Properties

Label 2-1134-3.2-c2-0-35
Degree $2$
Conductor $1134$
Sign $1$
Analytic cond. $30.8992$
Root an. cond. $5.55871$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·2-s − 2.00·4-s + 7.74i·5-s − 2.64·7-s − 2.82i·8-s − 10.9·10-s − 11.5i·11-s + 19.3·13-s − 3.74i·14-s + 4.00·16-s − 18.8i·17-s − 18.8·19-s − 15.4i·20-s + 16.3·22-s − 30.2i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 1.54i·5-s − 0.377·7-s − 0.353i·8-s − 1.09·10-s − 1.05i·11-s + 1.48·13-s − 0.267i·14-s + 0.250·16-s − 1.10i·17-s − 0.993·19-s − 0.774i·20-s + 0.742·22-s − 1.31i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1134\)    =    \(2 \cdot 3^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(30.8992\)
Root analytic conductor: \(5.55871\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1134} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1134,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.352032757\)
\(L(\frac12)\) \(\approx\) \(1.352032757\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41iT \)
3 \( 1 \)
7 \( 1 + 2.64T \)
good5 \( 1 - 7.74iT - 25T^{2} \)
11 \( 1 + 11.5iT - 121T^{2} \)
13 \( 1 - 19.3T + 169T^{2} \)
17 \( 1 + 18.8iT - 289T^{2} \)
19 \( 1 + 18.8T + 361T^{2} \)
23 \( 1 + 30.2iT - 529T^{2} \)
29 \( 1 + 57.1iT - 841T^{2} \)
31 \( 1 + 10.7T + 961T^{2} \)
37 \( 1 - 6.77T + 1.36e3T^{2} \)
41 \( 1 - 60.7iT - 1.68e3T^{2} \)
43 \( 1 - 16.3T + 1.84e3T^{2} \)
47 \( 1 + 19.3iT - 2.20e3T^{2} \)
53 \( 1 + 35.4iT - 2.80e3T^{2} \)
59 \( 1 - 9.68iT - 3.48e3T^{2} \)
61 \( 1 - 90.2T + 3.72e3T^{2} \)
67 \( 1 + 58.9T + 4.48e3T^{2} \)
71 \( 1 + 43.4iT - 5.04e3T^{2} \)
73 \( 1 - 36.4T + 5.32e3T^{2} \)
79 \( 1 + 45.1T + 6.24e3T^{2} \)
83 \( 1 + 56.7iT - 6.88e3T^{2} \)
89 \( 1 - 52.3iT - 7.92e3T^{2} \)
97 \( 1 - 14.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.613491796047890103758740869686, −8.595396395433478510273434718707, −7.976086445697253898758723327578, −6.87914579376690461696172232974, −6.33616194079809563247901153450, −5.83636434373156405715505202730, −4.31057428901511683105825186865, −3.39915240835456237798966955332, −2.52160415731364413516051089594, −0.46093420008804662228357391198, 1.16174865354588852862723110683, 1.88147572822153845325244645671, 3.60127453340536929137709336584, 4.21715876110363692701787341356, 5.22280602267146786174497397970, 6.00257665425032764506685802212, 7.24484448427280826908407179758, 8.433528695578209437454991995534, 8.813236101491145748056890214487, 9.536508676627197374495282103642

Graph of the $Z$-function along the critical line