Newspace parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.q (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.43325133094\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −1.22474 | − | 0.707107i | −2.92142 | + | 0.682149i | 1.00000 | + | 1.73205i | 2.76866 | − | 1.59849i | 4.06034 | + | 1.23029i | −1.32288 | + | 2.29129i | − | 2.82843i | 8.06934 | − | 3.98568i | −4.52120 | |||
29.2 | −1.22474 | − | 0.707107i | −1.47915 | − | 2.61001i | 1.00000 | + | 1.73205i | −3.47352 | + | 2.00544i | −0.0339773 | + | 4.24250i | −1.32288 | + | 2.29129i | − | 2.82843i | −4.62426 | + | 7.72115i | 5.67224 | |||
29.3 | −1.22474 | − | 0.707107i | −1.06149 | − | 2.80593i | 1.00000 | + | 1.73205i | 6.70848 | − | 3.87314i | −0.684038 | + | 4.18713i | 1.32288 | − | 2.29129i | − | 2.82843i | −6.74648 | + | 5.95693i | −10.9549 | |||
29.4 | −1.22474 | − | 0.707107i | −0.392589 | + | 2.97420i | 1.00000 | + | 1.73205i | −4.50944 | + | 2.60353i | 2.58390 | − | 3.36504i | 1.32288 | − | 2.29129i | − | 2.82843i | −8.69175 | − | 2.33528i | 7.36389 | |||
29.5 | −1.22474 | − | 0.707107i | 0.530065 | + | 2.95280i | 1.00000 | + | 1.73205i | 5.20486 | − | 3.00503i | 1.43875 | − | 3.99124i | −1.32288 | + | 2.29129i | − | 2.82843i | −8.43806 | + | 3.13035i | −8.49950 | |||
29.6 | −1.22474 | − | 0.707107i | 2.87508 | + | 0.856672i | 1.00000 | + | 1.73205i | 2.30097 | − | 1.32846i | −2.91549 | − | 3.08220i | 1.32288 | − | 2.29129i | − | 2.82843i | 7.53223 | + | 4.92601i | −3.75747 | |||
29.7 | 1.22474 | + | 0.707107i | −2.99983 | + | 0.0321734i | 1.00000 | + | 1.73205i | 7.44329 | − | 4.29739i | −3.69677 | − | 2.08179i | −1.32288 | + | 2.29129i | 2.82843i | 8.99793 | − | 0.193030i | 12.1548 | ||||
29.8 | 1.22474 | + | 0.707107i | −1.41155 | + | 2.64717i | 1.00000 | + | 1.73205i | −3.60855 | + | 2.08340i | −3.60062 | + | 2.24400i | −1.32288 | + | 2.29129i | 2.82843i | −5.01506 | − | 7.47323i | −5.89274 | ||||
29.9 | 1.22474 | + | 0.707107i | 0.880705 | + | 2.86781i | 1.00000 | + | 1.73205i | 7.45939 | − | 4.30668i | −0.949211 | + | 4.13509i | 1.32288 | − | 2.29129i | 2.82843i | −7.44872 | + | 5.05140i | 12.1811 | ||||
29.10 | 1.22474 | + | 0.707107i | 1.12701 | − | 2.78026i | 1.00000 | + | 1.73205i | 2.56117 | − | 1.47869i | 3.34624 | − | 2.60819i | 1.32288 | − | 2.29129i | 2.82843i | −6.45970 | − | 6.26676i | 4.18237 | ||||
29.11 | 1.22474 | + | 0.707107i | 1.86278 | + | 2.35160i | 1.00000 | + | 1.73205i | −5.52056 | + | 3.18729i | 0.618597 | + | 4.19730i | 1.32288 | − | 2.29129i | 2.82843i | −2.06009 | + | 8.76105i | −9.01503 | ||||
29.12 | 1.22474 | + | 0.707107i | 2.99037 | − | 0.240190i | 1.00000 | + | 1.73205i | 0.665254 | − | 0.384085i | 3.83228 | + | 1.82034i | −1.32288 | + | 2.29129i | 2.82843i | 8.88462 | − | 1.43651i | 1.08636 | ||||
113.1 | −1.22474 | + | 0.707107i | −2.92142 | − | 0.682149i | 1.00000 | − | 1.73205i | 2.76866 | + | 1.59849i | 4.06034 | − | 1.23029i | −1.32288 | − | 2.29129i | 2.82843i | 8.06934 | + | 3.98568i | −4.52120 | ||||
113.2 | −1.22474 | + | 0.707107i | −1.47915 | + | 2.61001i | 1.00000 | − | 1.73205i | −3.47352 | − | 2.00544i | −0.0339773 | − | 4.24250i | −1.32288 | − | 2.29129i | 2.82843i | −4.62426 | − | 7.72115i | 5.67224 | ||||
113.3 | −1.22474 | + | 0.707107i | −1.06149 | + | 2.80593i | 1.00000 | − | 1.73205i | 6.70848 | + | 3.87314i | −0.684038 | − | 4.18713i | 1.32288 | + | 2.29129i | 2.82843i | −6.74648 | − | 5.95693i | −10.9549 | ||||
113.4 | −1.22474 | + | 0.707107i | −0.392589 | − | 2.97420i | 1.00000 | − | 1.73205i | −4.50944 | − | 2.60353i | 2.58390 | + | 3.36504i | 1.32288 | + | 2.29129i | 2.82843i | −8.69175 | + | 2.33528i | 7.36389 | ||||
113.5 | −1.22474 | + | 0.707107i | 0.530065 | − | 2.95280i | 1.00000 | − | 1.73205i | 5.20486 | + | 3.00503i | 1.43875 | + | 3.99124i | −1.32288 | − | 2.29129i | 2.82843i | −8.43806 | − | 3.13035i | −8.49950 | ||||
113.6 | −1.22474 | + | 0.707107i | 2.87508 | − | 0.856672i | 1.00000 | − | 1.73205i | 2.30097 | + | 1.32846i | −2.91549 | + | 3.08220i | 1.32288 | + | 2.29129i | 2.82843i | 7.53223 | − | 4.92601i | −3.75747 | ||||
113.7 | 1.22474 | − | 0.707107i | −2.99983 | − | 0.0321734i | 1.00000 | − | 1.73205i | 7.44329 | + | 4.29739i | −3.69677 | + | 2.08179i | −1.32288 | − | 2.29129i | − | 2.82843i | 8.99793 | + | 0.193030i | 12.1548 | |||
113.8 | 1.22474 | − | 0.707107i | −1.41155 | − | 2.64717i | 1.00000 | − | 1.73205i | −3.60855 | − | 2.08340i | −3.60062 | − | 2.24400i | −1.32288 | − | 2.29129i | − | 2.82843i | −5.01506 | + | 7.47323i | −5.89274 | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 126.3.q.a | ✓ | 24 |
3.b | odd | 2 | 1 | 378.3.q.a | 24 | ||
9.c | even | 3 | 1 | 378.3.q.a | 24 | ||
9.c | even | 3 | 1 | 1134.3.b.c | 24 | ||
9.d | odd | 6 | 1 | inner | 126.3.q.a | ✓ | 24 |
9.d | odd | 6 | 1 | 1134.3.b.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
126.3.q.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
126.3.q.a | ✓ | 24 | 9.d | odd | 6 | 1 | inner |
378.3.q.a | 24 | 3.b | odd | 2 | 1 | ||
378.3.q.a | 24 | 9.c | even | 3 | 1 | ||
1134.3.b.c | 24 | 9.c | even | 3 | 1 | ||
1134.3.b.c | 24 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(126, [\chi])\).