\pi\)
\(264\) −2.36196 −0.145369
\(265\) −0.465205 3.31111i −0.0285773 0.203400i
\(266\) −25.7304 −1.57763
\(267\) 10.0207i 0.613260i
\(268\) 8.42864i 0.514861i
\(269\) 18.5827 1.13301 0.566505 0.824059i \(-0.308295\pi\)
0.566505 + 0.824059i \(0.308295\pi\)
\(270\) 5.37778 0.755569i 0.327282 0.0459824i
\(271\) −19.7748 −1.20123 −0.600616 0.799537i \(-0.705078\pi\)
−0.600616 + 0.799537i \(0.705078\pi\)
\(272\) 1.31111i 0.0794976i
\(273\) 0 0
\(274\) 14.7906 0.893533
\(275\) −5.12690 + 1.46965i −0.309164 + 0.0886232i
\(276\) 4.75557 0.286252
\(277\) 0.204952i 0.0123144i 0.999981 + 0.00615718i \(0.00195990\pi\)
−0.999981 + 0.00615718i \(0.998040\pi\)
\(278\) 12.6938i 0.761324i
\(279\) −13.1778 −0.788932
\(280\) 8.64296 1.21432i 0.516516 0.0725695i
\(281\) 20.4558 1.22029 0.610146 0.792289i \(-0.291111\pi\)
0.610146 + 0.792289i \(0.291111\pi\)
\(282\) 0.214320i 0.0127626i
\(283\) 1.43801i 0.0854807i −0.999086 0.0427403i \(-0.986391\pi\)
0.999086 0.0427403i \(-0.0136088\pi\)
\(284\) −15.4795 −0.918539
\(285\) −4.54125 32.3225i −0.269000 1.91462i
\(286\) 0 0
\(287\) 23.2400i 1.37181i
\(288\) 1.90321i 0.112148i
\(289\) 15.2810 0.898882
\(290\) 2.81579 + 20.0415i 0.165349 + 1.17688i
\(291\) 9.43356 0.553005
\(292\) 15.3526i 0.898443i
\(293\) 20.9146i 1.22184i −0.791691 0.610922i \(-0.790799\pi\)
0.791691 0.610922i \(-0.209201\pi\)
\(294\) 18.2351 1.06349
\(295\) −15.9081 + 2.23506i −0.926207 + 0.130130i
\(296\) 5.02074 0.291825
\(297\) 2.59057i 0.150320i
\(298\) 7.28592i 0.422062i
\(299\) 0 0
\(300\) 3.05086 + 10.6430i 0.176141 + 0.614472i
\(301\) 7.80642 0.449955
\(302\) 20.1082i 1.15709i
\(303\) 3.23014i 0.185567i
\(304\) −6.59210 −0.378083
\(305\) −17.4652 + 2.45383i −1.00005 + 0.140506i
\(306\) −2.49532 −0.142648
\(307\) 12.5303i 0.715145i −0.933885 0.357572i \(-0.883605\pi\)
0.933885 0.357572i \(-0.116395\pi\)
\(308\) 4.16346i 0.237235i
\(309\) 22.6844 1.29047
\(310\) 2.15410 + 15.3319i 0.122344 + 0.870791i
\(311\) −9.78123 −0.554643 −0.277321 0.960777i \(-0.589447\pi\)
−0.277321 + 0.960777i \(0.589447\pi\)
\(312\) 0 0
\(313\) 17.2128i 0.972924i −0.873702 0.486462i \(-0.838287\pi\)
0.873702 0.486462i \(-0.161713\pi\)
\(314\) −1.98418 −0.111974
\(315\) 2.31111 + 16.4494i 0.130216 + 0.926818i
\(316\) 4.30174 0.241992
\(317\) 13.7447i 0.771978i −0.922503 0.385989i \(-0.873860\pi\)
0.922503 0.385989i \(-0.126140\pi\)
\(318\) 3.31111i 0.185678i
\(319\) −9.65433 −0.540539
\(320\) 2.21432 0.311108i 0.123784 0.0173915i
\(321\) −4.90321 −0.273671
\(322\) 8.38271i 0.467150i
\(323\) 8.64296i 0.480907i
\(324\) 11.0874 0.615968
\(325\) 0 0
\(326\) −4.70318 −0.260485
\(327\) 0.295286i 0.0163294i
\(328\) 5.95407i 0.328758i
\(329\) −0.377784 −0.0208279
\(330\) −5.23014 + 0.734825i −0.287910 + 0.0404508i
\(331\) −19.3876 −1.06564 −0.532820 0.846228i \(-0.678868\pi\)
−0.532820 + 0.846228i \(0.678868\pi\)
\(332\) 9.69381i 0.532017i
\(333\) 9.55554i 0.523640i
\(334\) 9.69535 0.530506
\(335\) −2.62222 18.6637i −0.143267 1.01971i
\(336\) 8.64296 0.471512
\(337\) 0.555539i 0.0302621i 0.999886 + 0.0151311i \(0.00481655\pi\)
−0.999886 + 0.0151311i \(0.995183\pi\)
\(338\) 0 0
\(339\) 31.0005 1.68371
\(340\) 0.407896 + 2.90321i 0.0221213 + 0.157449i
\(341\) −7.38562 −0.399954
\(342\) 12.5462i 0.678419i
\(343\) 4.82071i 0.260294i
\(344\) 2.00000 0.107833
\(345\) 10.5303 1.47949i 0.566935 0.0796533i
\(346\) −24.0716 −1.29410
\(347\) 6.68445i 0.358840i 0.983773 + 0.179420i \(0.0574221\pi\)
−0.983773 + 0.179420i \(0.942578\pi\)
\(348\) 20.0415i 1.07434i
\(349\) 10.5827 0.566481 0.283240 0.959049i \(-0.408591\pi\)
0.283240 + 0.959049i \(0.408591\pi\)
\(350\) 18.7605 5.37778i 1.00279 0.287455i
\(351\) 0 0
\(352\) 1.06668i 0.0568541i
\(353\) 9.20940i 0.490167i −0.969502 0.245083i \(-0.921185\pi\)
0.969502 0.245083i \(-0.0788153\pi\)
\(354\) −15.9081 −0.845508
\(355\) −34.2766 + 4.81579i −1.81921 + 0.255596i
\(356\) −4.52543 −0.239847
\(357\) 11.3319i 0.599745i
\(358\) 3.05086i 0.161243i
\(359\) −4.19358 −0.221328 −0.110664 0.993858i \(-0.535298\pi\)
