Properties

Label 1134.3.b.c.323.7
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.7
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +0.768169i q^{5} +2.64575 q^{7} +2.82843i q^{8} +1.08636 q^{10} +3.64413i q^{11} +4.36322 q^{13} -3.74166i q^{14} +4.00000 q^{16} -8.55474i q^{17} -18.7989 q^{19} -1.53634i q^{20} +5.15358 q^{22} +12.5264i q^{23} +24.4099 q^{25} -6.17053i q^{26} -5.29150 q^{28} +16.4328i q^{29} +13.7654 q^{31} -5.65685i q^{32} -12.0982 q^{34} +2.03238i q^{35} -28.3620 q^{37} +26.5857i q^{38} -2.17271 q^{40} +59.2662i q^{41} +51.4940 q^{43} -7.28827i q^{44} +17.7150 q^{46} +55.5357i q^{47} +7.00000 q^{49} -34.5208i q^{50} -8.72644 q^{52} -51.2740i q^{53} -2.79931 q^{55} +7.48331i q^{56} +23.2395 q^{58} +64.3746i q^{59} +49.2644 q^{61} -19.4672i q^{62} -8.00000 q^{64} +3.35169i q^{65} -49.3916 q^{67} +17.1095i q^{68} +2.87423 q^{70} +81.1558i q^{71} +140.515 q^{73} +40.1099i q^{74} +37.5978 q^{76} +9.64147i q^{77} +139.430 q^{79} +3.07268i q^{80} +83.8150 q^{82} -134.036i q^{83} +6.57148 q^{85} -72.8236i q^{86} -10.3072 q^{88} +8.94002i q^{89} +11.5440 q^{91} -25.0528i q^{92} +78.5393 q^{94} -14.4407i q^{95} -90.5001 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 0.768169i 0.153634i 0.997045 + 0.0768169i \(0.0244757\pi\)
−0.997045 + 0.0768169i \(0.975524\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 1.08636 0.108636
\(11\) 3.64413i 0.331285i 0.986186 + 0.165642i \(0.0529698\pi\)
−0.986186 + 0.165642i \(0.947030\pi\)
\(12\) 0 0
\(13\) 4.36322 0.335632 0.167816 0.985818i \(-0.446328\pi\)
0.167816 + 0.985818i \(0.446328\pi\)
\(14\) − 3.74166i − 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 8.55474i − 0.503220i −0.967829 0.251610i \(-0.919040\pi\)
0.967829 0.251610i \(-0.0809600\pi\)
\(18\) 0 0
\(19\) −18.7989 −0.989416 −0.494708 0.869059i \(-0.664725\pi\)
−0.494708 + 0.869059i \(0.664725\pi\)
\(20\) − 1.53634i − 0.0768169i
\(21\) 0 0
\(22\) 5.15358 0.234254
\(23\) 12.5264i 0.544625i 0.962209 + 0.272313i \(0.0877885\pi\)
−0.962209 + 0.272313i \(0.912211\pi\)
\(24\) 0 0
\(25\) 24.4099 0.976397
\(26\) − 6.17053i − 0.237328i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) 16.4328i 0.566649i 0.959024 + 0.283324i \(0.0914373\pi\)
−0.959024 + 0.283324i \(0.908563\pi\)
\(30\) 0 0
\(31\) 13.7654 0.444045 0.222023 0.975042i \(-0.428734\pi\)
0.222023 + 0.975042i \(0.428734\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −12.0982 −0.355830
\(35\) 2.03238i 0.0580681i
\(36\) 0 0
\(37\) −28.3620 −0.766541 −0.383270 0.923636i \(-0.625202\pi\)
−0.383270 + 0.923636i \(0.625202\pi\)
\(38\) 26.5857i 0.699622i
\(39\) 0 0
\(40\) −2.17271 −0.0543178
\(41\) 59.2662i 1.44552i 0.691101 + 0.722758i \(0.257126\pi\)
−0.691101 + 0.722758i \(0.742874\pi\)
\(42\) 0 0
\(43\) 51.4940 1.19754 0.598768 0.800923i \(-0.295657\pi\)
0.598768 + 0.800923i \(0.295657\pi\)
\(44\) − 7.28827i − 0.165642i
\(45\) 0 0
\(46\) 17.7150 0.385108
\(47\) 55.5357i 1.18161i 0.806814 + 0.590805i \(0.201190\pi\)
−0.806814 + 0.590805i \(0.798810\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) − 34.5208i − 0.690417i
\(51\) 0 0
\(52\) −8.72644 −0.167816
\(53\) − 51.2740i − 0.967434i −0.875224 0.483717i \(-0.839286\pi\)
0.875224 0.483717i \(-0.160714\pi\)
\(54\) 0 0
\(55\) −2.79931 −0.0508966
\(56\) 7.48331i 0.133631i
\(57\) 0 0
\(58\) 23.2395 0.400681
\(59\) 64.3746i 1.09109i 0.838080 + 0.545547i \(0.183678\pi\)
−0.838080 + 0.545547i \(0.816322\pi\)
\(60\) 0 0
\(61\) 49.2644 0.807614 0.403807 0.914844i \(-0.367687\pi\)
0.403807 + 0.914844i \(0.367687\pi\)
\(62\) − 19.4672i − 0.313987i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 3.35169i 0.0515645i
\(66\) 0 0
\(67\) −49.3916 −0.737188 −0.368594 0.929590i \(-0.620161\pi\)
−0.368594 + 0.929590i \(0.620161\pi\)
\(68\) 17.1095i 0.251610i
\(69\) 0 0
\(70\) 2.87423 0.0410604
\(71\) 81.1558i 1.14304i 0.820588 + 0.571520i \(0.193646\pi\)
−0.820588 + 0.571520i \(0.806354\pi\)
\(72\) 0 0
\(73\) 140.515 1.92486 0.962431 0.271527i \(-0.0875285\pi\)
0.962431 + 0.271527i \(0.0875285\pi\)
\(74\) 40.1099i 0.542026i
\(75\) 0 0
\(76\) 37.5978 0.494708
\(77\) 9.64147i 0.125214i
\(78\) 0 0
\(79\) 139.430 1.76493 0.882466 0.470377i \(-0.155882\pi\)
0.882466 + 0.470377i \(0.155882\pi\)
\(80\) 3.07268i 0.0384085i
\(81\) 0 0
\(82\) 83.8150 1.02213
\(83\) − 134.036i − 1.61490i −0.589938 0.807449i \(-0.700848\pi\)
0.589938 0.807449i \(-0.299152\pi\)
\(84\) 0 0
\(85\) 6.57148 0.0773116
\(86\) − 72.8236i − 0.846786i
\(87\) 0 0
\(88\) −10.3072 −0.117127
\(89\) 8.94002i 0.100450i 0.998738 + 0.0502248i \(0.0159938\pi\)
