Properties

Label 1134.3.b.c.323.18
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.18
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -0.768169i q^{5} +2.64575 q^{7} -2.82843i q^{8} +1.08636 q^{10} -3.64413i q^{11} +4.36322 q^{13} +3.74166i q^{14} +4.00000 q^{16} +8.55474i q^{17} -18.7989 q^{19} +1.53634i q^{20} +5.15358 q^{22} -12.5264i q^{23} +24.4099 q^{25} +6.17053i q^{26} -5.29150 q^{28} -16.4328i q^{29} +13.7654 q^{31} +5.65685i q^{32} -12.0982 q^{34} -2.03238i q^{35} -28.3620 q^{37} -26.5857i q^{38} -2.17271 q^{40} -59.2662i q^{41} +51.4940 q^{43} +7.28827i q^{44} +17.7150 q^{46} -55.5357i q^{47} +7.00000 q^{49} +34.5208i q^{50} -8.72644 q^{52} +51.2740i q^{53} -2.79931 q^{55} -7.48331i q^{56} +23.2395 q^{58} -64.3746i q^{59} +49.2644 q^{61} +19.4672i q^{62} -8.00000 q^{64} -3.35169i q^{65} -49.3916 q^{67} -17.1095i q^{68} +2.87423 q^{70} -81.1558i q^{71} +140.515 q^{73} -40.1099i q^{74} +37.5978 q^{76} -9.64147i q^{77} +139.430 q^{79} -3.07268i q^{80} +83.8150 q^{82} +134.036i q^{83} +6.57148 q^{85} +72.8236i q^{86} -10.3072 q^{88} -8.94002i q^{89} +11.5440 q^{91} +25.0528i q^{92} +78.5393 q^{94} +14.4407i q^{95} -90.5001 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 0.768169i − 0.153634i −0.997045 0.0768169i \(-0.975524\pi\)
0.997045 0.0768169i \(-0.0244757\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) 1.08636 0.108636
\(11\) − 3.64413i − 0.331285i −0.986186 0.165642i \(-0.947030\pi\)
0.986186 0.165642i \(-0.0529698\pi\)
\(12\) 0 0
\(13\) 4.36322 0.335632 0.167816 0.985818i \(-0.446328\pi\)
0.167816 + 0.985818i \(0.446328\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 8.55474i 0.503220i 0.967829 + 0.251610i \(0.0809600\pi\)
−0.967829 + 0.251610i \(0.919040\pi\)
\(18\) 0 0
\(19\) −18.7989 −0.989416 −0.494708 0.869059i \(-0.664725\pi\)
−0.494708 + 0.869059i \(0.664725\pi\)
\(20\) 1.53634i 0.0768169i
\(21\) 0 0
\(22\) 5.15358 0.234254
\(23\) − 12.5264i − 0.544625i −0.962209 0.272313i \(-0.912211\pi\)
0.962209 0.272313i \(-0.0877885\pi\)
\(24\) 0 0
\(25\) 24.4099 0.976397
\(26\) 6.17053i 0.237328i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) − 16.4328i − 0.566649i −0.959024 0.283324i \(-0.908563\pi\)
0.959024 0.283324i \(-0.0914373\pi\)
\(30\) 0 0
\(31\) 13.7654 0.444045 0.222023 0.975042i \(-0.428734\pi\)
0.222023 + 0.975042i \(0.428734\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −12.0982 −0.355830
\(35\) − 2.03238i − 0.0580681i
\(36\) 0 0
\(37\) −28.3620 −0.766541 −0.383270 0.923636i \(-0.625202\pi\)
−0.383270 + 0.923636i \(0.625202\pi\)
\(38\) − 26.5857i − 0.699622i
\(39\) 0 0
\(40\) −2.17271 −0.0543178
\(41\) − 59.2662i − 1.44552i −0.691101 0.722758i \(-0.742874\pi\)
0.691101 0.722758i \(-0.257126\pi\)
\(42\) 0 0
\(43\) 51.4940 1.19754 0.598768 0.800923i \(-0.295657\pi\)
0.598768 + 0.800923i \(0.295657\pi\)
\(44\) 7.28827i 0.165642i
\(45\) 0 0
\(46\) 17.7150 0.385108
\(47\) − 55.5357i − 1.18161i −0.806814 0.590805i \(-0.798810\pi\)
0.806814 0.590805i \(-0.201190\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 34.5208i 0.690417i
\(51\) 0 0
\(52\) −8.72644 −0.167816
\(53\) 51.2740i 0.967434i 0.875224 + 0.483717i \(0.160714\pi\)
−0.875224 + 0.483717i \(0.839286\pi\)
\(54\) 0 0
\(55\) −2.79931 −0.0508966
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) 23.2395 0.400681
\(59\) − 64.3746i − 1.09109i −0.838080 0.545547i \(-0.816322\pi\)
0.838080 0.545547i \(-0.183678\pi\)
\(60\) 0 0
\(61\) 49.2644 0.807614 0.403807 0.914844i \(-0.367687\pi\)
0.403807 + 0.914844i \(0.367687\pi\)
\(62\) 19.4672i 0.313987i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 3.35169i − 0.0515645i
\(66\) 0 0
\(67\) −49.3916 −0.737188 −0.368594 0.929590i \(-0.620161\pi\)
−0.368594 + 0.929590i \(0.620161\pi\)
\(68\) − 17.1095i − 0.251610i
\(69\) 0 0
\(70\) 2.87423 0.0410604
\(71\) − 81.1558i − 1.14304i −0.820588 0.571520i \(-0.806354\pi\)
0.820588 0.571520i \(-0.193646\pi\)
\(72\) 0 0
\(73\) 140.515 1.92486 0.962431 0.271527i \(-0.0875285\pi\)
0.962431 + 0.271527i \(0.0875285\pi\)
\(74\) − 40.1099i − 0.542026i
\(75\) 0 0
\(76\) 37.5978 0.494708
\(77\) − 9.64147i − 0.125214i
\(78\) 0 0
\(79\) 139.430 1.76493 0.882466 0.470377i \(-0.155882\pi\)
0.882466 + 0.470377i \(0.155882\pi\)
\(80\) − 3.07268i − 0.0384085i
\(81\) 0 0
\(82\) 83.8150 1.02213
\(83\) 134.036i 1.61490i 0.589938 + 0.807449i \(0.299152\pi\)
−0.589938 + 0.807449i \(0.700848\pi\)
\(84\) 0 0
\(85\) 6.57148 0.0773116
\(86\) 72.8236i 0.846786i
\(87\) 0 0
\(88\) −10.3072 −0.117127
\(89\) − 8.94002i − 0.100450i −0.998738 0.0502248i \(-0.984006\pi\)