−0.110664 + 0.993858i \(0.535298\pi\)
\(360\) 0.592104 + 4.21432i 0.0312066 + 0.222114i
\(361\) 24.4558 1.28715
\(362\) 10.6430i 0.559382i
\(363\) 21.8381i 1.14620i
\(364\) 0 0
\(365\) 4.77631 + 33.9956i 0.250004 + 1.77941i
\(366\) −17.4652 −0.912921
\(367\) 13.9684i 0.729142i 0.931176 + 0.364571i \(0.118784\pi\)
−0.931176 + 0.364571i \(0.881216\pi\)
\(368\) 2.14764i 0.111954i
\(369\) −11.3319 −0.589913
\(370\) 11.1175 1.56199i 0.577973 0.0812041i
\(371\) −5.83654 −0.303018
\(372\) 15.3319i 0.794919i
\(373\) 11.8479i 0.613462i −0.951796 0.306731i \(-0.900765\pi\)
0.951796 0.306731i \(-0.0992351\pi\)
\(374\) −1.39853 −0.0723162
\(375\) 10.0667 + 22.6178i 0.519841 + 1.16798i
\(376\) −0.0967881 −0.00499146
\(377\) 0 0
\(378\) 9.47949i 0.487573i
\(379\) 0.606394 0.0311484 0.0155742 0.999879i \(-0.495042\pi\)
0.0155742 + 0.999879i \(0.495042\pi\)
\(380\) −14.5970 + 2.05086i −0.748812 + 0.105207i
\(381\) 22.1225 1.13337
\(382\) 14.7304i 0.753672i
\(383\) 34.7797i 1.77716i −0.458722 0.888580i \(-0.651693\pi\)
0.458722 0.888580i \(-0.348307\pi\)
\(384\) 2.21432 0.112999
\(385\) 1.29529 + 9.21924i 0.0660139 + 0.469856i
\(386\) −14.0000 −0.712581
\(387\) 3.80642i 0.193491i
\(388\) 4.26025i 0.216282i
\(389\) 18.6844 0.947339 0.473670 0.880703i \(-0.342929\pi\)
0.473670 + 0.880703i \(0.342929\pi\)
\(390\) 0 0
\(391\) 2.81579 0.142401
\(392\) 8.23506i 0.415934i
\(393\) 20.4953i 1.03385i
\(394\) 10.4128 0.524590
\(395\) 9.52543 1.33830i 0.479276 0.0673374i
\(396\) −2.03011 −0.102017
\(397\) 22.9748i 1.15307i −0.817072 0.576536i \(-0.804404\pi\)
0.817072 0.576536i \(-0.195596\pi\)
\(398\) 4.36842i 0.218969i
\(399\) −56.9753 −2.85233
\(400\) 4.80642 1.37778i 0.240321 0.0688892i
\(401\) 4.37334 0.218394 0.109197 0.994020i \(-0.465172\pi\)
0.109197 + 0.994020i \(0.465172\pi\)
\(402\) 18.6637i 0.930861i
\(403\) 0 0
\(404\) −1.45875 −0.0725756
\(405\) 24.5511 3.44938i 1.21995 0.171401i
\(406\) 35.3274 1.75327
\(407\) 5.35551i 0.265463i
\(408\) 2.90321i 0.143730i
\(409\) −3.76986 −0.186408 −0.0932038 0.995647i \(-0.529711\pi\)
−0.0932038 + 0.995647i \(0.529711\pi\)
\(410\) 1.85236 + 13.1842i 0.0914814 + 0.651122i
\(411\) 32.7511 1.61549
\(412\) 10.2444i 0.504707i
\(413\) 28.0415i 1.37983i
\(414\) 4.08742 0.200886
\(415\) −3.01582 21.4652i −0.148041 1.05369i
\(416\) 0 0
\(417\) 28.1082i 1.37646i
\(418\) 7.03164i 0.343929i
\(419\) −7.45230 −0.364069 −0.182034 0.983292i \(-0.558268\pi\)
−0.182034 + 0.983292i \(0.558268\pi\)
\(420\) 19.1383 2.68889i 0.933852 0.131205i
\(421\) −27.6751 −1.34880 −0.674400 0.738366i \(-0.735598\pi\)
−0.674400 + 0.738366i \(0.735598\pi\)
\(422\) 5.49532i 0.267508i
\(423\) 0.184208i 0.00895651i
\(424\) −1.49532 −0.0726190
\(425\) 1.80642 + 6.30174i 0.0876244 + 0.305679i
\(426\) −34.2766 −1.66070
\(427\) 30.7862i 1.48985i
\(428\) 2.21432i 0.107033i
\(429\) 0 0
\(430\) 4.42864 0.622216i 0.213568 0.0300059i
\(431\) −19.6894 −0.948404 −0.474202 0.880416i \(-0.657263\pi\)
−0.474202 + 0.880416i \(0.657263\pi\)
\(432\) 2.42864i 0.116848i
\(433\) 13.7462i 0.660600i 0.943876 + 0.330300i \(0.107150\pi\)
−0.943876 + 0.330300i \(0.892850\pi\)
\(434\) 27.0257 1.29727
\(435\) 6.23506 + 44.3783i 0.298948 + 2.12777i
\(436\) −0.133353 −0.00638645
\(437\) 14.1575i 0.677244i
\(438\) 33.9956i 1.62437i
\(439\) −41.8227 −1.99609 −0.998045 0.0625026i \(-0.980092\pi\)
−0.998045 + 0.0625026i \(0.980092\pi\)
\(440\) 0.331851 + 2.36196i 0.0158204 + 0.112602i
\(441\) 15.6731 0.746337
\(442\) 0 0
\(443\) 23.6829i 1.12521i 0.826726 + 0.562605i \(0.190201\pi\)
−0.826726 + 0.562605i \(0.809799\pi\)
\(444\) 11.1175 0.527615
\(445\) −10.0207 + 1.40790i −0.475029 + 0.0667407i
\(446\) −20.0968 −0.951610
\(447\) 16.1334i 0.763081i
\(448\) 3.90321i 0.184409i
\(449\) 7.05578 0.332983 0.166491 0.986043i \(-0.446756\pi\)
0.166491 + 0.986043i \(0.446756\pi\)
\(450\) 2.62222 + 9.14764i 0.123612 + 0.431224i
\(451\) −6.35106 −0.299060
\(452\) 14.0000i 0.658505i
\(453\) 44.5259i 2.09201i
\(454\) −19.3590 −0.908565
\(455\) 0 0