−0.998738 + 0.0502248i \(0.984006\pi\)
\(90\) 0 0
\(91\) 11.5440 0.126857
\(92\) − 25.0528i − 0.272313i
\(93\) 0 0
\(94\) 78.5393 0.835525
\(95\) − 14.4407i − 0.152008i
\(96\) 0 0
\(97\) −90.5001 −0.932990 −0.466495 0.884524i \(-0.654484\pi\)
−0.466495 + 0.884524i \(0.654484\pi\)
\(98\) − 9.89949i − 0.101015i
\(99\) 0 0
\(100\) −48.8198 −0.488198
\(101\) − 65.9200i − 0.652673i −0.945254 0.326336i \(-0.894186\pi\)
0.945254 0.326336i \(-0.105814\pi\)
\(102\) 0 0
\(103\) 10.9597 0.106404 0.0532022 0.998584i \(-0.483057\pi\)
0.0532022 + 0.998584i \(0.483057\pi\)
\(104\) 12.3411i 0.118664i
\(105\) 0 0
\(106\) −72.5124 −0.684079
\(107\) 195.963i 1.83143i 0.401826 + 0.915716i \(0.368376\pi\)
−0.401826 + 0.915716i \(0.631624\pi\)
\(108\) 0 0
\(109\) 181.440 1.66459 0.832295 0.554333i \(-0.187027\pi\)
0.832295 + 0.554333i \(0.187027\pi\)
\(110\) 3.95882i 0.0359893i
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) 68.0545i 0.602252i 0.953584 + 0.301126i \(0.0973625\pi\)
−0.953584 + 0.301126i \(0.902637\pi\)
\(114\) 0 0
\(115\) −9.62238 −0.0836729
\(116\) − 32.8656i − 0.283324i
\(117\) 0 0
\(118\) 91.0394 0.771520
\(119\) − 22.6337i − 0.190199i
\(120\) 0 0
\(121\) 107.720 0.890250
\(122\) − 69.6704i − 0.571069i
\(123\) 0 0
\(124\) −27.5308 −0.222023
\(125\) 37.9552i 0.303641i
\(126\) 0 0
\(127\) −71.4363 −0.562490 −0.281245 0.959636i \(-0.590747\pi\)
−0.281245 + 0.959636i \(0.590747\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 4.74001 0.0364616
\(131\) − 143.179i − 1.09297i −0.837469 0.546484i \(-0.815966\pi\)
0.837469 0.546484i \(-0.184034\pi\)
\(132\) 0 0
\(133\) −49.7372 −0.373964
\(134\) 69.8503i 0.521271i
\(135\) 0 0
\(136\) 24.1964 0.177915
\(137\) 132.721i 0.968767i 0.874856 + 0.484384i \(0.160956\pi\)
−0.874856 + 0.484384i \(0.839044\pi\)
\(138\) 0 0
\(139\) 197.508 1.42092 0.710459 0.703739i \(-0.248487\pi\)
0.710459 + 0.703739i \(0.248487\pi\)
\(140\) − 4.06477i − 0.0290341i
\(141\) 0 0
\(142\) 114.772 0.808251
\(143\) 15.9002i 0.111190i
\(144\) 0 0
\(145\) −12.6232 −0.0870564
\(146\) − 198.718i − 1.36108i
\(147\) 0 0
\(148\) 56.7240 0.383270
\(149\) − 10.8727i − 0.0729711i −0.999334 0.0364856i \(-0.988384\pi\)
0.999334 0.0364856i \(-0.0116163\pi\)
\(150\) 0 0
\(151\) 81.6331 0.540616 0.270308 0.962774i \(-0.412874\pi\)
0.270308 + 0.962774i \(0.412874\pi\)
\(152\) − 53.1713i − 0.349811i
\(153\) 0 0
\(154\) 13.6351 0.0885396
\(155\) 10.5742i 0.0682204i
\(156\) 0 0
\(157\) 124.898 0.795526 0.397763 0.917488i \(-0.369787\pi\)
0.397763 + 0.917488i \(0.369787\pi\)
\(158\) − 197.183i − 1.24799i
\(159\) 0 0
\(160\) 4.34542 0.0271589
\(161\) 33.1417i 0.205849i
\(162\) 0 0
\(163\) 74.3495 0.456132 0.228066 0.973646i \(-0.426760\pi\)
0.228066 + 0.973646i \(0.426760\pi\)
\(164\) − 118.532i − 0.722758i
\(165\) 0 0
\(166\) −189.556 −1.14190
\(167\) − 52.2889i − 0.313107i −0.987669 0.156554i \(-0.949962\pi\)
0.987669 0.156554i \(-0.0500384\pi\)
\(168\) 0 0
\(169\) −149.962 −0.887351
\(170\) − 9.29348i − 0.0546675i
\(171\) 0 0
\(172\) −102.988 −0.598768
\(173\) 293.116i 1.69431i 0.531343 + 0.847157i \(0.321688\pi\)
−0.531343 + 0.847157i \(0.678312\pi\)
\(174\) 0 0
\(175\) 64.5826 0.369043
\(176\) 14.5765i 0.0828212i
\(177\) 0 0
\(178\) 12.6431 0.0710286
\(179\) − 140.420i − 0.784470i −0.919865 0.392235i \(-0.871702\pi\)
0.919865 0.392235i \(-0.128298\pi\)
\(180\) 0 0
\(181\) −83.3787 −0.460656 −0.230328 0.973113i \(-0.573980\pi\)
−0.230328 + 0.973113i \(0.573980\pi\)
\(182\) − 16.3257i − 0.0897015i
\(183\) 0 0
\(184\) −35.4300 −0.192554
\(185\) − 21.7868i − 0.117767i
\(186\) 0 0
\(187\) 31.1746 0.166709
\(188\) − 111.071i − 0.590805i
\(189\) 0 0
\(190\) −20.4223 −0.107486
\(191\) − 110.975i − 0.581019i −0.956872 0.290510i \(-0.906175\pi\)
0.956872 0.290510i \(-0.0938248\pi\)
\(192\) 0 0
\(193\) −317.941 −1.64736 −0.823682 0.567052i \(-0.808084\pi\)
−0.823682 + 0.567052i \(0.808084\pi\)
\(194\) 127.986i 0.659724i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) − 124.246i − 0.630690i −0.948977 0.315345i \(-0.897880\pi\)
0.948977 0.315345i \(-0.102120\pi\)
\(198\) 0 0
\(199\) 13.0169 0.0654116 0.0327058 0.999465i \(-0.489588\pi\)
0.0327058 + 0.999465i \(0.489588\pi\)
\(200\) 69.0417i 0.345208i
\(201\) 0 0
\(202\) −93.2249 −0.461509
\(203\) 43.4771i 0.214173i
\(204\) 0 0
\(205\) −45.5264 −0.222080
\(206\) − 15.4993i − 0.0752393i
\(207\) 0 0
\(208\) 17.4529 0.0839081
\(209\) − 68.5057i − 0.327778i
\(210\) 0 0
\(211\) −15.9339 −0.0755160 −0.0377580 0.999287i \(-0.512022\pi\)
−0.0377580 + 0.999287i \(0.512022\pi\)
