Properties

Label 2-1134-3.2-c2-0-43
Degree $2$
Conductor $1134$
Sign $-1$
Analytic cond. $30.8992$
Root an. cond. $5.55871$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s − 2.00·4-s − 6.37i·5-s − 2.64·7-s + 2.82i·8-s − 9.01·10-s − 16.8i·11-s + 17.5·13-s + 3.74i·14-s + 4.00·16-s − 13.4i·17-s + 34.1·19-s + 12.7i·20-s − 23.8·22-s − 3.55i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s − 1.27i·5-s − 0.377·7-s + 0.353i·8-s − 0.901·10-s − 1.53i·11-s + 1.34·13-s + 0.267i·14-s + 0.250·16-s − 0.790i·17-s + 1.79·19-s + 0.637i·20-s − 1.08·22-s − 0.154i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1134\)    =    \(2 \cdot 3^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.8992\)
Root analytic conductor: \(5.55871\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1134} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1134,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.693701810\)
\(L(\frac12)\) \(\approx\) \(1.693701810\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
3 \( 1 \)
7 \( 1 + 2.64T \)
good5 \( 1 + 6.37iT - 25T^{2} \)
11 \( 1 + 16.8iT - 121T^{2} \)
13 \( 1 - 17.5T + 169T^{2} \)
17 \( 1 + 13.4iT - 289T^{2} \)
19 \( 1 - 34.1T + 361T^{2} \)
23 \( 1 + 3.55iT - 529T^{2} \)
29 \( 1 + 33.9iT - 841T^{2} \)
31 \( 1 - 30.0T + 961T^{2} \)
37 \( 1 + 37.7T + 1.36e3T^{2} \)
41 \( 1 - 32.8iT - 1.68e3T^{2} \)
43 \( 1 + 69.8T + 1.84e3T^{2} \)
47 \( 1 - 26.4iT - 2.20e3T^{2} \)
53 \( 1 - 8.14iT - 2.80e3T^{2} \)
59 \( 1 + 101. iT - 3.48e3T^{2} \)
61 \( 1 + 16.6T + 3.72e3T^{2} \)
67 \( 1 - 42.0T + 4.48e3T^{2} \)
71 \( 1 - 14.4iT - 5.04e3T^{2} \)
73 \( 1 + 42.4T + 5.32e3T^{2} \)
79 \( 1 - 54.2T + 6.24e3T^{2} \)
83 \( 1 - 38.5iT - 6.88e3T^{2} \)
89 \( 1 - 98.5iT - 7.92e3T^{2} \)
97 \( 1 + 21.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.292254613516026488491105462605, −8.469676107354003268252357028272, −8.031789311116998476169283322384, −6.50750363066720924985850714618, −5.59431531545923794410302599340, −4.88833434807587513861968352638, −3.69508618135338570749710232344, −2.99586652909792156867853944499, −1.27165784504404257661504705276, −0.59524844036618488520007483849, 1.54660102184766907293316722711, 3.08304753255597622923305213947, 3.80725832176396601918174383234, 5.06173749767962241210132259478, 6.01576668631504430418370991345, 6.91424593072325885608831217499, 7.20184930596080108840334461222, 8.270941818828348633848210447306, 9.191545682458461440373152864513, 10.13504963235084078198040219453

Graph of the $Z$-function along the critical line