\(456\) −14.5970 −0.683568
\(457\) 35.6795i 1.66902i 0.550995 + 0.834509i \(0.314249\pi\)
−0.550995 + 0.834509i \(0.685751\pi\)
\(458\) 15.7255i 0.734802i
\(459\) 3.18421 0.148626
\(460\) −0.668149 4.75557i −0.0311526 0.221730i
\(461\) 14.6015 0.680058 0.340029 0.940415i \(-0.389563\pi\)
0.340029 + 0.940415i \(0.389563\pi\)
\(462\) 9.21924i 0.428918i
\(463\) 30.7511i 1.42913i 0.699571 + 0.714563i \(0.253374\pi\)
−0.699571 + 0.714563i \(0.746626\pi\)
\(464\) 9.05086 0.420175
\(465\) 4.76986 + 33.9496i 0.221197 + 1.57438i
\(466\) 14.8825 0.689417
\(467\) 20.5620i 0.951496i −0.879582 0.475748i \(-0.842178\pi\)
0.879582 0.475748i \(-0.157822\pi\)
\(468\) 0 0
\(469\) −32.8988 −1.51912
\(470\) −0.214320 + 0.0301115i −0.00988583 + 0.00138894i
\(471\) −4.39361 −0.202447
\(472\) 7.18421i 0.330680i
\(473\) 2.13335i 0.0980917i
\(474\) 9.52543 0.437517
\(475\) −31.6844 + 9.08250i −1.45378 + 0.416734i
\(476\) 5.11753 0.234562
\(477\) 2.84590i 0.130305i
\(478\) 4.42219i 0.202266i
\(479\) 11.9333 0.545247 0.272624 0.962121i \(-0.412109\pi\)
0.272624 + 0.962121i \(0.412109\pi\)
\(480\) 4.90321 0.688892i 0.223800 0.0314435i
\(481\) 0 0
\(482\) 11.2810i 0.513835i
\(483\) 18.5620i 0.844600i
\(484\) 9.86220 0.448282
\(485\) −1.32540 9.43356i −0.0601832 0.428356i
\(486\) 17.2652 0.783164
\(487\) 27.9719i 1.26753i 0.773527 + 0.633764i \(0.218491\pi\)
−0.773527 + 0.633764i \(0.781509\pi\)
\(488\) 7.88739i 0.357045i
\(489\) −10.4143 −0.470953
\(490\) −2.56199 18.2351i −0.115739 0.823776i
\(491\) −20.7812 −0.937844 −0.468922 0.883240i \(-0.655357\pi\)
−0.468922 + 0.883240i \(0.655357\pi\)
\(492\) 13.1842i 0.594390i
\(493\) 11.8666i 0.534447i
\(494\) 0 0
\(495\) −4.49532 + 0.631584i −0.202049 + 0.0283876i
\(496\) 6.92396 0.310895
\(497\) 60.4197i 2.71020i
\(498\) 21.4652i 0.961879i
\(499\) 34.2908 1.53507 0.767534 0.641008i \(-0.221483\pi\)
0.767534 + 0.641008i \(0.221483\pi\)
\(500\) 10.2143 4.54617i 0.456798 0.203311i
\(501\) 21.4686 0.959146
\(502\) 2.65233i 0.118379i
\(503\) 20.2257i 0.901819i 0.892570 + 0.450910i \(0.148900\pi\)
−0.892570 + 0.450910i \(0.851100\pi\)
\(504\) 7.42864 0.330898
\(505\) −3.23014 + 0.453829i −0.143739 + 0.0201951i
\(506\) 2.29084 0.101840
\(507\) 0 0
\(508\) 9.99063i 0.443263i
\(509\) −27.3778 −1.21350 −0.606749 0.794893i \(-0.707527\pi\)
−0.606749 + 0.794893i \(0.707527\pi\)
\(510\) 0.903212 + 6.42864i 0.0399949 + 0.284665i
\(511\) 59.9244 2.65090
\(512\) 1.00000i 0.0441942i
\(513\) 16.0098i 0.706852i
\(514\) 4.10171 0.180919
\(515\) −3.18712 22.6844i −0.140441 0.999596i
\(516\) 4.42864 0.194960
\(517\) 0.103242i 0.00454056i
\(518\) 19.5970i 0.861044i
\(519\) −53.3022 −2.33971
\(520\) 0 0
\(521\) −31.2034 −1.36705 −0.683523 0.729929i \(-0.739553\pi\)
−0.683523 + 0.729929i \(0.739553\pi\)
\(522\) 17.2257i 0.753948i
\(523\) 9.84791i 0.430619i 0.976546 + 0.215310i \(0.0690760\pi\)
−0.976546 + 0.215310i \(0.930924\pi\)
\(524\) −9.25581 −0.404342
\(525\) 41.5417 11.9081i 1.81303 0.519714i
\(526\) 10.8020 0.470989
\(527\) 9.07805i 0.395446i
\(528\) 2.36196i 0.102791i
\(529\) 18.3876 0.799462
\(530\) −3.31111 + 0.465205i −0.143825 + 0.0202072i
\(531\) −13.6731 −0.593361
\(532\) 25.7304i 1.11555i
\(533\) 0 0
\(534\) −10.0207 −0.433640
\(535\) 0.688892 + 4.90321i 0.0297834 + 0.211984i
\(536\) −8.42864 −0.364062
\(537\) 6.75557i 0.291524i
\(538\) 18.5827i 0.801159i
\(539\) 8.78415 0.378360
\(540\) −0.755569 5.37778i −0.0325145 0.231423i
\(541\) −41.6149 −1.78916 −0.894581 0.446905i \(-0.852526\pi\)
−0.894581 + 0.446905i \(0.852526\pi\)
\(542\) 19.7748i 0.849400i
\(543\) 23.5669i 1.01135i
\(544\) 1.31111 0.0562133
\(545\) −0.295286 + 0.0414872i −0.0126487 + 0.00177712i
\(546\) 0 0
\(547\) 6.77430i 0.289648i 0.989457 + 0.144824i \(0.0462617\pi\)
−0.989457 + 0.144824i \(0.953738\pi\)
\(548\) 14.7906i 0.631823i
\(549\) −15.0114 −0.640670
\(550\) 1.46965 + 5.12690i 0.0626661 + 0.218612i
\(551\) −59.6642 −2.54178
\(552\) 4.75557i 0.202410i
\(553\) 16.7906i 0.714009i
\(554\) 0.204952 0.00870757