\(212\) 102.548i 0.483717i
\(213\) 0 0
\(214\) 277.134 1.29502
\(215\) 39.5561i 0.183982i
\(216\) 0 0
\(217\) 36.4198 0.167833
\(218\) − 256.595i − 1.17704i
\(219\) 0 0
\(220\) 5.59862 0.0254483
\(221\) − 37.3262i − 0.168897i
\(222\) 0 0
\(223\) −94.0784 −0.421876 −0.210938 0.977499i \(-0.567652\pi\)
−0.210938 + 0.977499i \(0.567652\pi\)
\(224\) − 14.9666i − 0.0668153i
\(225\) 0 0
\(226\) 96.2436 0.425857
\(227\) − 43.3132i − 0.190807i −0.995439 0.0954035i \(-0.969586\pi\)
0.995439 0.0954035i \(-0.0304141\pi\)
\(228\) 0 0
\(229\) −219.826 −0.959938 −0.479969 0.877285i \(-0.659352\pi\)
−0.479969 + 0.877285i \(0.659352\pi\)
\(230\) 13.6081i 0.0591657i
\(231\) 0 0
\(232\) −46.4790 −0.200341
\(233\) − 237.106i − 1.01762i −0.860879 0.508811i \(-0.830085\pi\)
0.860879 0.508811i \(-0.169915\pi\)
\(234\) 0 0
\(235\) −42.6608 −0.181535
\(236\) − 128.749i − 0.545547i
\(237\) 0 0
\(238\) −32.0089 −0.134491
\(239\) 451.470i 1.88900i 0.328517 + 0.944498i \(0.393451\pi\)
−0.328517 + 0.944498i \(0.606549\pi\)
\(240\) 0 0
\(241\) −34.9949 −0.145207 −0.0726036 0.997361i \(-0.523131\pi\)
−0.0726036 + 0.997361i \(0.523131\pi\)
\(242\) − 152.339i − 0.629502i
\(243\) 0 0
\(244\) −98.5289 −0.403807
\(245\) 5.37718i 0.0219477i
\(246\) 0 0
\(247\) −82.0237 −0.332080
\(248\) 38.9344i 0.156994i
\(249\) 0 0
\(250\) 53.6767 0.214707
\(251\) 201.405i 0.802409i 0.915988 + 0.401205i \(0.131408\pi\)
−0.915988 + 0.401205i \(0.868592\pi\)
\(252\) 0 0
\(253\) −45.6478 −0.180426
\(254\) 101.026i 0.397741i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 159.959i − 0.622408i −0.950343 0.311204i \(-0.899268\pi\)
0.950343 0.311204i \(-0.100732\pi\)
\(258\) 0 0
\(259\) −75.0388 −0.289725
\(260\) − 6.70338i − 0.0257822i
\(261\) 0 0
\(262\) −202.486 −0.772846
\(263\) 447.858i 1.70288i 0.524450 + 0.851441i \(0.324271\pi\)
−0.524450 + 0.851441i \(0.675729\pi\)
\(264\) 0 0
\(265\) 39.3871 0.148631
\(266\) 70.3390i 0.264432i
\(267\) 0 0
\(268\) 98.7833 0.368594
\(269\) − 177.841i − 0.661118i −0.943785 0.330559i \(-0.892763\pi\)
0.943785 0.330559i \(-0.107237\pi\)
\(270\) 0 0
\(271\) −274.571 −1.01318 −0.506588 0.862188i \(-0.669093\pi\)
−0.506588 + 0.862188i \(0.669093\pi\)
\(272\) − 34.2189i − 0.125805i
\(273\) 0 0
\(274\) 187.696 0.685022
\(275\) 88.9530i 0.323465i
\(276\) 0 0
\(277\) 517.748 1.86912 0.934562 0.355799i \(-0.115791\pi\)
0.934562 + 0.355799i \(0.115791\pi\)
\(278\) − 279.318i − 1.00474i
\(279\) 0 0
\(280\) −5.74845 −0.0205302
\(281\) 132.477i 0.471450i 0.971820 + 0.235725i \(0.0757464\pi\)
−0.971820 + 0.235725i \(0.924254\pi\)
\(282\) 0 0
\(283\) 256.768 0.907309 0.453654 0.891178i \(-0.350120\pi\)
0.453654 + 0.891178i \(0.350120\pi\)
\(284\) − 162.312i − 0.571520i
\(285\) 0 0
\(286\) 22.4862 0.0786232
\(287\) 156.804i 0.546354i
\(288\) 0 0
\(289\) 215.816 0.746770
\(290\) 17.8519i 0.0615582i
\(291\) 0 0
\(292\) −281.030 −0.962431
\(293\) − 481.204i − 1.64234i −0.570687 0.821168i \(-0.693323\pi\)
0.570687 0.821168i \(-0.306677\pi\)
\(294\) 0 0
\(295\) −49.4506 −0.167629
\(296\) − 80.2199i − 0.271013i
\(297\) 0 0
\(298\) −15.3763 −0.0515984
\(299\) 54.6554i 0.182794i
\(300\) 0 0
\(301\) 136.240 0.452626
\(302\) − 115.447i − 0.382273i
\(303\) 0 0
\(304\) −75.1956 −0.247354
\(305\) 37.8434i 0.124077i
\(306\) 0 0
\(307\) −593.798 −1.93420 −0.967098 0.254406i \(-0.918120\pi\)
−0.967098 + 0.254406i \(0.918120\pi\)
\(308\) − 19.2829i − 0.0626070i
\(309\) 0 0
\(310\) 14.9541 0.0482391
\(311\) 349.430i 1.12357i 0.827284 + 0.561784i \(0.189885\pi\)
−0.827284 + 0.561784i \(0.810115\pi\)
\(312\) 0 0
\(313\) −370.955 −1.18516 −0.592580 0.805511i \(-0.701891\pi\)
−0.592580 + 0.805511i \(0.701891\pi\)
\(314\) − 176.632i − 0.562522i
\(315\) 0 0
\(316\) −278.859 −0.882466
\(317\) 523.174i 1.65039i 0.564846 + 0.825196i \(0.308935\pi\)
−0.564846 + 0.825196i \(0.691065\pi\)
\(318\) 0 0
\(319\) −59.8834 −0.187722
\(320\) − 6.14535i − 0.0192042i
\(321\) 0 0
\(322\) 46.8694 0.145557
\(323\) 160.820i 0.497893i
\(324\) 0 0
\(325\) 106.506 0.327710
\(326\) − 105.146i − 0.322534i
\(327\) 0 0
\(328\) −167.630 −0.511067
\(329\) 146.934i 0.446607i
\(330\) 0 0
\(331\) −95.7996 −0.289425 −0.144712 0.989474i \(-0.546226\pi\)
−0.144712 + 0.989474i \(0.546226\pi\)
\(332\) 268.073i 0.807449i
\(333\) 0 0
\(334\) −73.9476 −0.221400
\(335\) − 37.9411i − 0.113257i
\(336\) 0 0
\(337\) −377.121 −1.11905 −0.559526 0.828813i \(-0.689017\pi\)
−0.559526 + 0.828813i \(0.689017\pi\)
\(338\) 212.079i 0.627452i
\(339\) 0 0
\(340\) −13.1430 −0.0386558