0.998738 0.0502248i \(-0.0159938\pi\)
\(90\) 0 0
\(91\) 11.5440 0.126857
\(92\) 25.0528i 0.272313i
\(93\) 0 0
\(94\) 78.5393 0.835525
\(95\) 14.4407i 0.152008i
\(96\) 0 0
\(97\) −90.5001 −0.932990 −0.466495 0.884524i \(-0.654484\pi\)
−0.466495 + 0.884524i \(0.654484\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −48.8198 −0.488198
\(101\) 65.9200i 0.652673i 0.945254 + 0.326336i \(0.105814\pi\)
−0.945254 + 0.326336i \(0.894186\pi\)
\(102\) 0 0
\(103\) 10.9597 0.106404 0.0532022 0.998584i \(-0.483057\pi\)
0.0532022 + 0.998584i \(0.483057\pi\)
\(104\) − 12.3411i − 0.118664i
\(105\) 0 0
\(106\) −72.5124 −0.684079
\(107\) − 195.963i − 1.83143i −0.401826 0.915716i \(-0.631624\pi\)
0.401826 0.915716i \(-0.368376\pi\)
\(108\) 0 0
\(109\) 181.440 1.66459 0.832295 0.554333i \(-0.187027\pi\)
0.832295 + 0.554333i \(0.187027\pi\)
\(110\) − 3.95882i − 0.0359893i
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) − 68.0545i − 0.602252i −0.953584 0.301126i \(-0.902637\pi\)
0.953584 0.301126i \(-0.0973625\pi\)
\(114\) 0 0
\(115\) −9.62238 −0.0836729
\(116\) 32.8656i 0.283324i
\(117\) 0 0
\(118\) 91.0394 0.771520
\(119\) 22.6337i 0.190199i
\(120\) 0 0
\(121\) 107.720 0.890250
\(122\) 69.6704i 0.571069i
\(123\) 0 0
\(124\) −27.5308 −0.222023
\(125\) − 37.9552i − 0.303641i
\(126\) 0 0
\(127\) −71.4363 −0.562490 −0.281245 0.959636i \(-0.590747\pi\)
−0.281245 + 0.959636i \(0.590747\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 4.74001 0.0364616
\(131\) 143.179i 1.09297i 0.837469 + 0.546484i \(0.184034\pi\)
−0.837469 + 0.546484i \(0.815966\pi\)
\(132\) 0 0
\(133\) −49.7372 −0.373964
\(134\) − 69.8503i − 0.521271i
\(135\) 0 0
\(136\) 24.1964 0.177915
\(137\) − 132.721i − 0.968767i −0.874856 0.484384i \(-0.839044\pi\)
0.874856 0.484384i \(-0.160956\pi\)
\(138\) 0 0
\(139\) 197.508 1.42092 0.710459 0.703739i \(-0.248487\pi\)
0.710459 + 0.703739i \(0.248487\pi\)
\(140\) 4.06477i 0.0290341i
\(141\) 0 0
\(142\) 114.772 0.808251
\(143\) − 15.9002i − 0.111190i
\(144\) 0 0
\(145\) −12.6232 −0.0870564
\(146\) 198.718i 1.36108i
\(147\) 0 0
\(148\) 56.7240 0.383270
\(149\) 10.8727i 0.0729711i 0.999334 + 0.0364856i \(0.0116163\pi\)
−0.999334 + 0.0364856i \(0.988384\pi\)
\(150\) 0 0
\(151\) 81.6331 0.540616 0.270308 0.962774i \(-0.412874\pi\)
0.270308 + 0.962774i \(0.412874\pi\)
\(152\) 53.1713i 0.349811i
\(153\) 0 0
\(154\) 13.6351 0.0885396
\(155\) − 10.5742i − 0.0682204i
\(156\) 0 0
\(157\) 124.898 0.795526 0.397763 0.917488i \(-0.369787\pi\)
0.397763 + 0.917488i \(0.369787\pi\)
\(158\) 197.183i 1.24799i
\(159\) 0 0
\(160\) 4.34542 0.0271589
\(161\) − 33.1417i − 0.205849i
\(162\) 0 0
\(163\) 74.3495 0.456132 0.228066 0.973646i \(-0.426760\pi\)
0.228066 + 0.973646i \(0.426760\pi\)
\(164\) 118.532i 0.722758i
\(165\) 0 0
\(166\) −189.556 −1.14190
\(167\) 52.2889i 0.313107i 0.987669 + 0.156554i \(0.0500384\pi\)
−0.987669 + 0.156554i \(0.949962\pi\)
\(168\) 0 0
\(169\) −149.962 −0.887351
\(170\) 9.29348i 0.0546675i
\(171\) 0 0
\(172\) −102.988 −0.598768
\(173\) − 293.116i − 1.69431i −0.531343 0.847157i \(-0.678312\pi\)
0.531343 0.847157i \(-0.321688\pi\)
\(174\) 0 0
\(175\) 64.5826 0.369043
\(176\) − 14.5765i − 0.0828212i
\(177\) 0 0
\(178\) 12.6431 0.0710286
\(179\) 140.420i 0.784470i 0.919865 + 0.392235i \(0.128298\pi\)
−0.919865 + 0.392235i \(0.871702\pi\)
\(180\) 0 0
\(181\) −83.3787 −0.460656 −0.230328 0.973113i \(-0.573980\pi\)
−0.230328 + 0.973113i \(0.573980\pi\)
\(182\) 16.3257i 0.0897015i
\(183\) 0 0
\(184\) −35.4300 −0.192554
\(185\) 21.7868i 0.117767i
\(186\) 0 0
\(187\) 31.1746 0.166709
\(188\) 111.071i 0.590805i
\(189\) 0 0
\(190\) −20.4223 −0.107486
\(191\) 110.975i 0.581019i 0.956872 + 0.290510i \(0.0938248\pi\)
−0.956872 + 0.290510i \(0.906175\pi\)
\(192\) 0 0
\(193\) −317.941 −1.64736 −0.823682 0.567052i \(-0.808084\pi\)
−0.823682 + 0.567052i \(0.808084\pi\)
\(194\) − 127.986i − 0.659724i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) 124.246i 0.630690i 0.948977 + 0.315345i \(0.102120\pi\)
−0.948977 + 0.315345i \(0.897880\pi\)
\(198\) 0 0
\(199\) 13.0169 0.0654116 0.0327058 0.999465i \(-0.489588\pi\)
0.0327058 + 0.999465i \(0.489588\pi\)
\(200\) − 69.0417i − 0.345208i
\(201\) 0 0
\(202\) −93.2249 −0.461509
\(203\) − 43.4771i − 0.214173i
\(204\) 0 0
\(205\) −45.5264 −0.222080
\(206\) 15.4993i 0.0752393i
\(207\) 0 0
\(208\) 17.4529 0.0839081
\(209\) 68.5057i 0.327778i
\(210\) 0 0
\(211\) −15.9339 −0.0755160 −0.0377580 0.999287i \(-0.512022\pi\)
−0.0377580 + 0.999287i \(0.512022\pi\)
\(212\) − 102.548i − 0.483717i
\(213\) 0 0