\(555\) 24.6178 3.45875i 1.04497 0.146816i
\(556\) −12.6938 −0.538338
\(557\) 25.4449i 1.07814i −0.842262 0.539068i \(-0.818776\pi\)
0.842262 0.539068i \(-0.181224\pi\)
\(558\) 13.1778i 0.557859i
\(559\) 0 0
\(560\) −1.21432 8.64296i −0.0513144 0.365232i
\(561\) −3.09679 −0.130746
\(562\) 20.4558i 0.862877i
\(563\) 13.1842i 0.555648i −0.960632 0.277824i \(-0.910387\pi\)
0.960632 0.277824i \(-0.0896132\pi\)
\(564\) −0.214320 −0.00902449
\(565\) −4.35551 31.0005i −0.183238 1.30420i
\(566\) −1.43801 −0.0604440
\(567\) 43.2766i 1.81744i
\(568\) 15.4795i 0.649505i
\(569\) 24.4608 1.02545 0.512724 0.858553i \(-0.328636\pi\)
0.512724 + 0.858553i \(0.328636\pi\)
\(570\) −32.3225 + 4.54125i −1.35384 + 0.190212i
\(571\) 24.3526 1.01912 0.509562 0.860434i \(-0.329807\pi\)
0.509562 + 0.860434i \(0.329807\pi\)
\(572\) 0 0
\(573\) 32.6178i 1.36263i
\(574\) 23.2400 0.970018
\(575\) −2.95899 10.3225i −0.123398 0.430477i
\(576\) 1.90321 0.0793005
\(577\) 42.0479i 1.75048i 0.483690 + 0.875239i \(0.339296\pi\)
−0.483690 + 0.875239i \(0.660704\pi\)
\(578\) 15.2810i 0.635606i
\(579\) −31.0005 −1.28834
\(580\) 20.0415 2.81579i 0.832177 0.116919i
\(581\) −37.8370 −1.56974
\(582\) 9.43356i 0.391034i
\(583\) 1.59502i 0.0660589i
\(584\) 15.3526 0.635295
\(585\) 0 0
\(586\) −20.9146 −0.863974
\(587\) 7.34614i 0.303208i 0.988441 + 0.151604i \(0.0484438\pi\)
−0.988441 + 0.151604i \(0.951556\pi\)
\(588\) 18.2351i 0.752001i
\(589\) −45.6434 −1.88071
\(590\) 2.23506 + 15.9081i 0.0920161 + 0.654928i
\(591\) 23.0573 0.948451
\(592\) 5.02074i 0.206351i
\(593\) 4.19358i 0.172210i 0.996286 + 0.0861048i \(0.0274420\pi\)
−0.996286 + 0.0861048i \(0.972558\pi\)
\(594\) 2.59057 0.106292
\(595\) 11.3319 1.59210i 0.464561 0.0652699i
\(596\) −7.28592 −0.298443
\(597\) 9.67307i 0.395892i
\(598\) 0 0
\(599\) −9.33630 −0.381471 −0.190735 0.981641i \(-0.561087\pi\)
−0.190735 + 0.981641i \(0.561087\pi\)
\(600\) 10.6430 3.05086i 0.434497 0.124551i
\(601\) −2.97142 −0.121207 −0.0606034 0.998162i \(-0.519302\pi\)
−0.0606034 + 0.998162i \(0.519302\pi\)
\(602\) 7.80642i 0.318166i
\(603\) 16.0415i 0.653260i
\(604\) 20.1082 0.818190
\(605\) 21.8381 3.06821i 0.887844 0.124740i
\(606\) −3.23014 −0.131216
\(607\) 17.1432i 0.695821i −0.937528 0.347910i \(-0.886891\pi\)
0.937528 0.347910i \(-0.113109\pi\)
\(608\) 6.59210i 0.267345i
\(609\) 78.2262 3.16988
\(610\) 2.45383 + 17.4652i 0.0993526 + 0.707145i
\(611\) 0 0
\(612\) 2.49532i 0.100867i
\(613\) 29.2844i 1.18279i −0.806384 0.591393i \(-0.798578\pi\)
0.806384 0.591393i \(-0.201422\pi\)
\(614\) −12.5303 −0.505684
\(615\) 4.10171 + 29.1941i 0.165397 + 1.17722i
\(616\) 4.16346 0.167751
\(617\) 13.2159i 0.532050i 0.963966 + 0.266025i \(0.0857104\pi\)
−0.963966 + 0.266025i \(0.914290\pi\)
\(618\) 22.6844i 0.912502i
\(619\) −18.9333 −0.760995 −0.380497 0.924782i \(-0.624247\pi\)
−0.380497 + 0.924782i \(0.624247\pi\)
\(620\) 15.3319 2.15410i 0.615742 0.0865106i
\(621\) −5.21585 −0.209305
\(622\) 9.78123i 0.392192i
\(623\) 17.6637i 0.707681i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) −17.2128 −0.687961
\(627\) 15.5703i 0.621818i
\(628\) 1.98418i 0.0791773i
\(629\) 6.58274 0.262471
\(630\) 16.4494 2.31111i 0.655359 0.0920767i
\(631\) −2.42864 −0.0966826 −0.0483413 0.998831i \(-0.515394\pi\)
−0.0483413 + 0.998831i \(0.515394\pi\)
\(632\) 4.30174i 0.171114i
\(633\) 12.1684i 0.483650i
\(634\) −13.7447 −0.545871
\(635\) −3.10816 22.1225i −0.123344 0.877903i
\(636\) −3.31111 −0.131294
\(637\) 0 0
\(638\) 9.65433i 0.382219i
\(639\) −29.4608 −1.16545
\(640\) −0.311108 2.21432i −0.0122976 0.0875287i
\(641\) 15.0874 0.595917 0.297959 0.954579i \(-0.403694\pi\)
0.297959 + 0.954579i \(0.403694\pi\)
\(642\) 4.90321i 0.193514i
\(643\) 6.70318i 0.264348i −0.991227 0.132174i \(-0.957804\pi\)
0.991227 0.132174i \(-0.0421957\pi\)
\(644\) −8.38271 −0.330325
\(645\) 9.80642 1.37778i 0.386128 0.0542502i
\(646\) −8.64296 −0.340053
\(647\) 22.3733i 0.879587i 0.898099 + 0.439793i \(0.144948\pi\)
−0.898099 + 0.439793i \(0.855052\pi\)