\(341\) 50.1630i 0.147105i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 145.647i 0.423393i
\(345\) 0 0
\(346\) 414.529 1.19806
\(347\) − 415.106i − 1.19627i −0.801395 0.598135i \(-0.795909\pi\)
0.801395 0.598135i \(-0.204091\pi\)
\(348\) 0 0
\(349\) −215.535 −0.617579 −0.308789 0.951130i \(-0.599924\pi\)
−0.308789 + 0.951130i \(0.599924\pi\)
\(350\) − 91.3335i − 0.260953i
\(351\) 0 0
\(352\) 20.6143 0.0585634
\(353\) − 396.462i − 1.12312i −0.827436 0.561561i \(-0.810201\pi\)
0.827436 0.561561i \(-0.189799\pi\)
\(354\) 0 0
\(355\) −62.3414 −0.175610
\(356\) − 17.8800i − 0.0502248i
\(357\) 0 0
\(358\) −198.584 −0.554704
\(359\) 260.223i 0.724854i 0.932012 + 0.362427i \(0.118052\pi\)
−0.932012 + 0.362427i \(0.881948\pi\)
\(360\) 0 0
\(361\) −7.60154 −0.0210569
\(362\) 117.915i 0.325733i
\(363\) 0 0
\(364\) −23.0880 −0.0634286
\(365\) 107.939i 0.295724i
\(366\) 0 0
\(367\) 28.3470 0.0772399 0.0386199 0.999254i \(-0.487704\pi\)
0.0386199 + 0.999254i \(0.487704\pi\)
\(368\) 50.1055i 0.136156i
\(369\) 0 0
\(370\) −30.8112 −0.0832736
\(371\) − 135.658i − 0.365656i
\(372\) 0 0
\(373\) 146.919 0.393883 0.196942 0.980415i \(-0.436899\pi\)
0.196942 + 0.980415i \(0.436899\pi\)
\(374\) − 44.0875i − 0.117881i
\(375\) 0 0
\(376\) −157.079 −0.417762
\(377\) 71.7000i 0.190186i
\(378\) 0 0
\(379\) 236.871 0.624991 0.312495 0.949919i \(-0.398835\pi\)
0.312495 + 0.949919i \(0.398835\pi\)
\(380\) 28.8815i 0.0760038i
\(381\) 0 0
\(382\) −156.942 −0.410843
\(383\) 278.010i 0.725876i 0.931813 + 0.362938i \(0.118226\pi\)
−0.931813 + 0.362938i \(0.881774\pi\)
\(384\) 0 0
\(385\) −7.40628 −0.0192371
\(386\) 449.637i 1.16486i
\(387\) 0 0
\(388\) 181.000 0.466495
\(389\) − 18.6572i − 0.0479620i −0.999712 0.0239810i \(-0.992366\pi\)
0.999712 0.0239810i \(-0.00763412\pi\)
\(390\) 0 0
\(391\) 107.160 0.274066
\(392\) 19.7990i 0.0505076i
\(393\) 0 0
\(394\) −175.710 −0.445965
\(395\) 107.105i 0.271153i
\(396\) 0 0
\(397\) −467.828 −1.17841 −0.589205 0.807984i \(-0.700559\pi\)
−0.589205 + 0.807984i \(0.700559\pi\)
\(398\) − 18.4087i − 0.0462530i
\(399\) 0 0
\(400\) 97.6397 0.244099
\(401\) − 29.3110i − 0.0730947i −0.999332 0.0365473i \(-0.988364\pi\)
0.999332 0.0365473i \(-0.0116360\pi\)
\(402\) 0 0
\(403\) 60.0615 0.149036
\(404\) 131.840i 0.326336i
\(405\) 0 0
\(406\) 61.4860 0.151443
\(407\) − 103.355i − 0.253943i
\(408\) 0 0
\(409\) −345.330 −0.844327 −0.422163 0.906520i \(-0.638729\pi\)
−0.422163 + 0.906520i \(0.638729\pi\)
\(410\) 64.3841i 0.157034i
\(411\) 0 0
\(412\) −21.9193 −0.0532022
\(413\) 170.319i 0.412395i
\(414\) 0 0
\(415\) 102.963 0.248103
\(416\) − 24.6821i − 0.0593320i
\(417\) 0 0
\(418\) −96.8817 −0.231774
\(419\) 153.377i 0.366054i 0.983108 + 0.183027i \(0.0585897\pi\)
−0.983108 + 0.183027i \(0.941410\pi\)
\(420\) 0 0
\(421\) −621.810 −1.47698 −0.738492 0.674263i \(-0.764462\pi\)
−0.738492 + 0.674263i \(0.764462\pi\)
\(422\) 22.5339i 0.0533979i
\(423\) 0 0
\(424\) 145.025 0.342040
\(425\) − 208.820i − 0.491342i
\(426\) 0 0
\(427\) 130.341 0.305249
\(428\) − 391.927i − 0.915716i
\(429\) 0 0
\(430\) 55.9408 0.130095
\(431\) 45.0311i 0.104480i 0.998635 + 0.0522402i \(0.0166362\pi\)
−0.998635 + 0.0522402i \(0.983364\pi\)
\(432\) 0 0
\(433\) 470.931 1.08760 0.543800 0.839215i \(-0.316985\pi\)
0.543800 + 0.839215i \(0.316985\pi\)
\(434\) − 51.5054i − 0.118676i
\(435\) 0 0
\(436\) −362.881 −0.832295
\(437\) − 235.482i − 0.538861i
\(438\) 0 0
\(439\) −397.109 −0.904575 −0.452288 0.891872i \(-0.649392\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(440\) − 7.91765i − 0.0179947i
\(441\) 0 0
\(442\) −52.7872 −0.119428
\(443\) 279.907i 0.631844i 0.948785 + 0.315922i \(0.102314\pi\)
−0.948785 + 0.315922i \(0.897686\pi\)
\(444\) 0 0
\(445\) −6.86744 −0.0154325
\(446\) 133.047i 0.298312i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) − 438.684i − 0.977023i −0.872557 0.488512i \(-0.837540\pi\)
0.872557 0.488512i \(-0.162460\pi\)
\(450\) 0 0
\(451\) −215.974 −0.478878
\(452\) − 136.109i − 0.301126i
\(453\) 0 0
\(454\) −61.2541 −0.134921
\(455\) 8.86774i 0.0194895i
\(456\) 0 0
\(457\) 44.0886 0.0964739 0.0482369 0.998836i \(-0.484640\pi\)
0.0482369 + 0.998836i \(0.484640\pi\)
\(458\) 310.881i 0.678779i
\(459\) 0 0
\(460\) 19.2448 0.0418364
\(461\) − 691.817i − 1.50069i −0.661048 0.750343i \(-0.729888\pi\)
0.661048 0.750343i \(-0.270112\pi\)
\(462\) 0 0
\(463\) −922.672 −1.99281 −0.996406 0.0847096i \(-0.973004\pi\)
−0.996406 + 0.0847096i \(0.973004\pi\)
\(464\) 65.7313i 0.141662i
\(465\) 0 0
\(466\) −335.318 −0.719567
\(467\) 801.602i 1.71649i 0.513238 + 0.858246i \(0.328446\pi\)