\(214\) 277.134 1.29502
\(215\) − 39.5561i − 0.183982i
\(216\) 0 0
\(217\) 36.4198 0.167833
\(218\) 256.595i 1.17704i
\(219\) 0 0
\(220\) 5.59862 0.0254483
\(221\) 37.3262i 0.168897i
\(222\) 0 0
\(223\) −94.0784 −0.421876 −0.210938 0.977499i \(-0.567652\pi\)
−0.210938 + 0.977499i \(0.567652\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 96.2436 0.425857
\(227\) 43.3132i 0.190807i 0.995439 + 0.0954035i \(0.0304141\pi\)
−0.995439 + 0.0954035i \(0.969586\pi\)
\(228\) 0 0
\(229\) −219.826 −0.959938 −0.479969 0.877285i \(-0.659352\pi\)
−0.479969 + 0.877285i \(0.659352\pi\)
\(230\) − 13.6081i − 0.0591657i
\(231\) 0 0
\(232\) −46.4790 −0.200341
\(233\) 237.106i 1.01762i 0.860879 + 0.508811i \(0.169915\pi\)
−0.860879 + 0.508811i \(0.830085\pi\)
\(234\) 0 0
\(235\) −42.6608 −0.181535
\(236\) 128.749i 0.545547i
\(237\) 0 0
\(238\) −32.0089 −0.134491
\(239\) − 451.470i − 1.88900i −0.328517 0.944498i \(-0.606549\pi\)
0.328517 0.944498i \(-0.393451\pi\)
\(240\) 0 0
\(241\) −34.9949 −0.145207 −0.0726036 0.997361i \(-0.523131\pi\)
−0.0726036 + 0.997361i \(0.523131\pi\)
\(242\) 152.339i 0.629502i
\(243\) 0 0
\(244\) −98.5289 −0.403807
\(245\) − 5.37718i − 0.0219477i
\(246\) 0 0
\(247\) −82.0237 −0.332080
\(248\) − 38.9344i − 0.156994i
\(249\) 0 0
\(250\) 53.6767 0.214707
\(251\) − 201.405i − 0.802409i −0.915988 0.401205i \(-0.868592\pi\)
0.915988 0.401205i \(-0.131408\pi\)
\(252\) 0 0
\(253\) −45.6478 −0.180426
\(254\) − 101.026i − 0.397741i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 159.959i 0.622408i 0.950343 + 0.311204i \(0.100732\pi\)
−0.950343 + 0.311204i \(0.899268\pi\)
\(258\) 0 0
\(259\) −75.0388 −0.289725
\(260\) 6.70338i 0.0257822i
\(261\) 0 0
\(262\) −202.486 −0.772846
\(263\) − 447.858i − 1.70288i −0.524450 0.851441i \(-0.675729\pi\)
0.524450 0.851441i \(-0.324271\pi\)
\(264\) 0 0
\(265\) 39.3871 0.148631
\(266\) − 70.3390i − 0.264432i
\(267\) 0 0
\(268\) 98.7833 0.368594
\(269\) 177.841i 0.661118i 0.943785 + 0.330559i \(0.107237\pi\)
−0.943785 + 0.330559i \(0.892763\pi\)
\(270\) 0 0
\(271\) −274.571 −1.01318 −0.506588 0.862188i \(-0.669093\pi\)
−0.506588 + 0.862188i \(0.669093\pi\)
\(272\) 34.2189i 0.125805i
\(273\) 0 0
\(274\) 187.696 0.685022
\(275\) − 88.9530i − 0.323465i
\(276\) 0 0
\(277\) 517.748 1.86912 0.934562 0.355799i \(-0.115791\pi\)
0.934562 + 0.355799i \(0.115791\pi\)
\(278\) 279.318i 1.00474i
\(279\) 0 0
\(280\) −5.74845 −0.0205302
\(281\) − 132.477i − 0.471450i −0.971820 0.235725i \(-0.924254\pi\)
0.971820 0.235725i \(-0.0757464\pi\)
\(282\) 0 0
\(283\) 256.768 0.907309 0.453654 0.891178i \(-0.350120\pi\)
0.453654 + 0.891178i \(0.350120\pi\)
\(284\) 162.312i 0.571520i
\(285\) 0 0
\(286\) 22.4862 0.0786232
\(287\) − 156.804i − 0.546354i
\(288\) 0 0
\(289\) 215.816 0.746770
\(290\) − 17.8519i − 0.0615582i
\(291\) 0 0
\(292\) −281.030 −0.962431
\(293\) 481.204i 1.64234i 0.570687 + 0.821168i \(0.306677\pi\)
−0.570687 + 0.821168i \(0.693323\pi\)
\(294\) 0 0
\(295\) −49.4506 −0.167629
\(296\) 80.2199i 0.271013i
\(297\) 0 0
\(298\) −15.3763 −0.0515984
\(299\) − 54.6554i − 0.182794i
\(300\) 0 0
\(301\) 136.240 0.452626
\(302\) 115.447i 0.382273i
\(303\) 0 0
\(304\) −75.1956 −0.247354
\(305\) − 37.8434i − 0.124077i
\(306\) 0 0
\(307\) −593.798 −1.93420 −0.967098 0.254406i \(-0.918120\pi\)
−0.967098 + 0.254406i \(0.918120\pi\)
\(308\) 19.2829i 0.0626070i
\(309\) 0 0
\(310\) 14.9541 0.0482391
\(311\) − 349.430i − 1.12357i −0.827284 0.561784i \(-0.810115\pi\)
0.827284 0.561784i \(-0.189885\pi\)
\(312\) 0 0
\(313\) −370.955 −1.18516 −0.592580 0.805511i \(-0.701891\pi\)
−0.592580 + 0.805511i \(0.701891\pi\)
\(314\) 176.632i 0.562522i
\(315\) 0 0
\(316\) −278.859 −0.882466
\(317\) − 523.174i − 1.65039i −0.564846 0.825196i \(-0.691065\pi\)
0.564846 0.825196i \(-0.308935\pi\)
\(318\) 0 0
\(319\) −59.8834 −0.187722
\(320\) 6.14535i 0.0192042i
\(321\) 0 0
\(322\) 46.8694 0.145557
\(323\) − 160.820i − 0.497893i
\(324\) 0 0
\(325\) 106.506 0.327710
\(326\) 105.146i 0.322534i
\(327\) 0 0
\(328\) −167.630 −0.511067
\(329\) − 146.934i − 0.446607i
\(330\) 0 0
\(331\) −95.7996 −0.289425 −0.144712 0.989474i \(-0.546226\pi\)
−0.144712 + 0.989474i \(0.546226\pi\)
\(332\) − 268.073i − 0.807449i
\(333\) 0 0
\(334\) −73.9476 −0.221400
\(335\) 37.9411i 0.113257i
\(336\) 0 0
\(337\) −377.121 −1.11905 −0.559526 0.828813i \(-0.689017\pi\)
−0.559526 + 0.828813i \(0.689017\pi\)
\(338\) − 212.079i − 0.627452i
\(339\) 0 0
\(340\) −13.1430 −0.0386558
\(341\) − 50.1630i − 0.147105i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) − 145.647i − 0.423393i