\(648\) 11.0874i 0.435555i
\(649\) −7.66323 −0.300808
\(650\) 0 0
\(651\) 59.8435 2.34545
\(652\) 4.70318i 0.184191i
\(653\) 16.4128i 0.642283i −0.947031 0.321142i \(-0.895933\pi\)
0.947031 0.321142i \(-0.104067\pi\)
\(654\) −0.295286 −0.0115466
\(655\) −20.4953 + 2.87955i −0.800818 + 0.112513i
\(656\) 5.95407 0.232467
\(657\) 29.2192i 1.13995i
\(658\) 0.377784i 0.0147276i
\(659\) −8.66815 −0.337663 −0.168832 0.985645i \(-0.553999\pi\)
−0.168832 + 0.985645i \(0.553999\pi\)
\(660\) 0.734825 + 5.23014i 0.0286030 + 0.203583i
\(661\) −17.4302 −0.677955 −0.338978 0.940794i \(-0.610081\pi\)
−0.338978 + 0.940794i \(0.610081\pi\)
\(662\) 19.3876i 0.753522i
\(663\) 0 0
\(664\) −9.69381 −0.376193
\(665\) 8.00492 + 56.9753i 0.310418 + 2.20941i
\(666\) 9.55554 0.370270
\(667\) 19.4380i 0.752643i
\(668\) 9.69535i 0.375124i
\(669\) −44.5007 −1.72050
\(670\) −18.6637 + 2.62222i −0.721042 + 0.101305i
\(671\) −8.41329 −0.324792
\(672\) 8.64296i 0.333409i
\(673\) 40.4830i 1.56051i −0.625464 0.780253i \(-0.715090\pi\)
0.625464 0.780253i \(-0.284910\pi\)
\(674\) 0.555539 0.0213986
\(675\) −3.34614 11.6731i −0.128793 0.449297i
\(676\) 0 0
\(677\) 40.0228i 1.53820i 0.639129 + 0.769100i \(0.279295\pi\)
−0.639129 + 0.769100i \(0.720705\pi\)
\(678\) 31.0005i 1.19057i
\(679\) −16.6287 −0.638150
\(680\) 2.90321 0.407896i 0.111333 0.0156421i
\(681\) −42.8671 −1.64267
\(682\) 7.38562i 0.282810i
\(683\) 43.3087i 1.65716i 0.559871 + 0.828580i \(0.310851\pi\)
−0.559871 + 0.828580i \(0.689149\pi\)
\(684\) −12.5462 −0.479715
\(685\) −4.60147 32.7511i −0.175813 1.25136i
\(686\) −4.82071 −0.184056
\(687\) 34.8212i 1.32851i
\(688\) 2.00000i 0.0762493i
\(689\) 0 0
\(690\) −1.47949 10.5303i −0.0563234 0.400884i
\(691\) −28.3481 −1.07841 −0.539207 0.842173i \(-0.681276\pi\)
−0.539207 + 0.842173i \(0.681276\pi\)
\(692\) 24.0716i 0.915065i
\(693\) 7.92396i 0.301006i
\(694\) 6.68445 0.253738
\(695\) −28.1082 + 3.94914i −1.06620 + 0.149800i
\(696\) 20.0415 0.759671
\(697\) 7.80642i 0.295689i
\(698\) 10.5827i 0.400562i
\(699\) 32.9545 1.24646
\(700\) −5.37778 18.7605i −0.203261 0.709080i
\(701\) 12.8080 0.483750 0.241875 0.970307i \(-0.422238\pi\)
0.241875 + 0.970307i \(0.422238\pi\)
\(702\) 0 0
\(703\) 33.0973i 1.24829i
\(704\) 1.06668 0.0402019
\(705\) −0.474572 + 0.0666765i −0.0178734 + 0.00251118i
\(706\) −9.20940 −0.346600
\(707\) 5.69381i 0.214138i
\(708\) 15.9081i 0.597864i
\(709\) 2.52251 0.0947350 0.0473675 0.998878i \(-0.484917\pi\)
0.0473675 + 0.998878i \(0.484917\pi\)
\(710\) 4.81579 + 34.2766i 0.180733 + 1.28638i
\(711\) 8.18712 0.307041
\(712\) 4.52543i 0.169598i
\(713\) 14.8702i 0.556893i
\(714\) 11.3319 0.424084
\(715\) 0 0
\(716\) 3.05086 0.114016
\(717\) 9.79213i 0.365694i
\(718\) 4.19358i 0.156503i
\(719\) −17.0223 −0.634824 −0.317412 0.948288i \(-0.602814\pi\)
−0.317412 + 0.948288i \(0.602814\pi\)
\(720\) 4.21432 0.592104i 0.157058 0.0220664i
\(721\) −39.9862 −1.48916
\(722\) 24.4558i 0.910152i
\(723\) 24.9797i 0.929006i
\(724\) −10.6430 −0.395542
\(725\) 43.5022 12.4701i 1.61563 0.463129i
\(726\) 21.8381 0.810487
\(727\) 30.5353i 1.13249i −0.824237 0.566245i \(-0.808395\pi\)
0.824237 0.566245i \(-0.191605\pi\)
\(728\) 0 0
\(729\) 4.96836 0.184013
\(730\) 33.9956 4.77631i 1.25823 0.176779i
\(731\) 2.62222 0.0969861
\(732\) 17.4652i 0.645533i
\(733\) 24.4499i 0.903076i 0.892252 + 0.451538i \(0.149124\pi\)
−0.892252 + 0.451538i \(0.850876\pi\)
\(734\) 13.9684 0.515581
\(735\) −5.67307 40.3783i −0.209254 1.48937i
\(736\) −2.14764 −0.0791632
\(737\) 8.99063i 0.331174i
\(738\) 11.3319i 0.417131i
\(739\) −10.7955 −0.397120 −0.198560 0.980089i \(-0.563626\pi\)
−0.198560 + 0.980089i \(0.563626\pi\)
\(740\) −1.56199 11.1175i −0.0574200 0.408689i
\(741\) 0 0
\(742\) 5.83654i 0.214266i
\(743\) 29.9353i 1.09822i 0.835750 + 0.549110i \(0.185033\pi\)
−0.835750 + 0.549110i \(0.814967\pi\)
\(744\) 15.3319 0.562093
\(745\) −16.1334 + 2.26671i −0.591080 + 0.0830457i
\(746\) −11.8479 −0.433783
\(747\) 18.4494i 0.675028i
\(748\) 1.39853i 0.0511352i