−0.513238 + 0.858246i \(0.671554\pi\)
\(468\) 0 0
\(469\) −130.678 −0.278631
\(470\) 60.3315i 0.128365i
\(471\) 0 0
\(472\) −182.079 −0.385760
\(473\) 187.651i 0.396726i
\(474\) 0 0
\(475\) −458.879 −0.966062
\(476\) 45.2674i 0.0950996i
\(477\) 0 0
\(478\) 638.475 1.33572
\(479\) − 222.279i − 0.464047i −0.972710 0.232024i \(-0.925465\pi\)
0.972710 0.232024i \(-0.0745347\pi\)
\(480\) 0 0
\(481\) −123.750 −0.257276
\(482\) 49.4903i 0.102677i
\(483\) 0 0
\(484\) −215.441 −0.445125
\(485\) − 69.5194i − 0.143339i
\(486\) 0 0
\(487\) 230.860 0.474045 0.237023 0.971504i \(-0.423828\pi\)
0.237023 + 0.971504i \(0.423828\pi\)
\(488\) 139.341i 0.285535i
\(489\) 0 0
\(490\) 7.60449 0.0155194
\(491\) 663.647i 1.35162i 0.737075 + 0.675811i \(0.236207\pi\)
−0.737075 + 0.675811i \(0.763793\pi\)
\(492\) 0 0
\(493\) 140.578 0.285149
\(494\) 115.999i 0.234816i
\(495\) 0 0
\(496\) 55.0616 0.111011
\(497\) 214.718i 0.432028i
\(498\) 0 0
\(499\) 11.7195 0.0234860 0.0117430 0.999931i \(-0.496262\pi\)
0.0117430 + 0.999931i \(0.496262\pi\)
\(500\) − 75.9103i − 0.151821i
\(501\) 0 0
\(502\) 284.829 0.567389
\(503\) − 700.769i − 1.39318i −0.717470 0.696589i \(-0.754700\pi\)
0.717470 0.696589i \(-0.245300\pi\)
\(504\) 0 0
\(505\) 50.6377 0.100273
\(506\) 64.5558i 0.127581i
\(507\) 0 0
\(508\) 142.873 0.281245
\(509\) − 192.627i − 0.378442i −0.981935 0.189221i \(-0.939404\pi\)
0.981935 0.189221i \(-0.0605963\pi\)
\(510\) 0 0
\(511\) 371.768 0.727529
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −226.216 −0.440109
\(515\) 8.41887i 0.0163473i
\(516\) 0 0
\(517\) −202.380 −0.391450
\(518\) 106.121i 0.204867i
\(519\) 0 0
\(520\) −9.48002 −0.0182308
\(521\) − 76.6618i − 0.147144i −0.997290 0.0735718i \(-0.976560\pi\)
0.997290 0.0735718i \(-0.0234398\pi\)
\(522\) 0 0
\(523\) −664.017 −1.26963 −0.634815 0.772664i \(-0.718924\pi\)
−0.634815 + 0.772664i \(0.718924\pi\)
\(524\) 286.358i 0.546484i
\(525\) 0 0
\(526\) 633.367 1.20412
\(527\) − 117.759i − 0.223452i
\(528\) 0 0
\(529\) 372.090 0.703383
\(530\) − 55.7018i − 0.105098i
\(531\) 0 0
\(532\) 99.4744 0.186982
\(533\) 258.591i 0.485162i
\(534\) 0 0
\(535\) −150.533 −0.281370
\(536\) − 139.701i − 0.260635i
\(537\) 0 0
\(538\) −251.505 −0.467481
\(539\) 25.5089i 0.0473264i
\(540\) 0 0
\(541\) −214.795 −0.397034 −0.198517 0.980097i \(-0.563613\pi\)
−0.198517 + 0.980097i \(0.563613\pi\)
\(542\) 388.301i 0.716423i
\(543\) 0 0
\(544\) −48.3929 −0.0889575
\(545\) 139.377i 0.255737i
\(546\) 0 0
\(547\) 414.077 0.756996 0.378498 0.925602i \(-0.376441\pi\)
0.378498 + 0.925602i \(0.376441\pi\)
\(548\) − 265.442i − 0.484384i
\(549\) 0 0
\(550\) 125.799 0.228725
\(551\) − 308.919i − 0.560651i
\(552\) 0 0
\(553\) 368.896 0.667081
\(554\) − 732.206i − 1.32167i
\(555\) 0 0
\(556\) −395.015 −0.710459
\(557\) − 421.048i − 0.755921i −0.925822 0.377961i \(-0.876625\pi\)
0.925822 0.377961i \(-0.123375\pi\)
\(558\) 0 0
\(559\) 224.680 0.401932
\(560\) 8.12954i 0.0145170i
\(561\) 0 0
\(562\) 187.351 0.333365
\(563\) − 582.732i − 1.03505i −0.855669 0.517524i \(-0.826854\pi\)
0.855669 0.517524i \(-0.173146\pi\)
\(564\) 0 0
\(565\) −52.2774 −0.0925263
\(566\) − 363.125i − 0.641564i
\(567\) 0 0
\(568\) −229.543 −0.404126
\(569\) − 342.669i − 0.602231i −0.953588 0.301115i \(-0.902641\pi\)
0.953588 0.301115i \(-0.0973590\pi\)
\(570\) 0 0
\(571\) 996.251 1.74475 0.872374 0.488839i \(-0.162579\pi\)
0.872374 + 0.488839i \(0.162579\pi\)
\(572\) − 31.8003i − 0.0555950i
\(573\) 0 0
\(574\) 221.754 0.386331
\(575\) 305.768i 0.531771i
\(576\) 0 0
\(577\) −46.3061 −0.0802532 −0.0401266 0.999195i \(-0.512776\pi\)
−0.0401266 + 0.999195i \(0.512776\pi\)
\(578\) − 305.211i − 0.528046i
\(579\) 0 0
\(580\) 25.2464 0.0435282
\(581\) − 354.627i − 0.610374i
\(582\) 0 0
\(583\) 186.849 0.320496
\(584\) 397.436i 0.680541i
\(585\) 0 0
\(586\) −680.526 −1.16131
\(587\) 381.323i 0.649614i 0.945780 + 0.324807i \(0.105299\pi\)
−0.945780 + 0.324807i \(0.894701\pi\)
\(588\) 0 0
\(589\) −258.774 −0.439345
\(590\) 69.9337i 0.118532i
\(591\) 0 0
\(592\) −113.448 −0.191635
\(593\) − 396.610i − 0.668820i −0.942428 0.334410i \(-0.891463\pi\)
0.942428 0.334410i \(-0.108537\pi\)
\(594\) 0 0
\(595\) 17.3865 0.0292210
\(596\) 21.7454i 0.0364856i
\(597\) 0 0
\(598\) 77.2944 0.129255
\(599\) 610.323i 1.01890i 0.860499 + 0.509452i \(0.170152\pi\)
−0.860499 + 0.509452i \(0.829848\pi\)
\(600\) 0 0
\(601\) −94.6287 −0.157452 −0.0787261 0.996896i \(-0.525085\pi\)
−0.0787261 + 0.996896i \(0.525085\pi\)
\(602\) − 192.673i − 0.320055i
\(603\) 0 0
\(604\) −163.266 −0.270308
