L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−2.21 + 0.311i)5-s + (−3.38 + 1.95i)7-s + 0.999i·8-s + (−2.07 − 0.837i)10-s + (0.533 − 0.923i)11-s + (2.24 − 2.82i)13-s − 3.90·14-s + (−0.5 + 0.866i)16-s + (−1.13 + 0.655i)17-s + (−3.29 − 5.70i)19-s + (−1.37 − 1.76i)20-s + (0.923 − 0.533i)22-s + (−1.85 − 1.07i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.990 + 0.139i)5-s + (−1.27 + 0.737i)7-s + 0.353i·8-s + (−0.655 − 0.264i)10-s + (0.160 − 0.278i)11-s + (0.622 − 0.782i)13-s − 1.04·14-s + (−0.125 + 0.216i)16-s + (−0.275 + 0.158i)17-s + (−0.756 − 1.30i)19-s + (−0.307 − 0.394i)20-s + (0.196 − 0.113i)22-s + (−0.387 − 0.223i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.273 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.273 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4504845118\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4504845118\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.21 - 0.311i)T \) |
| 13 | \( 1 + (-2.24 + 2.82i)T \) |
good | 7 | \( 1 + (3.38 - 1.95i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.533 + 0.923i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.13 - 0.655i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.29 + 5.70i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.85 + 1.07i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.52 + 7.83i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.92T + 31T^{2} \) |
| 37 | \( 1 + (4.34 + 2.51i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.97 - 5.15i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 - i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.0967iT - 47T^{2} \) |
| 53 | \( 1 + 1.49iT - 53T^{2} \) |
| 59 | \( 1 + (3.59 + 6.22i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.94 + 6.83i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.29 - 4.21i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.73 + 13.4i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 15.3iT - 73T^{2} \) |
| 79 | \( 1 + 4.30T + 79T^{2} \) |
| 83 | \( 1 - 9.69iT - 83T^{2} \) |
| 89 | \( 1 + (2.26 - 3.91i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.68 - 2.13i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.370657054627710785829224374107, −8.571717357176626286660762249057, −7.916227914893700247486807808847, −6.73056781771327990341829351191, −6.35033314887792647011881835091, −5.32395470661664980592382064845, −4.19948343949209686481258277104, −3.37616389872499034977135214531, −2.57756502957774993921035105843, −0.15495540944133767918628527890,
1.56812181490474420298421531631, 3.24814121567961369825848065443, 3.81216792336027919954287820552, 4.52999584482149593058025592944, 5.82827092571880070651020104439, 6.77741453192537670451088078401, 7.23177594465335805965042869833, 8.480025796003507266348376394720, 9.231273386700996996425596812115, 10.31747071039290434140257984159