\(345\) 0 0
\(346\) 414.529 1.19806
\(347\) 415.106i 1.19627i 0.801395 + 0.598135i \(0.204091\pi\)
−0.801395 + 0.598135i \(0.795909\pi\)
\(348\) 0 0
\(349\) −215.535 −0.617579 −0.308789 0.951130i \(-0.599924\pi\)
−0.308789 + 0.951130i \(0.599924\pi\)
\(350\) 91.3335i 0.260953i
\(351\) 0 0
\(352\) 20.6143 0.0585634
\(353\) 396.462i 1.12312i 0.827436 + 0.561561i \(0.189799\pi\)
−0.827436 + 0.561561i \(0.810201\pi\)
\(354\) 0 0
\(355\) −62.3414 −0.175610
\(356\) 17.8800i 0.0502248i
\(357\) 0 0
\(358\) −198.584 −0.554704
\(359\) − 260.223i − 0.724854i −0.932012 0.362427i \(-0.881948\pi\)
0.932012 0.362427i \(-0.118052\pi\)
\(360\) 0 0
\(361\) −7.60154 −0.0210569
\(362\) − 117.915i − 0.325733i
\(363\) 0 0
\(364\) −23.0880 −0.0634286
\(365\) − 107.939i − 0.295724i
\(366\) 0 0
\(367\) 28.3470 0.0772399 0.0386199 0.999254i \(-0.487704\pi\)
0.0386199 + 0.999254i \(0.487704\pi\)
\(368\) − 50.1055i − 0.136156i
\(369\) 0 0
\(370\) −30.8112 −0.0832736
\(371\) 135.658i 0.365656i
\(372\) 0 0
\(373\) 146.919 0.393883 0.196942 0.980415i \(-0.436899\pi\)
0.196942 + 0.980415i \(0.436899\pi\)
\(374\) 44.0875i 0.117881i
\(375\) 0 0
\(376\) −157.079 −0.417762
\(377\) − 71.7000i − 0.190186i
\(378\) 0 0
\(379\) 236.871 0.624991 0.312495 0.949919i \(-0.398835\pi\)
0.312495 + 0.949919i \(0.398835\pi\)
\(380\) − 28.8815i − 0.0760038i
\(381\) 0 0
\(382\) −156.942 −0.410843
\(383\) − 278.010i − 0.725876i −0.931813 0.362938i \(-0.881774\pi\)
0.931813 0.362938i \(-0.118226\pi\)
\(384\) 0 0
\(385\) −7.40628 −0.0192371
\(386\) − 449.637i − 1.16486i
\(387\) 0 0
\(388\) 181.000 0.466495
\(389\) 18.6572i 0.0479620i 0.999712 + 0.0239810i \(0.00763412\pi\)
−0.999712 + 0.0239810i \(0.992366\pi\)
\(390\) 0 0
\(391\) 107.160 0.274066
\(392\) − 19.7990i − 0.0505076i
\(393\) 0 0
\(394\) −175.710 −0.445965
\(395\) − 107.105i − 0.271153i
\(396\) 0 0
\(397\) −467.828 −1.17841 −0.589205 0.807984i \(-0.700559\pi\)
−0.589205 + 0.807984i \(0.700559\pi\)
\(398\) 18.4087i 0.0462530i
\(399\) 0 0
\(400\) 97.6397 0.244099
\(401\) 29.3110i 0.0730947i 0.999332 + 0.0365473i \(0.0116360\pi\)
−0.999332 + 0.0365473i \(0.988364\pi\)
\(402\) 0 0
\(403\) 60.0615 0.149036
\(404\) − 131.840i − 0.326336i
\(405\) 0 0
\(406\) 61.4860 0.151443
\(407\) 103.355i 0.253943i
\(408\) 0 0
\(409\) −345.330 −0.844327 −0.422163 0.906520i \(-0.638729\pi\)
−0.422163 + 0.906520i \(0.638729\pi\)
\(410\) − 64.3841i − 0.157034i
\(411\) 0 0
\(412\) −21.9193 −0.0532022
\(413\) − 170.319i − 0.412395i
\(414\) 0 0
\(415\) 102.963 0.248103
\(416\) 24.6821i 0.0593320i
\(417\) 0 0
\(418\) −96.8817 −0.231774
\(419\) − 153.377i − 0.366054i −0.983108 0.183027i \(-0.941410\pi\)
0.983108 0.183027i \(-0.0585897\pi\)
\(420\) 0 0
\(421\) −621.810 −1.47698 −0.738492 0.674263i \(-0.764462\pi\)
−0.738492 + 0.674263i \(0.764462\pi\)
\(422\) − 22.5339i − 0.0533979i
\(423\) 0 0
\(424\) 145.025 0.342040
\(425\) 208.820i 0.491342i
\(426\) 0 0
\(427\) 130.341 0.305249
\(428\) 391.927i 0.915716i
\(429\) 0 0
\(430\) 55.9408 0.130095
\(431\) − 45.0311i − 0.104480i −0.998635 0.0522402i \(-0.983364\pi\)
0.998635 0.0522402i \(-0.0166362\pi\)
\(432\) 0 0
\(433\) 470.931 1.08760 0.543800 0.839215i \(-0.316985\pi\)
0.543800 + 0.839215i \(0.316985\pi\)
\(434\) 51.5054i 0.118676i
\(435\) 0 0
\(436\) −362.881 −0.832295
\(437\) 235.482i 0.538861i
\(438\) 0 0
\(439\) −397.109 −0.904575 −0.452288 0.891872i \(-0.649392\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(440\) 7.91765i 0.0179947i
\(441\) 0 0
\(442\) −52.7872 −0.119428
\(443\) − 279.907i − 0.631844i −0.948785 0.315922i \(-0.897686\pi\)
0.948785 0.315922i \(-0.102314\pi\)
\(444\) 0 0
\(445\) −6.86744 −0.0154325
\(446\) − 133.047i − 0.298312i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) 438.684i 0.977023i 0.872557 + 0.488512i \(0.162460\pi\)
−0.872557 + 0.488512i \(0.837540\pi\)
\(450\) 0 0
\(451\) −215.974 −0.478878
\(452\) 136.109i 0.301126i
\(453\) 0 0
\(454\) −61.2541 −0.134921
\(455\) − 8.86774i − 0.0194895i
\(456\) 0 0
\(457\) 44.0886 0.0964739 0.0482369 0.998836i \(-0.484640\pi\)
0.0482369 + 0.998836i \(0.484640\pi\)
\(458\) − 310.881i − 0.678779i
\(459\) 0 0
\(460\) 19.2448 0.0418364
\(461\) 691.817i 1.50069i 0.661048 + 0.750343i \(0.270112\pi\)
−0.661048 + 0.750343i \(0.729888\pi\)
\(462\) 0 0
\(463\) −922.672 −1.99281 −0.996406 0.0847096i \(-0.973004\pi\)
−0.996406 + 0.0847096i \(0.973004\pi\)
\(464\) − 65.7313i − 0.141662i
\(465\) 0 0
\(466\) −335.318 −0.719567
\(467\) − 801.602i − 1.71649i −0.513238 0.858246i \(-0.671554\pi\)
0.513238 0.858246i \(-0.328446\pi\)
\(468\) 0 0