\(605\) 82.7474i 0.136773i
\(606\) 0 0
\(607\) −916.191 −1.50938 −0.754688 0.656084i \(-0.772212\pi\)
−0.754688 + 0.656084i \(0.772212\pi\)
\(608\) 106.343i 0.174906i
\(609\) 0 0
\(610\) 53.5187 0.0877355
\(611\) 242.315i 0.396587i
\(612\) 0 0
\(613\) 300.794 0.490691 0.245346 0.969436i \(-0.421099\pi\)
0.245346 + 0.969436i \(0.421099\pi\)
\(614\) 839.757i 1.36768i
\(615\) 0 0
\(616\) −27.2702 −0.0442698
\(617\) − 276.439i − 0.448037i −0.974585 0.224018i \(-0.928082\pi\)
0.974585 0.224018i \(-0.0719175\pi\)
\(618\) 0 0
\(619\) 937.840 1.51509 0.757545 0.652783i \(-0.226399\pi\)
0.757545 + 0.652783i \(0.226399\pi\)
\(620\) − 21.1483i − 0.0341102i
\(621\) 0 0
\(622\) 494.168 0.794483
\(623\) 23.6531i 0.0379664i
\(624\) 0 0
\(625\) 581.092 0.929747
\(626\) 524.610i 0.838035i
\(627\) 0 0
\(628\) −249.795 −0.397763
\(629\) 242.629i 0.385738i
\(630\) 0 0
\(631\) −143.248 −0.227018 −0.113509 0.993537i \(-0.536209\pi\)
−0.113509 + 0.993537i \(0.536209\pi\)
\(632\) 394.366i 0.623997i
\(633\) 0 0
\(634\) 739.880 1.16700
\(635\) − 54.8751i − 0.0864175i
\(636\) 0 0
\(637\) 30.5426 0.0479475
\(638\) 84.6879i 0.132740i
\(639\) 0 0
\(640\) −8.69084 −0.0135794
\(641\) − 1263.43i − 1.97102i −0.169603 0.985512i \(-0.554249\pi\)
0.169603 0.985512i \(-0.445751\pi\)
\(642\) 0 0
\(643\) 240.885 0.374626 0.187313 0.982300i \(-0.440022\pi\)
0.187313 + 0.982300i \(0.440022\pi\)
\(644\) − 66.2834i − 0.102925i
\(645\) 0 0
\(646\) 227.433 0.352064
\(647\) − 1080.88i − 1.67060i −0.549797 0.835298i \(-0.685295\pi\)
0.549797 0.835298i \(-0.314705\pi\)
\(648\) 0 0
\(649\) −234.590 −0.361463
\(650\) − 150.622i − 0.231726i
\(651\) 0 0
\(652\) −148.699 −0.228066
\(653\) − 378.542i − 0.579698i −0.957072 0.289849i \(-0.906395\pi\)
0.957072 0.289849i \(-0.0936050\pi\)
\(654\) 0 0
\(655\) 109.986 0.167917
\(656\) 237.065i 0.361379i
\(657\) 0 0
\(658\) 207.796 0.315799
\(659\) 280.670i 0.425902i 0.977063 + 0.212951i \(0.0683075\pi\)
−0.977063 + 0.212951i \(0.931692\pi\)
\(660\) 0 0
\(661\) 200.005 0.302580 0.151290 0.988489i \(-0.451657\pi\)
0.151290 + 0.988489i \(0.451657\pi\)
\(662\) 135.481i 0.204654i
\(663\) 0 0
\(664\) 379.112 0.570952
\(665\) − 38.2066i − 0.0574535i
\(666\) 0 0
\(667\) −205.844 −0.308611
\(668\) 104.578i 0.156554i
\(669\) 0 0
\(670\) −53.6568 −0.0800848
\(671\) 179.526i 0.267550i
\(672\) 0 0
\(673\) 909.136 1.35087 0.675435 0.737419i \(-0.263956\pi\)
0.675435 + 0.737419i \(0.263956\pi\)
\(674\) 533.329i 0.791289i
\(675\) 0 0
\(676\) 299.925 0.443675
\(677\) − 1006.23i − 1.48630i −0.669125 0.743150i \(-0.733331\pi\)
0.669125 0.743150i \(-0.266669\pi\)
\(678\) 0 0
\(679\) −239.441 −0.352637
\(680\) 18.5870i 0.0273338i
\(681\) 0 0
\(682\) 70.9411 0.104019
\(683\) 321.974i 0.471412i 0.971824 + 0.235706i \(0.0757402\pi\)
−0.971824 + 0.235706i \(0.924260\pi\)
\(684\) 0 0
\(685\) −101.952 −0.148835
\(686\) − 26.1916i − 0.0381802i
\(687\) 0 0
\(688\) 205.976 0.299384
\(689\) − 223.720i − 0.324702i
\(690\) 0 0
\(691\) −1159.92 −1.67862 −0.839308 0.543656i \(-0.817040\pi\)
−0.839308 + 0.543656i \(0.817040\pi\)
\(692\) − 586.232i − 0.847157i
\(693\) 0 0
\(694\) −587.048 −0.845891
\(695\) 151.719i 0.218301i
\(696\) 0 0
\(697\) 507.006 0.727412
\(698\) 304.812i 0.436694i
\(699\) 0 0
\(700\) −129.165 −0.184522
\(701\) − 943.410i − 1.34581i −0.739731 0.672903i \(-0.765047\pi\)
0.739731 0.672903i \(-0.234953\pi\)
\(702\) 0 0
\(703\) 533.174 0.758427
\(704\) − 29.1531i − 0.0414106i
\(705\) 0 0
\(706\) −560.682 −0.794167
\(707\) − 174.408i − 0.246687i
\(708\) 0 0
\(709\) 966.545 1.36325 0.681625 0.731701i \(-0.261273\pi\)
0.681625 + 0.731701i \(0.261273\pi\)
\(710\) 88.1640i 0.124175i
\(711\) 0 0
\(712\) −25.2862 −0.0355143
\(713\) 172.431i 0.241838i
\(714\) 0 0
\(715\) −12.2140 −0.0170825
\(716\) 280.840i 0.392235i
\(717\) 0 0
\(718\) 368.010 0.512549
\(719\) − 151.566i − 0.210801i −0.994430 0.105400i \(-0.966388\pi\)
0.994430 0.105400i \(-0.0336124\pi\)
\(720\) 0 0
\(721\) 28.9965 0.0402171
\(722\) 10.7502i 0.0148895i
\(723\) 0 0
\(724\) 166.757 0.230328
\(725\) 401.124i 0.553274i
\(726\) 0 0
\(727\) 770.708 1.06012 0.530061 0.847960i \(-0.322169\pi\)
0.530061 + 0.847960i \(0.322169\pi\)
\(728\) 32.6514i 0.0448508i
\(729\) 0 0
\(730\) 152.649 0.209108
\(731\) − 440.518i − 0.602624i
\(732\) 0 0
\(733\) 382.489 0.521813 0.260906 0.965364i \(-0.415979\pi\)
0.260906 + 0.965364i \(0.415979\pi\)
\(734\) − 40.0888i − 0.0546169i
\(735\) 0 0
\(736\) 70.8599 0.0962771
\(737\) − 179.990i − 0.244219i
\(738\) 0 0
\(739\) 773.926 1.04726 0.523630 0.851945i \(-0.324577\pi\)
