Properties

Label 1170.2.bp
Level $1170$
Weight $2$
Character orbit 1170.bp
Rep. character $\chi_{1170}(289,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $68$
Newform subspaces $9$
Sturm bound $504$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 9 \)
Sturm bound: \(504\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1170, [\chi])\).

Total New Old
Modular forms 536 68 468
Cusp forms 472 68 404
Eisenstein series 64 0 64

Trace form

\( 68 q + 34 q^{4} + 10 q^{11} - 12 q^{14} - 34 q^{16} + 22 q^{19} - 16 q^{25} + 4 q^{29} - 24 q^{31} + 24 q^{34} + 26 q^{35} - 20 q^{41} + 20 q^{44} - 8 q^{46} + 24 q^{49} - 12 q^{55} - 6 q^{56} + 32 q^{59}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1170, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1170.2.bp.a 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.f \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2})q^{4}+\cdots\)
1170.2.bp.b 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.e \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2})q^{4}+\cdots\)
1170.2.bp.c 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.d \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2})q^{4}+\cdots\)
1170.2.bp.d 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.b \(0\) \(0\) \(2\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2})q^{4}+\cdots\)
1170.2.bp.e 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.b \(0\) \(0\) \(2\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}+(-2\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
1170.2.bp.f 1170.bp 65.n $4$ $9.342$ \(\Q(\zeta_{12})\) None 390.2.y.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2})q^{4}+\cdots\)
1170.2.bp.g 1170.bp 65.n $8$ $9.342$ 8.0.303595776.1 None 390.2.y.g \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{2}-\beta _{4}q^{4}+(1-\beta _{6})q^{5}+(2\beta _{2}+\cdots)q^{7}+\cdots\)
1170.2.bp.h 1170.bp 65.n $12$ $9.342$ 12.0.\(\cdots\).1 None 130.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{2}+\beta _{8}q^{4}+(\beta _{1}-\beta _{7})q^{5}+(2\beta _{3}+\cdots)q^{7}+\cdots\)
1170.2.bp.i 1170.bp 65.n $24$ $9.342$ None 1170.2.bp.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1170, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1170, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 2}\)