\(469\) −130.678 −0.278631
\(470\) − 60.3315i − 0.128365i
\(471\) 0 0
\(472\) −182.079 −0.385760
\(473\) − 187.651i − 0.396726i
\(474\) 0 0
\(475\) −458.879 −0.966062
\(476\) − 45.2674i − 0.0950996i
\(477\) 0 0
\(478\) 638.475 1.33572
\(479\) 222.279i 0.464047i 0.972710 + 0.232024i \(0.0745347\pi\)
−0.972710 + 0.232024i \(0.925465\pi\)
\(480\) 0 0
\(481\) −123.750 −0.257276
\(482\) − 49.4903i − 0.102677i
\(483\) 0 0
\(484\) −215.441 −0.445125
\(485\) 69.5194i 0.143339i
\(486\) 0 0
\(487\) 230.860 0.474045 0.237023 0.971504i \(-0.423828\pi\)
0.237023 + 0.971504i \(0.423828\pi\)
\(488\) − 139.341i − 0.285535i
\(489\) 0 0
\(490\) 7.60449 0.0155194
\(491\) − 663.647i − 1.35162i −0.737075 0.675811i \(-0.763793\pi\)
0.737075 0.675811i \(-0.236207\pi\)
\(492\) 0 0
\(493\) 140.578 0.285149
\(494\) − 115.999i − 0.234816i
\(495\) 0 0
\(496\) 55.0616 0.111011
\(497\) − 214.718i − 0.432028i
\(498\) 0 0
\(499\) 11.7195 0.0234860 0.0117430 0.999931i \(-0.496262\pi\)
0.0117430 + 0.999931i \(0.496262\pi\)
\(500\) 75.9103i 0.151821i
\(501\) 0 0
\(502\) 284.829 0.567389
\(503\) 700.769i 1.39318i 0.717470 + 0.696589i \(0.245300\pi\)
−0.717470 + 0.696589i \(0.754700\pi\)
\(504\) 0 0
\(505\) 50.6377 0.100273
\(506\) − 64.5558i − 0.127581i
\(507\) 0 0
\(508\) 142.873 0.281245
\(509\) 192.627i 0.378442i 0.981935 + 0.189221i \(0.0605963\pi\)
−0.981935 + 0.189221i \(0.939404\pi\)
\(510\) 0 0
\(511\) 371.768 0.727529
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −226.216 −0.440109
\(515\) − 8.41887i − 0.0163473i
\(516\) 0 0
\(517\) −202.380 −0.391450
\(518\) − 106.121i − 0.204867i
\(519\) 0 0
\(520\) −9.48002 −0.0182308
\(521\) 76.6618i 0.147144i 0.997290 + 0.0735718i \(0.0234398\pi\)
−0.997290 + 0.0735718i \(0.976560\pi\)
\(522\) 0 0
\(523\) −664.017 −1.26963 −0.634815 0.772664i \(-0.718924\pi\)
−0.634815 + 0.772664i \(0.718924\pi\)
\(524\) − 286.358i − 0.546484i
\(525\) 0 0
\(526\) 633.367 1.20412
\(527\) 117.759i 0.223452i
\(528\) 0 0
\(529\) 372.090 0.703383
\(530\) 55.7018i 0.105098i
\(531\) 0 0
\(532\) 99.4744 0.186982
\(533\) − 258.591i − 0.485162i
\(534\) 0 0
\(535\) −150.533 −0.281370
\(536\) 139.701i 0.260635i
\(537\) 0 0
\(538\) −251.505 −0.467481
\(539\) − 25.5089i − 0.0473264i
\(540\) 0 0
\(541\) −214.795 −0.397034 −0.198517 0.980097i \(-0.563613\pi\)
−0.198517 + 0.980097i \(0.563613\pi\)
\(542\) − 388.301i − 0.716423i
\(543\) 0 0
\(544\) −48.3929 −0.0889575
\(545\) − 139.377i − 0.255737i
\(546\) 0 0
\(547\) 414.077 0.756996 0.378498 0.925602i \(-0.376441\pi\)
0.378498 + 0.925602i \(0.376441\pi\)
\(548\) 265.442i 0.484384i
\(549\) 0 0
\(550\) 125.799 0.228725
\(551\) 308.919i 0.560651i
\(552\) 0 0
\(553\) 368.896 0.667081
\(554\) 732.206i 1.32167i
\(555\) 0 0
\(556\) −395.015 −0.710459
\(557\) 421.048i 0.755921i 0.925822 + 0.377961i \(0.123375\pi\)
−0.925822 + 0.377961i \(0.876625\pi\)
\(558\) 0 0
\(559\) 224.680 0.401932
\(560\) − 8.12954i − 0.0145170i
\(561\) 0 0
\(562\) 187.351 0.333365
\(563\) 582.732i 1.03505i 0.855669 + 0.517524i \(0.173146\pi\)
−0.855669 + 0.517524i \(0.826854\pi\)
\(564\) 0 0
\(565\) −52.2774 −0.0925263
\(566\) 363.125i 0.641564i
\(567\) 0 0
\(568\) −229.543 −0.404126
\(569\) 342.669i 0.602231i 0.953588 + 0.301115i \(0.0973590\pi\)
−0.953588 + 0.301115i \(0.902641\pi\)
\(570\) 0 0
\(571\) 996.251 1.74475 0.872374 0.488839i \(-0.162579\pi\)
0.872374 + 0.488839i \(0.162579\pi\)
\(572\) 31.8003i 0.0555950i
\(573\) 0 0
\(574\) 221.754 0.386331
\(575\) − 305.768i − 0.531771i
\(576\) 0 0
\(577\) −46.3061 −0.0802532 −0.0401266 0.999195i \(-0.512776\pi\)
−0.0401266 + 0.999195i \(0.512776\pi\)
\(578\) 305.211i 0.528046i
\(579\) 0 0
\(580\) 25.2464 0.0435282
\(581\) 354.627i 0.610374i
\(582\) 0 0
\(583\) 186.849 0.320496
\(584\) − 397.436i − 0.680541i
\(585\) 0 0
\(586\) −680.526 −1.16131
\(587\) − 381.323i − 0.649614i −0.945780 0.324807i \(-0.894701\pi\)
0.945780 0.324807i \(-0.105299\pi\)
\(588\) 0 0
\(589\) −258.774 −0.439345
\(590\) − 69.9337i − 0.118532i
\(591\) 0 0
\(592\) −113.448 −0.191635
\(593\) 396.610i 0.668820i 0.942428 + 0.334410i \(0.108537\pi\)
−0.942428 + 0.334410i \(0.891463\pi\)
\(594\) 0 0
\(595\) 17.3865 0.0292210
\(596\) − 21.7454i − 0.0364856i
\(597\) 0 0
\(598\) 77.2944 0.129255
\(599\) − 610.323i − 1.01890i −0.860499 0.509452i \(-0.829848\pi\)
0.860499 0.509452i \(-0.170152\pi\)
\(600\) 0 0
\(601\) −94.6287 −0.157452 −0.0787261 0.996896i \(-0.525085\pi\)
−0.0787261 + 0.996896i \(0.525085\pi\)
\(602\) 192.673i 0.320055i
\(603\) 0 0
\(604\) −163.266 −0.270308
\(605\) − 82.7474i − 0.136773i
\(606\) 0 0