0.523630 + 0.851945i \(0.324577\pi\)
\(740\) 43.5736i 0.0588833i
\(741\) 0 0
\(742\) −191.850 −0.258558
\(743\) − 33.8300i − 0.0455316i −0.999741 0.0227658i \(-0.992753\pi\)
0.999741 0.0227658i \(-0.00724721\pi\)
\(744\) 0 0
\(745\) 8.35207 0.0112108
\(746\) − 207.774i − 0.278518i
\(747\) 0 0
\(748\) −62.3492 −0.0833545
\(749\) 518.470i 0.692216i
\(750\) 0 0
\(751\) 583.796 0.777359 0.388679 0.921373i \(-0.372931\pi\)
0.388679 + 0.921373i \(0.372931\pi\)
\(752\) 222.143i 0.295403i
\(753\) 0 0
\(754\) 101.399 0.134482
\(755\) 62.7080i 0.0830569i
\(756\) 0 0
\(757\) −50.5749 −0.0668097 −0.0334048 0.999442i \(-0.510635\pi\)
−0.0334048 + 0.999442i \(0.510635\pi\)
\(758\) − 334.987i − 0.441935i
\(759\) 0 0
\(760\) 40.8446 0.0537428
\(761\) 366.129i 0.481116i 0.970635 + 0.240558i \(0.0773304\pi\)
−0.970635 + 0.240558i \(0.922670\pi\)
\(762\) 0 0
\(763\) 480.046 0.629156
\(764\) 221.949i 0.290510i
\(765\) 0 0
\(766\) 393.166 0.513272
\(767\) 280.881i 0.366207i
\(768\) 0 0
\(769\) −652.530 −0.848544 −0.424272 0.905535i \(-0.639470\pi\)
−0.424272 + 0.905535i \(0.639470\pi\)
\(770\) 10.4741i 0.0136027i
\(771\) 0 0
\(772\) 635.882 0.823682
\(773\) − 1453.09i − 1.87980i −0.341447 0.939901i \(-0.610917\pi\)
0.341447 0.939901i \(-0.389083\pi\)
\(774\) 0 0
\(775\) 336.012 0.433564
\(776\) − 255.973i − 0.329862i
\(777\) 0 0
\(778\) −26.3853 −0.0339143
\(779\) − 1114.14i − 1.43022i
\(780\) 0 0
\(781\) −295.743 −0.378672
\(782\) − 151.547i − 0.193794i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 95.9424i 0.122220i
\(786\) 0 0
\(787\) −370.660 −0.470978 −0.235489 0.971877i \(-0.575669\pi\)
−0.235489 + 0.971877i \(0.575669\pi\)
\(788\) 248.492i 0.315345i
\(789\) 0 0
\(790\) 151.470 0.191734
\(791\) 180.055i 0.227630i
\(792\) 0 0
\(793\) 214.952 0.271061
\(794\) 661.609i 0.833261i
\(795\) 0 0
\(796\) −26.0338 −0.0327058
\(797\) − 1107.06i − 1.38903i −0.719476 0.694517i \(-0.755618\pi\)
0.719476 0.694517i \(-0.244382\pi\)
\(798\) 0 0
\(799\) 475.093 0.594610
\(800\) − 138.083i − 0.172604i
\(801\) 0 0
\(802\) −41.4520 −0.0516858
\(803\) 512.055i 0.637678i
\(804\) 0 0
\(805\) −25.4584 −0.0316254
\(806\) − 84.9398i − 0.105384i
\(807\) 0 0
\(808\) 186.450 0.230755
\(809\) 256.032i 0.316480i 0.987401 + 0.158240i \(0.0505819\pi\)
−0.987401 + 0.158240i \(0.949418\pi\)
\(810\) 0 0
\(811\) −398.768 −0.491699 −0.245849 0.969308i \(-0.579067\pi\)
−0.245849 + 0.969308i \(0.579067\pi\)
\(812\) − 86.9543i − 0.107087i
\(813\) 0 0
\(814\) −146.166 −0.179565
\(815\) 57.1130i 0.0700773i
\(816\) 0 0
\(817\) −968.031 −1.18486
\(818\) 488.370i 0.597029i
\(819\) 0 0
\(820\) 91.0529 0.111040
\(821\) − 1323.89i − 1.61253i −0.591553 0.806266i \(-0.701485\pi\)
0.591553 0.806266i \(-0.298515\pi\)
\(822\) 0 0
\(823\) 1121.87 1.36315 0.681573 0.731750i \(-0.261296\pi\)
0.681573 + 0.731750i \(0.261296\pi\)
\(824\) 30.9986i 0.0376197i
\(825\) 0 0
\(826\) 240.868 0.291607
\(827\) − 65.6004i − 0.0793233i −0.999213 0.0396617i \(-0.987372\pi\)
0.999213 0.0396617i \(-0.0126280\pi\)
\(828\) 0 0
\(829\) 923.368 1.11383 0.556917 0.830568i \(-0.311984\pi\)
0.556917 + 0.830568i \(0.311984\pi\)
\(830\) − 145.611i − 0.175435i
\(831\) 0 0
\(832\) −34.9058 −0.0419541
\(833\) − 59.8832i − 0.0718885i
\(834\) 0 0
\(835\) 40.1667 0.0481038
\(836\) 137.011i 0.163889i
\(837\) 0 0
\(838\) 216.908 0.258840
\(839\) 1414.94i 1.68646i 0.537550 + 0.843232i \(0.319350\pi\)
−0.537550 + 0.843232i \(0.680650\pi\)
\(840\) 0 0
\(841\) 570.963 0.678909
\(842\) 879.372i 1.04438i
\(843\) 0 0
\(844\) 31.8678 0.0377580
\(845\) − 115.196i − 0.136327i
\(846\) 0 0
\(847\) 285.001 0.336483
\(848\) − 205.096i − 0.241859i
\(849\) 0 0
\(850\) −295.317 −0.347431
\(851\) − 355.273i − 0.417478i
\(852\) 0 0
\(853\) 559.586 0.656021 0.328010 0.944674i \(-0.393622\pi\)
0.328010 + 0.944674i \(0.393622\pi\)
\(854\) − 184.331i − 0.215844i
\(855\) 0 0
\(856\) −554.268 −0.647509
\(857\) 1088.85i 1.27054i 0.772292 + 0.635268i \(0.219110\pi\)
−0.772292 + 0.635268i \(0.780890\pi\)
\(858\) 0 0
\(859\) 193.871 0.225694 0.112847 0.993612i \(-0.464003\pi\)
0.112847 + 0.993612i \(0.464003\pi\)
\(860\) − 79.1123i − 0.0919910i
\(861\) 0 0
\(862\) 63.6836 0.0738789
\(863\) − 514.067i − 0.595674i −0.954617 0.297837i \(-0.903735\pi\)
0.954617 0.297837i \(-0.0962652\pi\)
\(864\) 0 0
\(865\) −225.163 −0.260304
\(866\) − 665.997i − 0.769050i
\(867\) 0 0
\(868\) −72.8397 −0.0839167
\(869\) 508.100i 0.584695i
\(870\) 0 0
\(871\) −215.507 −0.247424
\(872\) 513.191i 0.588521i
\(873\) 0 0
\(874\) −333.022 −0.381032
\(875\) 100.420i 0.114766i
\(876\) 0 0
