Newspace parameters
Level: | \( N \) | \(=\) | \( 1134 = 2 \cdot 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1134.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(30.8992619785\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 126) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323.1 | − | 1.41421i | 0 | −2.00000 | − | 7.74628i | 0 | −2.64575 | 2.82843i | 0 | −10.9549 | ||||||||||||||||
323.2 | − | 1.41421i | 0 | −2.00000 | − | 6.37459i | 0 | −2.64575 | 2.82843i | 0 | −9.01503 | ||||||||||||||||
323.3 | − | 1.41421i | 0 | −2.00000 | − | 6.01006i | 0 | 2.64575 | 2.82843i | 0 | −8.49950 | ||||||||||||||||
323.4 | − | 1.41421i | 0 | −2.00000 | − | 4.16679i | 0 | 2.64575 | 2.82843i | 0 | −5.89274 | ||||||||||||||||
323.5 | − | 1.41421i | 0 | −2.00000 | − | 3.19697i | 0 | 2.64575 | 2.82843i | 0 | −4.52120 | ||||||||||||||||
323.6 | − | 1.41421i | 0 | −2.00000 | − | 2.65693i | 0 | −2.64575 | 2.82843i | 0 | −3.75747 | ||||||||||||||||
323.7 | − | 1.41421i | 0 | −2.00000 | 0.768169i | 0 | 2.64575 | 2.82843i | 0 | 1.08636 | |||||||||||||||||
323.8 | − | 1.41421i | 0 | −2.00000 | 2.95738i | 0 | −2.64575 | 2.82843i | 0 | 4.18237 | |||||||||||||||||
323.9 | − | 1.41421i | 0 | −2.00000 | 4.01088i | 0 | 2.64575 | 2.82843i | 0 | 5.67224 | |||||||||||||||||
323.10 | − | 1.41421i | 0 | −2.00000 | 5.20706i | 0 | −2.64575 | 2.82843i | 0 | 7.36389 | |||||||||||||||||
323.11 | − | 1.41421i | 0 | −2.00000 | 8.59478i | 0 | 2.64575 | 2.82843i | 0 | 12.1548 | |||||||||||||||||
323.12 | − | 1.41421i | 0 | −2.00000 | 8.61336i | 0 | −2.64575 | 2.82843i | 0 | 12.1811 | |||||||||||||||||
323.13 | 1.41421i | 0 | −2.00000 | − | 8.61336i | 0 | −2.64575 | − | 2.82843i | 0 | 12.1811 | ||||||||||||||||
323.14 | 1.41421i | 0 | −2.00000 | − | 8.59478i | 0 | 2.64575 | − | 2.82843i | 0 | 12.1548 | ||||||||||||||||
323.15 | 1.41421i | 0 | −2.00000 | − | 5.20706i | 0 | −2.64575 | − | 2.82843i | 0 | 7.36389 | ||||||||||||||||
323.16 | 1.41421i | 0 | −2.00000 | − | 4.01088i | 0 | 2.64575 | − | 2.82843i | 0 | 5.67224 | ||||||||||||||||
323.17 | 1.41421i | 0 | −2.00000 | − | 2.95738i | 0 | −2.64575 | − | 2.82843i | 0 | 4.18237 | ||||||||||||||||
323.18 | 1.41421i | 0 | −2.00000 | − | 0.768169i | 0 | 2.64575 | − | 2.82843i | 0 | 1.08636 | ||||||||||||||||
323.19 | 1.41421i | 0 | −2.00000 | 2.65693i | 0 | −2.64575 | − | 2.82843i | 0 | −3.75747 | |||||||||||||||||
323.20 | 1.41421i | 0 | −2.00000 | 3.19697i | 0 | 2.64575 | − | 2.82843i | 0 | −4.52120 | |||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1134.3.b.c | 24 | |
3.b | odd | 2 | 1 | inner | 1134.3.b.c | 24 | |
9.c | even | 3 | 1 | 126.3.q.a | ✓ | 24 | |
9.c | even | 3 | 1 | 378.3.q.a | 24 | ||
9.d | odd | 6 | 1 | 126.3.q.a | ✓ | 24 | |
9.d | odd | 6 | 1 | 378.3.q.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
126.3.q.a | ✓ | 24 | 9.c | even | 3 | 1 | |
126.3.q.a | ✓ | 24 | 9.d | odd | 6 | 1 | |
378.3.q.a | 24 | 9.c | even | 3 | 1 | ||
378.3.q.a | 24 | 9.d | odd | 6 | 1 | ||
1134.3.b.c | 24 | 1.a | even | 1 | 1 | trivial | |
1134.3.b.c | 24 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} + 372 T_{5}^{22} + 59670 T_{5}^{20} + 5428672 T_{5}^{18} + 310334277 T_{5}^{16} + \cdots + 13\!\cdots\!69 \)
acting on \(S_{3}^{\mathrm{new}}(1134, [\chi])\).