\(607\) −916.191 −1.50938 −0.754688 0.656084i \(-0.772212\pi\)
−0.754688 + 0.656084i \(0.772212\pi\)
\(608\) − 106.343i − 0.174906i
\(609\) 0 0
\(610\) 53.5187 0.0877355
\(611\) − 242.315i − 0.396587i
\(612\) 0 0
\(613\) 300.794 0.490691 0.245346 0.969436i \(-0.421099\pi\)
0.245346 + 0.969436i \(0.421099\pi\)
\(614\) − 839.757i − 1.36768i
\(615\) 0 0
\(616\) −27.2702 −0.0442698
\(617\) 276.439i 0.448037i 0.974585 + 0.224018i \(0.0719175\pi\)
−0.974585 + 0.224018i \(0.928082\pi\)
\(618\) 0 0
\(619\) 937.840 1.51509 0.757545 0.652783i \(-0.226399\pi\)
0.757545 + 0.652783i \(0.226399\pi\)
\(620\) 21.1483i 0.0341102i
\(621\) 0 0
\(622\) 494.168 0.794483
\(623\) − 23.6531i − 0.0379664i
\(624\) 0 0
\(625\) 581.092 0.929747
\(626\) − 524.610i − 0.838035i
\(627\) 0 0
\(628\) −249.795 −0.397763
\(629\) − 242.629i − 0.385738i
\(630\) 0 0
\(631\) −143.248 −0.227018 −0.113509 0.993537i \(-0.536209\pi\)
−0.113509 + 0.993537i \(0.536209\pi\)
\(632\) − 394.366i − 0.623997i
\(633\) 0 0
\(634\) 739.880 1.16700
\(635\) 54.8751i 0.0864175i
\(636\) 0 0
\(637\) 30.5426 0.0479475
\(638\) − 84.6879i − 0.132740i
\(639\) 0 0
\(640\) −8.69084 −0.0135794
\(641\) 1263.43i 1.97102i 0.169603 + 0.985512i \(0.445751\pi\)
−0.169603 + 0.985512i \(0.554249\pi\)
\(642\) 0 0
\(643\) 240.885 0.374626 0.187313 0.982300i \(-0.440022\pi\)
0.187313 + 0.982300i \(0.440022\pi\)
\(644\) 66.2834i 0.102925i
\(645\) 0 0
\(646\) 227.433 0.352064
\(647\) 1080.88i 1.67060i 0.549797 + 0.835298i \(0.314705\pi\)
−0.549797 + 0.835298i \(0.685295\pi\)
\(648\) 0 0
\(649\) −234.590 −0.361463
\(650\) 150.622i 0.231726i
\(651\) 0 0
\(652\) −148.699 −0.228066
\(653\) 378.542i 0.579698i 0.957072 + 0.289849i \(0.0936050\pi\)
−0.957072 + 0.289849i \(0.906395\pi\)
\(654\) 0 0
\(655\) 109.986 0.167917
\(656\) − 237.065i − 0.361379i
\(657\) 0 0
\(658\) 207.796 0.315799
\(659\) − 280.670i − 0.425902i −0.977063 0.212951i \(-0.931692\pi\)
0.977063 0.212951i \(-0.0683075\pi\)
\(660\) 0 0
\(661\) 200.005 0.302580 0.151290 0.988489i \(-0.451657\pi\)
0.151290 + 0.988489i \(0.451657\pi\)
\(662\) − 135.481i − 0.204654i
\(663\) 0 0
\(664\) 379.112 0.570952
\(665\) 38.2066i 0.0574535i
\(666\) 0 0
\(667\) −205.844 −0.308611
\(668\) − 104.578i − 0.156554i
\(669\) 0 0
\(670\) −53.6568 −0.0800848
\(671\) − 179.526i − 0.267550i
\(672\) 0 0
\(673\) 909.136 1.35087 0.675435 0.737419i \(-0.263956\pi\)
0.675435 + 0.737419i \(0.263956\pi\)
\(674\) − 533.329i − 0.791289i
\(675\) 0 0
\(676\) 299.925 0.443675
\(677\) 1006.23i 1.48630i 0.669125 + 0.743150i \(0.266669\pi\)
−0.669125 + 0.743150i \(0.733331\pi\)
\(678\) 0 0
\(679\) −239.441 −0.352637
\(680\) − 18.5870i − 0.0273338i
\(681\) 0 0
\(682\) 70.9411 0.104019
\(683\) − 321.974i − 0.471412i −0.971824 0.235706i \(-0.924260\pi\)
0.971824 0.235706i \(-0.0757402\pi\)
\(684\) 0 0
\(685\) −101.952 −0.148835
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) 205.976 0.299384
\(689\) 223.720i 0.324702i
\(690\) 0 0
\(691\) −1159.92 −1.67862 −0.839308 0.543656i \(-0.817040\pi\)
−0.839308 + 0.543656i \(0.817040\pi\)
\(692\) 586.232i 0.847157i
\(693\) 0 0
\(694\) −587.048 −0.845891
\(695\) − 151.719i − 0.218301i
\(696\) 0 0
\(697\) 507.006 0.727412
\(698\) − 304.812i − 0.436694i
\(699\) 0 0
\(700\) −129.165 −0.184522
\(701\) 943.410i 1.34581i 0.739731 + 0.672903i \(0.234953\pi\)
−0.739731 + 0.672903i \(0.765047\pi\)
\(702\) 0 0
\(703\) 533.174 0.758427
\(704\) 29.1531i 0.0414106i
\(705\) 0 0
\(706\) −560.682 −0.794167
\(707\) 174.408i 0.246687i
\(708\) 0 0
\(709\) 966.545 1.36325 0.681625 0.731701i \(-0.261273\pi\)
0.681625 + 0.731701i \(0.261273\pi\)
\(710\) − 88.1640i − 0.124175i
\(711\) 0 0
\(712\) −25.2862 −0.0355143
\(713\) − 172.431i − 0.241838i
\(714\) 0 0
\(715\) −12.2140 −0.0170825
\(716\) − 280.840i − 0.392235i
\(717\) 0 0
\(718\) 368.010 0.512549
\(719\) 151.566i 0.210801i 0.994430 + 0.105400i \(0.0336124\pi\)
−0.994430 + 0.105400i \(0.966388\pi\)
\(720\) 0 0
\(721\) 28.9965 0.0402171
\(722\) − 10.7502i − 0.0148895i
\(723\) 0 0
\(724\) 166.757 0.230328
\(725\) − 401.124i − 0.553274i
\(726\) 0 0
\(727\) 770.708 1.06012 0.530061 0.847960i \(-0.322169\pi\)
0.530061 + 0.847960i \(0.322169\pi\)
\(728\) − 32.6514i − 0.0448508i
\(729\) 0 0
\(730\) 152.649 0.209108
\(731\) 440.518i 0.602624i
\(732\) 0 0
\(733\) 382.489 0.521813 0.260906 0.965364i \(-0.415979\pi\)
0.260906 + 0.965364i \(0.415979\pi\)
\(734\) 40.0888i 0.0546169i
\(735\) 0 0
\(736\) 70.8599 0.0962771
\(737\) 179.990i 0.244219i
\(738\) 0 0
\(739\) 773.926 1.04726 0.523630 0.851945i \(-0.324577\pi\)
0.523630 + 0.851945i \(0.324577\pi\)