\(877\) 1098.75 1.25285 0.626425 0.779482i \(-0.284518\pi\)
0.626425 + 0.779482i \(0.284518\pi\)
\(878\) 561.596i 0.639631i
\(879\) 0 0
\(880\) −11.1972 −0.0127241
\(881\) 532.250i 0.604143i 0.953285 + 0.302072i \(0.0976782\pi\)
−0.953285 + 0.302072i \(0.902322\pi\)
\(882\) 0 0
\(883\) 516.111 0.584498 0.292249 0.956342i \(-0.405596\pi\)
0.292249 + 0.956342i \(0.405596\pi\)
\(884\) 74.6524i 0.0844484i
\(885\) 0 0
\(886\) 395.848 0.446781
\(887\) − 761.192i − 0.858164i −0.903265 0.429082i \(-0.858837\pi\)
0.903265 0.429082i \(-0.141163\pi\)
\(888\) 0 0
\(889\) −189.003 −0.212601
\(890\) 9.71203i 0.0109124i
\(891\) 0 0
\(892\) 188.157 0.210938
\(893\) − 1044.01i − 1.16910i
\(894\) 0 0
\(895\) 107.866 0.120521
\(896\) 29.9333i 0.0334077i
\(897\) 0 0
\(898\) −620.392 −0.690860
\(899\) 226.204i 0.251618i
\(900\) 0 0
\(901\) −438.636 −0.486832
\(902\) 305.433i 0.338618i
\(903\) 0 0
\(904\) −192.487 −0.212928
\(905\) − 64.0489i − 0.0707723i
\(906\) 0 0
\(907\) −1599.51 −1.76352 −0.881760 0.471698i \(-0.843641\pi\)
−0.881760 + 0.471698i \(0.843641\pi\)
\(908\) 86.6264i 0.0954035i
\(909\) 0 0
\(910\) 12.5409 0.0137812
\(911\) 667.717i 0.732949i 0.930428 + 0.366475i \(0.119435\pi\)
−0.930428 + 0.366475i \(0.880565\pi\)
\(912\) 0 0
\(913\) 488.447 0.534991
\(914\) − 62.3506i − 0.0682173i
\(915\) 0 0
\(916\) 439.652 0.479969
\(917\) − 378.816i − 0.413103i
\(918\) 0 0
\(919\) 971.428 1.05705 0.528524 0.848918i \(-0.322746\pi\)
0.528524 + 0.848918i \(0.322746\pi\)
\(920\) − 27.2162i − 0.0295828i
\(921\) 0 0
\(922\) −978.376 −1.06115
\(923\) 354.101i 0.383641i
\(924\) 0 0
\(925\) −692.314 −0.748448
\(926\) 1304.85i 1.40913i
\(927\) 0 0
\(928\) 92.9580 0.100170
\(929\) − 308.752i − 0.332348i −0.986096 0.166174i \(-0.946859\pi\)
0.986096 0.166174i \(-0.0531414\pi\)
\(930\) 0 0
\(931\) −131.592 −0.141345
\(932\) 474.211i 0.508811i
\(933\) 0 0
\(934\) 1133.64 1.21374
\(935\) 23.9474i 0.0256122i
\(936\) 0 0
\(937\) −18.3558 −0.0195900 −0.00979498 0.999952i \(-0.503118\pi\)
−0.00979498 + 0.999952i \(0.503118\pi\)
\(938\) 184.807i 0.197022i
\(939\) 0 0
\(940\) 85.3216 0.0907677
\(941\) − 1341.24i − 1.42533i −0.701502 0.712667i \(-0.747487\pi\)
0.701502 0.712667i \(-0.252513\pi\)
\(942\) 0 0
\(943\) −742.391 −0.787265
\(944\) 257.498i 0.272774i
\(945\) 0 0
\(946\) 265.379 0.280527
\(947\) − 1404.01i − 1.48259i −0.671180 0.741294i \(-0.734212\pi\)
0.671180 0.741294i \(-0.265788\pi\)
\(948\) 0 0
\(949\) 613.098 0.646046
\(950\) 648.954i 0.683109i
\(951\) 0 0
\(952\) 64.0178 0.0672456
\(953\) 1299.63i 1.36372i 0.731483 + 0.681860i \(0.238829\pi\)
−0.731483 + 0.681860i \(0.761171\pi\)
\(954\) 0 0
\(955\) 85.2473 0.0892642
\(956\) − 902.940i − 0.944498i
\(957\) 0 0
\(958\) −314.350 −0.328131
\(959\) 351.147i 0.366160i
\(960\) 0 0
\(961\) −771.514 −0.802824
\(962\) 175.009i 0.181922i
\(963\) 0 0
\(964\) 69.9898 0.0726036
\(965\) − 244.233i − 0.253091i
\(966\) 0 0
\(967\) −1331.90 −1.37735 −0.688676 0.725069i \(-0.741808\pi\)
−0.688676 + 0.725069i \(0.741808\pi\)
\(968\) 304.679i 0.314751i
\(969\) 0 0
\(970\) −98.3152 −0.101356
\(971\) 611.052i 0.629301i 0.949208 + 0.314651i \(0.101887\pi\)
−0.949208 + 0.314651i \(0.898113\pi\)
\(972\) 0 0
\(973\) 522.556 0.537057
\(974\) − 326.485i − 0.335200i
\(975\) 0 0
\(976\) 197.058 0.201903
\(977\) 946.973i 0.969266i 0.874718 + 0.484633i \(0.161047\pi\)
−0.874718 + 0.484633i \(0.838953\pi\)
\(978\) 0 0
\(979\) −32.5786 −0.0332774
\(980\) − 10.7544i − 0.0109738i
\(981\) 0 0
\(982\) 938.538 0.955741
\(983\) 609.254i 0.619790i 0.950771 + 0.309895i \(0.100294\pi\)
−0.950771 + 0.309895i \(0.899706\pi\)
\(984\) 0 0
\(985\) 95.4419 0.0968953
\(986\) − 198.808i − 0.201631i
\(987\) 0 0
\(988\) 164.047 0.166040
\(989\) 645.034i 0.652209i
\(990\) 0 0
\(991\) 1001.54 1.01064 0.505319 0.862933i \(-0.331375\pi\)
0.505319 + 0.862933i \(0.331375\pi\)
\(992\) − 77.8689i − 0.0784968i
\(993\) 0 0
\(994\) 303.657 0.305490
\(995\) 9.99918i 0.0100494i
\(996\) 0 0
\(997\) −73.9153 −0.0741377 −0.0370688 0.999313i \(-0.511802\pi\)
−0.0370688 + 0.999313i \(0.511802\pi\)
\(998\) − 16.5739i − 0.0166071i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.7 24
3.2 odd 2 inner 1134.3.b.c.323.18 24
9.2 odd 6 126.3.q.a.113.12 yes 24
9.4 even 3 126.3.q.a.29.12 24
9.5 odd 6 378.3.q.a.197.4 24
9.7 even 3 378.3.q.a.71.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.12 24 9.4 even 3
126.3.q.a.113.12 yes 24 9.2 odd 6
378.3.q.a.71.4 24 9.7 even 3
378.3.q.a.197.4 24 9.5 odd 6
1134.3.b.c.323.7 24 1.1 even 1 trivial
1134.3.b.c.323.18 24 3.2 odd 2 inner