\(749\) 8.64296 0.315807
\(750\) 22.6178 10.0667i 0.825884 0.367583i
\(751\) 26.9175 0.982234 0.491117 0.871094i \(-0.336589\pi\)
0.491117 + 0.871094i \(0.336589\pi\)
\(752\) 0.0967881i 0.00352950i
\(753\) 5.87310i 0.214028i
\(754\) 0 0
\(755\) 44.5259 6.25581i 1.62046 0.227672i
\(756\) −9.47949 −0.344766
\(757\) 35.9066i 1.30505i −0.757768 0.652524i \(-0.773710\pi\)
0.757768 0.652524i \(-0.226290\pi\)
\(758\) 0.606394i 0.0220252i
\(759\) 5.07265 0.184126
\(760\) 2.05086 + 14.5970i 0.0743923 + 0.529490i
\(761\) −22.5397 −0.817064 −0.408532 0.912744i \(-0.633959\pi\)
−0.408532 + 0.912744i \(0.633959\pi\)
\(762\) 22.1225i 0.801412i
\(763\) 0.520505i 0.0188436i
\(764\) −14.7304 −0.532926
\(765\) 0.776312 + 5.52543i 0.0280676 + 0.199772i
\(766\) −34.7797 −1.25664
\(767\) 0 0
\(768\) 2.21432i 0.0799024i
\(769\) 2.47457 0.0892354 0.0446177 0.999004i \(-0.485793\pi\)
0.0446177 + 0.999004i \(0.485793\pi\)
\(770\) 9.21924 1.29529i 0.332238 0.0466789i
\(771\) 9.08250 0.327098
\(772\) 14.0000i 0.503871i
\(773\) 44.2005i 1.58978i −0.606752 0.794891i \(-0.707528\pi\)
0.606752 0.794891i \(-0.292472\pi\)
\(774\) 3.80642 0.136819
\(775\) 33.2795 9.53972i 1.19543 0.342677i
\(776\) −4.26025 −0.152934
\(777\) 43.3941i 1.55675i
\(778\) 18.6844i 0.669870i
\(779\) −39.2498 −1.40627
\(780\) 0 0
\(781\) −16.5116 −0.590832
\(782\) 2.81579i 0.100693i
\(783\) 21.9813i 0.785546i
\(784\) −8.23506 −0.294109
\(785\) 0.617293 + 4.39361i 0.0220321 + 0.156815i
\(786\) −20.4953 −0.731044
\(787\) 34.0306i 1.21306i −0.795061 0.606530i \(-0.792561\pi\)
0.795061 0.606530i \(-0.207439\pi\)
\(788\) 10.4128i 0.370941i
\(789\) 23.9190 0.851540
\(790\) −1.33830 9.52543i −0.0476148 0.338900i
\(791\) −54.6450 −1.94295
\(792\) 2.03011i 0.0721369i
\(793\) 0 0
\(794\) −22.9748 −0.815346
\(795\) −7.33185 + 1.03011i −0.260034 + 0.0365343i
\(796\) −4.36842 −0.154834
\(797\) 8.13780i 0.288256i 0.989559 + 0.144128i \(0.0460376\pi\)
−0.989559 + 0.144128i \(0.953962\pi\)
\(798\) 56.9753i 2.01690i
\(799\) −0.126900 −0.00448939
\(800\) −1.37778 4.80642i −0.0487120 0.169933i
\(801\) −8.61285 −0.304320
\(802\) 4.37334i 0.154428i
\(803\) 16.3763i 0.577905i
\(804\) −18.6637 −0.658218
\(805\) −18.5620 + 2.60793i −0.654224 + 0.0919173i
\(806\) 0 0
\(807\) 41.1481i 1.44848i
\(808\) 1.45875i 0.0513187i
\(809\) 7.85236 0.276074 0.138037 0.990427i \(-0.455921\pi\)
0.138037 + 0.990427i \(0.455921\pi\)
\(810\) −3.44938 24.5511i −0.121199 0.862637i
\(811\) −9.33477 −0.327788 −0.163894 0.986478i \(-0.552405\pi\)
−0.163894 + 0.986478i \(0.552405\pi\)
\(812\) 35.3274i 1.23975i
\(813\) 43.7877i 1.53570i
\(814\) 5.35551 0.187711
\(815\) 1.46320 + 10.4143i 0.0512535 + 0.364799i
\(816\) 2.90321 0.101633
\(817\) 13.1842i 0.461257i
\(818\) 3.76986i 0.131810i
\(819\) 0 0
\(820\) 13.1842 1.85236i 0.460413 0.0646871i
\(821\) 47.5319 1.65887 0.829437 0.558600i \(-0.188661\pi\)
0.829437 + 0.558600i \(0.188661\pi\)
\(822\) 32.7511i 1.14233i
\(823\) 1.38715i 0.0483531i 0.999708 + 0.0241765i \(0.00769638\pi\)
−0.999708 + 0.0241765i \(0.992304\pi\)
\(824\) −10.2444 −0.356882
\(825\) 3.25428 + 11.3526i 0.113299 + 0.395247i
\(826\) 28.0415 0.975688
\(827\) 31.5131i 1.09582i 0.836537 + 0.547910i \(0.184576\pi\)
−0.836537 + 0.547910i \(0.815424\pi\)
\(828\) 4.08742i 0.142048i
\(829\) 28.8256 1.00116 0.500578 0.865692i \(-0.333121\pi\)
0.500578 + 0.865692i \(0.333121\pi\)
\(830\) −21.4652 + 3.01582i −0.745068 + 0.104681i
\(831\) 0.453829 0.0157431
\(832\) 0 0
\(833\) 10.7971i 0.374096i
\(834\) −28.1082 −0.973306
\(835\) −3.01630 21.4686i −0.104383 0.742951i
\(836\) −7.03164 −0.243194
\(837\) 16.8158i 0.581239i
\(838\) 7.45230i 0.257435i
\(839\) 8.43509 0.291212 0.145606 0.989343i \(-0.453487\pi\)
0.145606 + 0.989343i \(0.453487\pi\)
\(840\) −2.68889 19.1383i −0.0927756 0.660333i
\(841\) 52.9180 1.82476
\(842\) 27.6751i 0.953746i
\(843\) 45.2958i 1.56007i
\(844\) −5.49532 −0.189157
\(845\) 0 0
\(846\) −0.184208 −0.00633321
\(847\) 38.4943i 1.32268i
\(848\) 1.49532i 0.0513494i
