Properties

Label 2-1134-3.2-c2-0-37
Degree $2$
Conductor $1134$
Sign $-1$
Analytic cond. $30.8992$
Root an. cond. $5.55871$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s − 2.00·4-s + 2.95i·5-s − 2.64·7-s + 2.82i·8-s + 4.18·10-s − 2.24i·11-s − 4.48·13-s + 3.74i·14-s + 4.00·16-s + 3.17i·17-s + 15.1·19-s − 5.91i·20-s − 3.17·22-s − 20.9i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s + 0.591i·5-s − 0.377·7-s + 0.353i·8-s + 0.418·10-s − 0.203i·11-s − 0.344·13-s + 0.267i·14-s + 0.250·16-s + 0.186i·17-s + 0.795·19-s − 0.295i·20-s − 0.144·22-s − 0.909i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1134\)    =    \(2 \cdot 3^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.8992\)
Root analytic conductor: \(5.55871\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1134} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1134,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4616339891\)
\(L(\frac12)\) \(\approx\) \(0.4616339891\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
3 \( 1 \)
7 \( 1 + 2.64T \)
good5 \( 1 - 2.95iT - 25T^{2} \)
11 \( 1 + 2.24iT - 121T^{2} \)
13 \( 1 + 4.48T + 169T^{2} \)
17 \( 1 - 3.17iT - 289T^{2} \)
19 \( 1 - 15.1T + 361T^{2} \)
23 \( 1 + 20.9iT - 529T^{2} \)
29 \( 1 - 33.3iT - 841T^{2} \)
31 \( 1 + 51.5T + 961T^{2} \)
37 \( 1 + 8.74T + 1.36e3T^{2} \)
41 \( 1 + 70.6iT - 1.68e3T^{2} \)
43 \( 1 + 44.9T + 1.84e3T^{2} \)
47 \( 1 - 18.6iT - 2.20e3T^{2} \)
53 \( 1 + 38.6iT - 2.80e3T^{2} \)
59 \( 1 + 38.4iT - 3.48e3T^{2} \)
61 \( 1 + 73.3T + 3.72e3T^{2} \)
67 \( 1 + 108.T + 4.48e3T^{2} \)
71 \( 1 + 23.2iT - 5.04e3T^{2} \)
73 \( 1 - 47.8T + 5.32e3T^{2} \)
79 \( 1 + 78.4T + 6.24e3T^{2} \)
83 \( 1 + 113. iT - 6.88e3T^{2} \)
89 \( 1 + 164. iT - 7.92e3T^{2} \)
97 \( 1 + 87.7T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.251214946632977069249430360339, −8.677005188597303768169123874601, −7.48185422800739197324391902847, −6.80528075568621543014686146352, −5.70732376536551625295936221514, −4.80143070300982335828753624836, −3.57702428889994740990161318142, −2.93220856170476965847476624603, −1.71126326249944533204132955681, −0.14313336148252000435020315851, 1.34879571912087809207120243146, 2.97077265659233561071741256143, 4.10606246571820651329188924892, 5.06785936735594935637220032038, 5.74203267998398573291879163390, 6.78883093272041595415710746332, 7.53186390449518446080450331026, 8.289138576938807682983744927635, 9.353627252310415799466412480950, 9.594490526805809426775459710369

Graph of the $Z$-function along the critical line