L(s) = 1 | + (−0.866 + 0.5i)2-s + (1.91 − 1.10i)3-s + (0.499 − 0.866i)4-s + (2.21 + 0.311i)5-s + (−1.10 + 1.91i)6-s + (−3.38 − 1.95i)7-s + 0.999i·8-s + (0.951 − 1.64i)9-s + (−2.07 + 0.837i)10-s + (−0.533 − 0.923i)11-s − 2.21i·12-s + (2.24 + 2.82i)13-s + 3.90·14-s + (4.59 − 1.85i)15-s + (−0.5 − 0.866i)16-s + (1.13 + 0.655i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (1.10 − 0.639i)3-s + (0.249 − 0.433i)4-s + (0.990 + 0.139i)5-s + (−0.451 + 0.782i)6-s + (−1.27 − 0.737i)7-s + 0.353i·8-s + (0.317 − 0.549i)9-s + (−0.655 + 0.264i)10-s + (−0.160 − 0.278i)11-s − 0.639i·12-s + (0.622 + 0.782i)13-s + 1.04·14-s + (1.18 − 0.478i)15-s + (−0.125 − 0.216i)16-s + (0.275 + 0.158i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.244i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.969 + 0.244i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14278 - 0.141568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14278 - 0.141568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-2.21 - 0.311i)T \) |
| 13 | \( 1 + (-2.24 - 2.82i)T \) |
good | 3 | \( 1 + (-1.91 + 1.10i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (3.38 + 1.95i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.533 + 0.923i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.13 - 0.655i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.29 - 5.70i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.85 + 1.07i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.52 + 7.83i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 6.92T + 31T^{2} \) |
| 37 | \( 1 + (4.34 - 2.51i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.97 - 5.15i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 + i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 0.0967iT - 47T^{2} \) |
| 53 | \( 1 + 1.49iT - 53T^{2} \) |
| 59 | \( 1 + (-3.59 + 6.22i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.94 - 6.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.29 + 4.21i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.73 + 13.4i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 15.3iT - 73T^{2} \) |
| 79 | \( 1 + 4.30T + 79T^{2} \) |
| 83 | \( 1 - 9.69iT - 83T^{2} \) |
| 89 | \( 1 + (-2.26 - 3.91i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.68 + 2.13i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.47210066711066881338236441181, −12.71435075707999069328683570771, −10.83880650342951031488789877075, −9.833801192388689291220912159563, −9.075648922117588171691506179329, −7.976583690426684582839854768920, −6.82808030189361353884971883909, −6.00765668447740868350728261397, −3.50100618358977094855522680672, −1.90041423847207133885612956962,
2.46441569120002828839731081661, 3.45095706748229326479479550843, 5.54100489196453246920650755900, 6.96409850927819276835921735757, 8.725761958214022609796765517381, 9.117292137157584069585988137965, 9.925541008911276581153600929720, 10.88121462076270881214777272776, 12.71195500854466702251089350278, 13.09823118744110600383328719453