\(849\) −3.18421 −0.109282
\(850\) 6.30174 1.80642i 0.216148 0.0619598i
\(851\) −10.7828 −0.369628
\(852\) 34.2766i 1.17430i
\(853\) 40.0656i 1.37182i −0.727686 0.685910i \(-0.759404\pi\)
0.727686 0.685910i \(-0.240596\pi\)
\(854\) 30.7862 1.05348
\(855\) −27.7812 + 3.90321i −0.950098 + 0.133487i
\(856\) 2.21432 0.0756839
\(857\) 32.0479i 1.09474i 0.836892 + 0.547368i \(0.184370\pi\)
−0.836892 + 0.547368i \(0.815630\pi\)
\(858\) 0 0
\(859\) 26.6894 0.910630 0.455315 0.890331i \(-0.349527\pi\)
0.455315 + 0.890331i \(0.349527\pi\)
\(860\) −0.622216 4.42864i −0.0212174 0.151015i
\(861\) 51.4608 1.75378
\(862\) 19.6894i 0.670623i
\(863\) 30.6593i 1.04365i 0.853052 + 0.521827i \(0.174749\pi\)
−0.853052 + 0.521827i \(0.825251\pi\)
\(864\) −2.42864 −0.0826240
\(865\) 7.48886 + 53.3022i 0.254629 + 1.81233i
\(866\) 13.7462 0.467115
\(867\) 33.8370i 1.14917i
\(868\) 27.0257i 0.917311i
\(869\) 4.58857 0.155656
\(870\) 44.3783 6.23506i 1.50456 0.211388i
\(871\) 0 0
\(872\) 0.133353i 0.00451591i
\(873\) 8.10816i 0.274420i
\(874\) 14.1575 0.478884
\(875\) −17.7447 39.8687i −0.599879 1.34781i
\(876\) 33.9956 1.14860
\(877\) 20.9304i 0.706770i −0.935478 0.353385i \(-0.885031\pi\)
0.935478 0.353385i \(-0.114969\pi\)
\(878\) 41.8227i 1.41145i
\(879\) −46.3116 −1.56205
\(880\) 2.36196 0.331851i 0.0796218 0.0111867i
\(881\) 21.4701 0.723347 0.361673 0.932305i \(-0.382206\pi\)
0.361673 + 0.932305i \(0.382206\pi\)
\(882\) 15.6731i 0.527740i
\(883\) 7.73530i 0.260314i 0.991493 + 0.130157i \(0.0415481\pi\)
−0.991493 + 0.130157i \(0.958452\pi\)
\(884\) 0 0
\(885\) 4.94914 + 35.2257i 0.166364 + 1.18410i
\(886\) 23.6829 0.795643
\(887\) 48.4465i 1.62667i −0.581793 0.813337i \(-0.697649\pi\)
0.581793 0.813337i \(-0.302351\pi\)
\(888\) 11.1175i 0.373080i
\(889\) −38.9956 −1.30787
\(890\) 1.40790 + 10.0207i 0.0471928 + 0.335896i
\(891\) 11.8267 0.396209
\(892\) 20.0968i 0.672890i
\(893\) 0.638037i 0.0213511i
\(894\) −16.1334 −0.539580
\(895\) 6.75557 0.949145i 0.225814 0.0317264i
\(896\) −3.90321 −0.130397
\(897\) 0 0
\(898\) 7.05578i 0.235454i
\(899\) 62.6677 2.09009
\(900\) 9.14764 2.62222i 0.304921 0.0874072i
\(901\) −1.96052 −0.0653144
\(902\) 6.35106i 0.211467i
\(903\) 17.2859i 0.575239i
\(904\) −14.0000 −0.465633
\(905\) −23.5669 + 3.31111i −0.783391 + 0.110065i
\(906\) 44.5259 1.47927
\(907\) 12.0109i 0.398815i 0.979917 + 0.199408i \(0.0639018\pi\)
−0.979917 + 0.199408i \(0.936098\pi\)
\(908\) 19.3590i 0.642453i
\(909\) −2.77631 −0.0920845
\(910\) 0 0
\(911\) −8.10171 −0.268422 −0.134211 0.990953i \(-0.542850\pi\)
−0.134211 + 0.990953i \(0.542850\pi\)
\(912\) 14.5970i 0.483356i
\(913\) 10.3402i 0.342209i
\(914\) 35.6795 1.18017
\(915\) 5.43356 + 38.6735i 0.179628 + 1.27851i
\(916\) −15.7255 −0.519584
\(917\) 36.1274i 1.19303i
\(918\) 3.18421i 0.105095i
\(919\) −16.5936 −0.547374 −0.273687 0.961819i \(-0.588243\pi\)
−0.273687 + 0.961819i \(0.588243\pi\)
\(920\) −4.75557 + 0.668149i −0.156786 + 0.0220282i
\(921\) −27.7462 −0.914268
\(922\) 14.6015i 0.480874i
\(923\) 0 0
\(924\) 9.21924 0.303291
\(925\) −6.91750 24.1318i −0.227446 0.793449i
\(926\) 30.7511 1.01054
\(927\) 19.4973i 0.640376i
\(928\) 9.05086i 0.297109i
\(929\) 57.1209 1.87408 0.937038 0.349227i \(-0.113556\pi\)
0.937038 + 0.349227i \(0.113556\pi\)
\(930\) 33.9496 4.76986i 1.11325 0.156410i
\(931\) 54.2864 1.77916
\(932\) 14.8825i 0.487491i
\(933\) 21.6588i 0.709077i
\(934\) −20.5620 −0.672809
\(935\) 0.435093 + 3.09679i 0.0142291 + 0.101276i
\(936\) 0 0
\(937\) 11.1842i 0.365372i −0.983171 0.182686i \(-0.941521\pi\)
0.983171 0.182686i \(-0.0584792\pi\)
\(938\) 32.8988i 1.07418i
\(939\) −38.1146 −1.24382
\(940\) 0.0301115 + 0.214320i 0.000982130 + 0.00699034i
\(941\) 7.68598 0.250556 0.125278 0.992122i \(-0.460018\pi\)
0.125278 + 0.992122i \(0.460018\pi\)
\(942\) 4.39361i 0.143151i
\(943\) 12.7872i 0.416409i
\(944\) 7.18421 0.233826
\(945\) −20.9906 + 2.94914i −0.682825 + 0.0959357i
\(946\) 2.13335 0.0693613
\(947\) 20.6746i 0.671834i −0.941892 0.335917i \(-0.890954\pi\)