\(740\) − 43.5736i − 0.0588833i
\(741\) 0 0
\(742\) −191.850 −0.258558
\(743\) 33.8300i 0.0455316i 0.999741 + 0.0227658i \(0.00724721\pi\)
−0.999741 + 0.0227658i \(0.992753\pi\)
\(744\) 0 0
\(745\) 8.35207 0.0112108
\(746\) 207.774i 0.278518i
\(747\) 0 0
\(748\) −62.3492 −0.0833545
\(749\) − 518.470i − 0.692216i
\(750\) 0 0
\(751\) 583.796 0.777359 0.388679 0.921373i \(-0.372931\pi\)
0.388679 + 0.921373i \(0.372931\pi\)
\(752\) − 222.143i − 0.295403i
\(753\) 0 0
\(754\) 101.399 0.134482
\(755\) − 62.7080i − 0.0830569i
\(756\) 0 0
\(757\) −50.5749 −0.0668097 −0.0334048 0.999442i \(-0.510635\pi\)
−0.0334048 + 0.999442i \(0.510635\pi\)
\(758\) 334.987i 0.441935i
\(759\) 0 0
\(760\) 40.8446 0.0537428
\(761\) − 366.129i − 0.481116i −0.970635 0.240558i \(-0.922670\pi\)
0.970635 0.240558i \(-0.0773304\pi\)
\(762\) 0 0
\(763\) 480.046 0.629156
\(764\) − 221.949i − 0.290510i
\(765\) 0 0
\(766\) 393.166 0.513272
\(767\) − 280.881i − 0.366207i
\(768\) 0 0
\(769\) −652.530 −0.848544 −0.424272 0.905535i \(-0.639470\pi\)
−0.424272 + 0.905535i \(0.639470\pi\)
\(770\) − 10.4741i − 0.0136027i
\(771\) 0 0
\(772\) 635.882 0.823682
\(773\) 1453.09i 1.87980i 0.341447 + 0.939901i \(0.389083\pi\)
−0.341447 + 0.939901i \(0.610917\pi\)
\(774\) 0 0
\(775\) 336.012 0.433564
\(776\) 255.973i 0.329862i
\(777\) 0 0
\(778\) −26.3853 −0.0339143
\(779\) 1114.14i 1.43022i
\(780\) 0 0
\(781\) −295.743 −0.378672
\(782\) 151.547i 0.193794i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) − 95.9424i − 0.122220i
\(786\) 0 0
\(787\) −370.660 −0.470978 −0.235489 0.971877i \(-0.575669\pi\)
−0.235489 + 0.971877i \(0.575669\pi\)
\(788\) − 248.492i − 0.315345i
\(789\) 0 0
\(790\) 151.470 0.191734
\(791\) − 180.055i − 0.227630i
\(792\) 0 0
\(793\) 214.952 0.271061
\(794\) − 661.609i − 0.833261i
\(795\) 0 0
\(796\) −26.0338 −0.0327058
\(797\) 1107.06i 1.38903i 0.719476 + 0.694517i \(0.244382\pi\)
−0.719476 + 0.694517i \(0.755618\pi\)
\(798\) 0 0
\(799\) 475.093 0.594610
\(800\) 138.083i 0.172604i
\(801\) 0 0
\(802\) −41.4520 −0.0516858
\(803\) − 512.055i − 0.637678i
\(804\) 0 0
\(805\) −25.4584 −0.0316254
\(806\) 84.9398i 0.105384i
\(807\) 0 0
\(808\) 186.450 0.230755
\(809\) − 256.032i − 0.316480i −0.987401 0.158240i \(-0.949418\pi\)
0.987401 0.158240i \(-0.0505819\pi\)
\(810\) 0 0
\(811\) −398.768 −0.491699 −0.245849 0.969308i \(-0.579067\pi\)
−0.245849 + 0.969308i \(0.579067\pi\)
\(812\) 86.9543i 0.107087i
\(813\) 0 0
\(814\) −146.166 −0.179565
\(815\) − 57.1130i − 0.0700773i
\(816\) 0 0
\(817\) −968.031 −1.18486
\(818\) − 488.370i − 0.597029i
\(819\) 0 0
\(820\) 91.0529 0.111040
\(821\) 1323.89i 1.61253i 0.591553 + 0.806266i \(0.298515\pi\)
−0.591553 + 0.806266i \(0.701485\pi\)
\(822\) 0 0
\(823\) 1121.87 1.36315 0.681573 0.731750i \(-0.261296\pi\)
0.681573 + 0.731750i \(0.261296\pi\)
\(824\) − 30.9986i − 0.0376197i
\(825\) 0 0
\(826\) 240.868 0.291607
\(827\) 65.6004i 0.0793233i 0.999213 + 0.0396617i \(0.0126280\pi\)
−0.999213 + 0.0396617i \(0.987372\pi\)
\(828\) 0 0
\(829\) 923.368 1.11383 0.556917 0.830568i \(-0.311984\pi\)
0.556917 + 0.830568i \(0.311984\pi\)
\(830\) 145.611i 0.175435i
\(831\) 0 0
\(832\) −34.9058 −0.0419541
\(833\) 59.8832i 0.0718885i
\(834\) 0 0
\(835\) 40.1667 0.0481038
\(836\) − 137.011i − 0.163889i
\(837\) 0 0
\(838\) 216.908 0.258840
\(839\) − 1414.94i − 1.68646i −0.537550 0.843232i \(-0.680650\pi\)
0.537550 0.843232i \(-0.319350\pi\)
\(840\) 0 0
\(841\) 570.963 0.678909
\(842\) − 879.372i − 1.04438i
\(843\) 0 0
\(844\) 31.8678 0.0377580
\(845\) 115.196i 0.136327i
\(846\) 0 0
\(847\) 285.001 0.336483
\(848\) 205.096i 0.241859i
\(849\) 0 0
\(850\) −295.317 −0.347431
\(851\) 355.273i 0.417478i
\(852\) 0 0
\(853\) 559.586 0.656021 0.328010 0.944674i \(-0.393622\pi\)
0.328010 + 0.944674i \(0.393622\pi\)
\(854\) 184.331i 0.215844i
\(855\) 0 0
\(856\) −554.268 −0.647509
\(857\) − 1088.85i − 1.27054i −0.772292 0.635268i \(-0.780890\pi\)
0.772292 0.635268i \(-0.219110\pi\)
\(858\) 0 0
\(859\) 193.871 0.225694 0.112847 0.993612i \(-0.464003\pi\)
0.112847 + 0.993612i \(0.464003\pi\)
\(860\) 79.1123i 0.0919910i
\(861\) 0 0
\(862\) 63.6836 0.0738789
\(863\) 514.067i 0.595674i 0.954617 + 0.297837i \(0.0962652\pi\)
−0.954617 + 0.297837i \(0.903735\pi\)
\(864\) 0 0
\(865\) −225.163 −0.260304
\(866\) 665.997i 0.769050i
\(867\) 0 0
\(868\) −72.8397 −0.0839167
\(869\) − 508.100i − 0.584695i
\(870\) 0 0
\(871\) −215.507 −0.247424
\(872\) − 513.191i − 0.588521i
\(873\) 0 0
\(874\) −333.022 −0.381032
\(875\) − 100.420i − 0.114766i
\(876\) 0 0
