Properties

Label 2-1134-3.2-c2-0-32
Degree $2$
Conductor $1134$
Sign $1$
Analytic cond. $30.8992$
Root an. cond. $5.55871$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·2-s − 2.00·4-s − 0.768i·5-s + 2.64·7-s − 2.82i·8-s + 1.08·10-s − 3.64i·11-s + 4.36·13-s + 3.74i·14-s + 4.00·16-s + 8.55i·17-s − 18.7·19-s + 1.53i·20-s + 5.15·22-s − 12.5i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s − 0.153i·5-s + 0.377·7-s − 0.353i·8-s + 0.108·10-s − 0.331i·11-s + 0.335·13-s + 0.267i·14-s + 0.250·16-s + 0.503i·17-s − 0.989·19-s + 0.0768i·20-s + 0.234·22-s − 0.544i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1134\)    =    \(2 \cdot 3^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(30.8992\)
Root analytic conductor: \(5.55871\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1134} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1134,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.729884174\)
\(L(\frac12)\) \(\approx\) \(1.729884174\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41iT \)
3 \( 1 \)
7 \( 1 - 2.64T \)
good5 \( 1 + 0.768iT - 25T^{2} \)
11 \( 1 + 3.64iT - 121T^{2} \)
13 \( 1 - 4.36T + 169T^{2} \)
17 \( 1 - 8.55iT - 289T^{2} \)
19 \( 1 + 18.7T + 361T^{2} \)
23 \( 1 + 12.5iT - 529T^{2} \)
29 \( 1 + 16.4iT - 841T^{2} \)
31 \( 1 - 13.7T + 961T^{2} \)
37 \( 1 + 28.3T + 1.36e3T^{2} \)
41 \( 1 + 59.2iT - 1.68e3T^{2} \)
43 \( 1 - 51.4T + 1.84e3T^{2} \)
47 \( 1 + 55.5iT - 2.20e3T^{2} \)
53 \( 1 - 51.2iT - 2.80e3T^{2} \)
59 \( 1 + 64.3iT - 3.48e3T^{2} \)
61 \( 1 - 49.2T + 3.72e3T^{2} \)
67 \( 1 + 49.3T + 4.48e3T^{2} \)
71 \( 1 + 81.1iT - 5.04e3T^{2} \)
73 \( 1 - 140.T + 5.32e3T^{2} \)
79 \( 1 - 139.T + 6.24e3T^{2} \)
83 \( 1 - 134. iT - 6.88e3T^{2} \)
89 \( 1 + 8.94iT - 7.92e3T^{2} \)
97 \( 1 + 90.5T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.389652034525567956767279346649, −8.570155248215958845711175679477, −8.150124393117452171219056035190, −7.04648542907243783280602744064, −6.31357998848239019917015991620, −5.44719244038371272918806853492, −4.52289522232138568593822884585, −3.63612289731147971943209391720, −2.16332563866245975644217555850, −0.63846001044716556410963551481, 1.04620901014228248868755569028, 2.23769236757462503394290884815, 3.26538044781701593755358726707, 4.35813867306051323250305386594, 5.11030311659226152690658128098, 6.24056033121881442321762217612, 7.18792764121882126679565810268, 8.154545271715985692920657850981, 8.908605514459315733024895246073, 9.692431081255693748896795681755

Graph of the $Z$-function along the critical line