0.941892 0.335917i \(-0.109046\pi\)
\(948\) 9.52543i 0.309372i
\(949\) 0 0
\(950\) 9.08250 + 31.6844i 0.294675 + 1.02798i
\(951\) −30.4351 −0.986926
\(952\) 5.11753i 0.165860i
\(953\) 30.9753i 1.00339i 0.865045 + 0.501694i \(0.167290\pi\)
−0.865045 + 0.501694i \(0.832710\pi\)
\(954\) −2.84590 −0.0921395
\(955\) −32.6178 + 4.58274i −1.05549 + 0.148294i
\(956\) −4.42219 −0.143024
\(957\) 21.3778i 0.691046i
\(958\) 11.9333i 0.385548i
\(959\) −57.7309 −1.86423
\(960\) −0.688892 4.90321i −0.0222339 0.158250i
\(961\) 16.9412 0.546489
\(962\) 0 0
\(963\) 4.21432i 0.135805i
\(964\) −11.2810 −0.363336
\(965\) 4.35551 + 31.0005i 0.140209 + 0.997941i
\(966\) −18.5620 −0.597222
\(967\) 0.529873i 0.0170396i 0.999964 + 0.00851979i \(0.00271197\pi\)
−0.999964 + 0.00851979i \(0.997288\pi\)
\(968\) 9.86220i 0.316983i
\(969\) −19.1383 −0.614810
\(970\) −9.43356 + 1.32540i −0.302893 + 0.0425560i
\(971\) −34.3240 −1.10151 −0.550755 0.834667i \(-0.685660\pi\)
−0.550755 + 0.834667i \(0.685660\pi\)
\(972\) 17.2652i 0.553781i
\(973\) 49.5466i 1.58839i
\(974\) 27.9719 0.896277
\(975\) 0 0
\(976\) 7.88739 0.252469
\(977\) 19.9684i 0.638844i −0.947613 0.319422i \(-0.896511\pi\)
0.947613 0.319422i \(-0.103489\pi\)
\(978\) 10.4143i 0.333014i
\(979\) −4.82717 −0.154277
\(980\) −18.2351 + 2.56199i −0.582498 + 0.0818399i
\(981\) −0.253799 −0.00810318
\(982\) 20.7812i 0.663156i
\(983\) 20.8524i 0.665087i −0.943088 0.332543i \(-0.892093\pi\)
0.943088 0.332543i \(-0.107907\pi\)
\(984\) 13.1842 0.420297
\(985\) −3.23951 23.0573i −0.103219 0.734667i
\(986\) 11.8666 0.377911
\(987\) 0.836535i 0.0266272i
\(988\) 0 0
\(989\) −4.29529 −0.136582
\(990\) 0.631584 + 4.49532i 0.0200730 + 0.142871i
\(991\) −2.95899 −0.0939954 −0.0469977 0.998895i \(-0.514965\pi\)
−0.0469977 + 0.998895i \(0.514965\pi\)
\(992\) 6.92396i 0.219836i
\(993\) 42.9304i 1.36236i
\(994\) 60.4197 1.91640
\(995\) −9.67307 + 1.35905i −0.306657 + 0.0430847i
\(996\) −21.4652 −0.680151
\(997\) 21.0479i 0.666595i −0.942822 0.333297i \(-0.891839\pi\)
0.942822 0.333297i \(-0.108161\pi\)
\(998\) 34.2908i 1.08546i
\(999\) −12.1936 −0.385788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.b.339.1 6
5.2 odd 4 8450.2.a.ca.1.1 3
5.3 odd 4 8450.2.a.bt.1.3 3
5.4 even 2 inner 1690.2.b.b.339.6 6
13.4 even 6 130.2.n.a.29.4 yes 12
13.5 odd 4 1690.2.c.b.1689.1 6
13.8 odd 4 1690.2.c.c.1689.1 6
13.10 even 6 130.2.n.a.9.3 12
13.12 even 2 1690.2.b.c.339.4 6
39.17 odd 6 1170.2.bp.h.289.1 12
39.23 odd 6 1170.2.bp.h.919.4 12
52.23 odd 6 1040.2.dh.b.529.1 12
52.43 odd 6 1040.2.dh.b.289.6 12
65.4 even 6 130.2.n.a.29.3 yes 12
65.12 odd 4 8450.2.a.bu.1.1 3
65.17 odd 12 650.2.e.k.601.3 6
65.23 odd 12 650.2.e.j.451.1 6
65.34 odd 4 1690.2.c.b.1689.6 6
65.38 odd 4 8450.2.a.cb.1.3 3
65.43 odd 12 650.2.e.j.601.1 6
65.44 odd 4 1690.2.c.c.1689.6 6
65.49 even 6 130.2.n.a.9.4 yes 12
65.62 odd 12 650.2.e.k.451.3 6
65.64 even 2 1690.2.b.c.339.3 6
195.134 odd 6 1170.2.bp.h.289.4 12
195.179 odd 6 1170.2.bp.h.919.1 12
260.179 odd 6 1040.2.dh.b.529.6 12
260.199 odd 6 1040.2.dh.b.289.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.3 12 13.10 even 6
130.2.n.a.9.4 yes 12 65.49 even 6
130.2.n.a.29.3 yes 12 65.4 even 6
130.2.n.a.29.4 yes 12 13.4 even 6
650.2.e.j.451.1 6 65.23 odd 12
650.2.e.j.601.1 6 65.43 odd 12
650.2.e.k.451.3 6 65.62 odd 12
650.2.e.k.601.3 6 65.17 odd 12
1040.2.dh.b.289.1 12 260.199 odd 6
1040.2.dh.b.289.6 12 52.43 odd 6
1040.2.dh.b.529.1 12 52.23 odd 6
1040.2.dh.b.529.6 12 260.179 odd 6
1170.2.bp.h.289.1 12 39.17 odd 6
1170.2.bp.h.289.4 12 195.134 odd 6
1170.2.bp.h.919.1 12 195.179 odd 6
1170.2.bp.h.919.4 12 39.23 odd 6
1690.2.b.b.339.1 6 1.1 even 1 trivial
1690.2.b.b.339.6 6 5.4 even 2 inner
1690.2.b.c.339.3 6 65.64 even 2
1690.2.b.c.339.4 6 13.12 even 2
1690.2.c.b.1689.1 6 13.5 odd 4
1690.2.c.b.1689.6 6 65.34 odd 4
1690.2.c.c.1689.1 6 13.8 odd 4
1690.2.c.c.1689.6 6 65.44 odd 4
8450.2.a.bt.1.3 3 5.3 odd 4
8450.2.a.bu.1.1 3 65.12 odd 4
8450.2.a.ca.1.1 3 5.2 odd 4
8450.2.a.cb.1.3 3 65.38 odd 4