\(877\) 1098.75 1.25285 0.626425 0.779482i \(-0.284518\pi\)
0.626425 + 0.779482i \(0.284518\pi\)
\(878\) − 561.596i − 0.639631i
\(879\) 0 0
\(880\) −11.1972 −0.0127241
\(881\) − 532.250i − 0.604143i −0.953285 0.302072i \(-0.902322\pi\)
0.953285 0.302072i \(-0.0976782\pi\)
\(882\) 0 0
\(883\) 516.111 0.584498 0.292249 0.956342i \(-0.405596\pi\)
0.292249 + 0.956342i \(0.405596\pi\)
\(884\) − 74.6524i − 0.0844484i
\(885\) 0 0
\(886\) 395.848 0.446781
\(887\) 761.192i 0.858164i 0.903265 + 0.429082i \(0.141163\pi\)
−0.903265 + 0.429082i \(0.858837\pi\)
\(888\) 0 0
\(889\) −189.003 −0.212601
\(890\) − 9.71203i − 0.0109124i
\(891\) 0 0
\(892\) 188.157 0.210938
\(893\) 1044.01i 1.16910i
\(894\) 0 0
\(895\) 107.866 0.120521
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) −620.392 −0.690860
\(899\) − 226.204i − 0.251618i
\(900\) 0 0
\(901\) −438.636 −0.486832
\(902\) − 305.433i − 0.338618i
\(903\) 0 0
\(904\) −192.487 −0.212928
\(905\) 64.0489i 0.0707723i
\(906\) 0 0
\(907\) −1599.51 −1.76352 −0.881760 0.471698i \(-0.843641\pi\)
−0.881760 + 0.471698i \(0.843641\pi\)
\(908\) − 86.6264i − 0.0954035i
\(909\) 0 0
\(910\) 12.5409 0.0137812
\(911\) − 667.717i − 0.732949i −0.930428 0.366475i \(-0.880565\pi\)
0.930428 0.366475i \(-0.119435\pi\)
\(912\) 0 0
\(913\) 488.447 0.534991
\(914\) 62.3506i 0.0682173i
\(915\) 0 0
\(916\) 439.652 0.479969
\(917\) 378.816i 0.413103i
\(918\) 0 0
\(919\) 971.428 1.05705 0.528524 0.848918i \(-0.322746\pi\)
0.528524 + 0.848918i \(0.322746\pi\)
\(920\) 27.2162i 0.0295828i
\(921\) 0 0
\(922\) −978.376 −1.06115
\(923\) − 354.101i − 0.383641i
\(924\) 0 0
\(925\) −692.314 −0.748448
\(926\) − 1304.85i − 1.40913i
\(927\) 0 0
\(928\) 92.9580 0.100170
\(929\) 308.752i 0.332348i 0.986096 + 0.166174i \(0.0531414\pi\)
−0.986096 + 0.166174i \(0.946859\pi\)
\(930\) 0 0
\(931\) −131.592 −0.141345
\(932\) − 474.211i − 0.508811i
\(933\) 0 0
\(934\) 1133.64 1.21374
\(935\) − 23.9474i − 0.0256122i
\(936\) 0 0
\(937\) −18.3558 −0.0195900 −0.00979498 0.999952i \(-0.503118\pi\)
−0.00979498 + 0.999952i \(0.503118\pi\)
\(938\) − 184.807i − 0.197022i
\(939\) 0 0
\(940\) 85.3216 0.0907677
\(941\) 1341.24i 1.42533i 0.701502 + 0.712667i \(0.252513\pi\)
−0.701502 + 0.712667i \(0.747487\pi\)
\(942\) 0 0
\(943\) −742.391 −0.787265
\(944\) − 257.498i − 0.272774i
\(945\) 0 0
\(946\) 265.379 0.280527
\(947\) 1404.01i 1.48259i 0.671180 + 0.741294i \(0.265788\pi\)
−0.671180 + 0.741294i \(0.734212\pi\)
\(948\) 0 0
\(949\) 613.098 0.646046
\(950\) − 648.954i − 0.683109i
\(951\) 0 0
\(952\) 64.0178 0.0672456
\(953\) − 1299.63i − 1.36372i −0.731483 0.681860i \(-0.761171\pi\)
0.731483 0.681860i \(-0.238829\pi\)
\(954\) 0 0
\(955\) 85.2473 0.0892642
\(956\) 902.940i 0.944498i
\(957\) 0 0
\(958\) −314.350 −0.328131
\(959\) − 351.147i − 0.366160i
\(960\) 0 0
\(961\) −771.514 −0.802824
\(962\) − 175.009i − 0.181922i
\(963\) 0 0
\(964\) 69.9898 0.0726036
\(965\) 244.233i 0.253091i
\(966\) 0 0
\(967\) −1331.90 −1.37735 −0.688676 0.725069i \(-0.741808\pi\)
−0.688676 + 0.725069i \(0.741808\pi\)
\(968\) − 304.679i − 0.314751i
\(969\) 0 0
\(970\) −98.3152 −0.101356
\(971\) − 611.052i − 0.629301i −0.949208 0.314651i \(-0.898113\pi\)
0.949208 0.314651i \(-0.101887\pi\)
\(972\) 0 0
\(973\) 522.556 0.537057
\(974\) 326.485i 0.335200i
\(975\) 0 0
\(976\) 197.058 0.201903
\(977\) − 946.973i − 0.969266i −0.874718 0.484633i \(-0.838953\pi\)
0.874718 0.484633i \(-0.161047\pi\)
\(978\) 0 0
\(979\) −32.5786 −0.0332774
\(980\) 10.7544i 0.0109738i
\(981\) 0 0
\(982\) 938.538 0.955741
\(983\) − 609.254i − 0.619790i −0.950771 0.309895i \(-0.899706\pi\)
0.950771 0.309895i \(-0.100294\pi\)
\(984\) 0 0
\(985\) 95.4419 0.0968953
\(986\) 198.808i 0.201631i
\(987\) 0 0
\(988\) 164.047 0.166040
\(989\) − 645.034i − 0.652209i
\(990\) 0 0
\(991\) 1001.54 1.01064 0.505319 0.862933i \(-0.331375\pi\)
0.505319 + 0.862933i \(0.331375\pi\)
\(992\) 77.8689i 0.0784968i
\(993\) 0 0
\(994\) 303.657 0.305490
\(995\) − 9.99918i − 0.0100494i
\(996\) 0 0
\(997\) −73.9153 −0.0741377 −0.0370688 0.999313i \(-0.511802\pi\)
−0.0370688 + 0.999313i \(0.511802\pi\)
\(998\) 16.5739i 0.0166071i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.18 24
3.2 odd 2 inner 1134.3.b.c.323.7 24
9.2 odd 6 378.3.q.a.71.4 24
9.4 even 3 378.3.q.a.197.4 24
9.5 odd 6 126.3.q.a.29.12 24
9.7 even 3 126.3.q.a.113.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.12 24 9.5 odd 6
126.3.q.a.113.12 yes 24 9.7 even 3
378.3.q.a.71.4 24 9.2 odd 6
378.3.q.a.197.4 24 9.4 even 3
1134.3.b.c.323.7 24 3.2 odd 2 inner
1134.3.b.c.323.18 24 1.1 even 1 trivial