Properties

Label 1134.3.b.c.323.8
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.8
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.95738i q^{5} -2.64575 q^{7} +2.82843i q^{8} +4.18237 q^{10} -2.24372i q^{11} -4.48140 q^{13} +3.74166i q^{14} +4.00000 q^{16} +3.17017i q^{17} +15.1070 q^{19} -5.91476i q^{20} -3.17310 q^{22} -20.9186i q^{23} +16.2539 q^{25} +6.33766i q^{26} +5.29150 q^{28} +33.3094i q^{29} -51.5504 q^{31} -5.65685i q^{32} +4.48330 q^{34} -7.82449i q^{35} -8.74834 q^{37} -21.3645i q^{38} -8.36473 q^{40} -70.6247i q^{41} -44.9345 q^{43} +4.48744i q^{44} -29.5834 q^{46} +18.6949i q^{47} +7.00000 q^{49} -22.9865i q^{50} +8.96281 q^{52} -38.6329i q^{53} +6.63553 q^{55} -7.48331i q^{56} +47.1066 q^{58} -38.4541i q^{59} -73.3167 q^{61} +72.9033i q^{62} -8.00000 q^{64} -13.2532i q^{65} -108.915 q^{67} -6.34035i q^{68} -11.0655 q^{70} -23.2803i q^{71} +47.8485 q^{73} +12.3720i q^{74} -30.2140 q^{76} +5.93632i q^{77} -78.4605 q^{79} +11.8295i q^{80} -99.8784 q^{82} -113.968i q^{83} -9.37541 q^{85} +63.5470i q^{86} +6.34619 q^{88} -164.207i q^{89} +11.8567 q^{91} +41.8372i q^{92} +26.4385 q^{94} +44.6771i q^{95} -87.7018 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 2.95738i 0.591476i 0.955269 + 0.295738i \(0.0955655\pi\)
−0.955269 + 0.295738i \(0.904434\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 4.18237 0.418237
\(11\) − 2.24372i − 0.203974i −0.994786 0.101987i \(-0.967480\pi\)
0.994786 0.101987i \(-0.0325201\pi\)
\(12\) 0 0
\(13\) −4.48140 −0.344723 −0.172362 0.985034i \(-0.555140\pi\)
−0.172362 + 0.985034i \(0.555140\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 3.17017i 0.186481i 0.995644 + 0.0932404i \(0.0297225\pi\)
−0.995644 + 0.0932404i \(0.970277\pi\)
\(18\) 0 0
\(19\) 15.1070 0.795105 0.397553 0.917579i \(-0.369860\pi\)
0.397553 + 0.917579i \(0.369860\pi\)
\(20\) − 5.91476i − 0.295738i
\(21\) 0 0
\(22\) −3.17310 −0.144232
\(23\) − 20.9186i − 0.909505i −0.890618 0.454753i \(-0.849728\pi\)
0.890618 0.454753i \(-0.150272\pi\)
\(24\) 0 0
\(25\) 16.2539 0.650156
\(26\) 6.33766i 0.243756i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) 33.3094i 1.14860i 0.818645 + 0.574300i \(0.194726\pi\)
−0.818645 + 0.574300i \(0.805274\pi\)
\(30\) 0 0
\(31\) −51.5504 −1.66292 −0.831458 0.555588i \(-0.812493\pi\)
−0.831458 + 0.555588i \(0.812493\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 4.48330 0.131862
\(35\) − 7.82449i − 0.223557i
\(36\) 0 0
\(37\) −8.74834 −0.236442 −0.118221 0.992987i \(-0.537719\pi\)
−0.118221 + 0.992987i \(0.537719\pi\)
\(38\) − 21.3645i − 0.562224i
\(39\) 0 0
\(40\) −8.36473 −0.209118
\(41\) − 70.6247i − 1.72255i −0.508137 0.861276i \(-0.669666\pi\)
0.508137 0.861276i \(-0.330334\pi\)
\(42\) 0 0
\(43\) −44.9345 −1.04499 −0.522494 0.852643i \(-0.674998\pi\)
−0.522494 + 0.852643i \(0.674998\pi\)
\(44\) 4.48744i 0.101987i
\(45\) 0 0
\(46\) −29.5834 −0.643117
\(47\) 18.6949i 0.397763i 0.980024 + 0.198881i \(0.0637309\pi\)
−0.980024 + 0.198881i \(0.936269\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) − 22.9865i − 0.459730i
\(51\) 0 0
\(52\) 8.96281 0.172362
\(53\) − 38.6329i − 0.728923i −0.931218 0.364462i \(-0.881253\pi\)
0.931218 0.364462i \(-0.118747\pi\)
\(54\) 0 0
\(55\) 6.63553 0.120646
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) 47.1066 0.812183
\(59\) − 38.4541i − 0.651765i −0.945410 0.325882i \(-0.894339\pi\)
0.945410 0.325882i \(-0.105661\pi\)
\(60\) 0 0
\(61\) −73.3167 −1.20191 −0.600957 0.799282i \(-0.705214\pi\)
−0.600957 + 0.799282i \(0.705214\pi\)
\(62\) 72.9033i 1.17586i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 13.2532i − 0.203896i
\(66\) 0 0
\(67\) −108.915 −1.62559 −0.812795 0.582550i \(-0.802055\pi\)
−0.812795 + 0.582550i \(0.802055\pi\)
\(68\) − 6.34035i − 0.0932404i
\(69\) 0 0
\(70\) −11.0655 −0.158079
\(71\) − 23.2803i − 0.327892i −0.986469 0.163946i \(-0.947578\pi\)
0.986469 0.163946i \(-0.0524223\pi\)
\(72\) 0 0
\(73\) 47.8485 0.655458 0.327729 0.944772i \(-0.393717\pi\)
0.327729 + 0.944772i \(0.393717\pi\)
\(74\) 12.3720i 0.167189i
\(75\) 0 0
\(76\) −30.2140 −0.397553
\(77\) 5.93632i 0.0770951i
\(78\) 0 0
\(79\) −78.4605 −0.993170 −0.496585 0.867988i \(-0.665413\pi\)
−0.496585 + 0.867988i \(0.665413\pi\)
\(80\) 11.8295i 0.147869i
\(81\) 0 0
\(82\) −99.8784 −1.21803
\(83\) − 113.968i − 1.37310i −0.727081 0.686551i \(-0.759124\pi\)
0.727081 0.686551i \(-0.240876\pi\)
\(84\) 0 0
\(85\) −9.37541 −0.110299
\(86\) 63.5470i 0.738918i
\(87\) 0 0
\(88\) 6.34619 0.0721158
\(89\) − 164.207i − 1.84502i −0.385973 0.922510i \(-0.626134\pi\)
0.385973 0.922510i \(-0.373866\pi\)
\(90\) 0 0
\(91\) 11.8567 0.130293
\(92\) 41.8372i 0.454753i
\(93\) 0 0
\(94\) 26.4385 0.281261
\(95\) 44.6771i 0.470286i
\(96\) 0 0
\(97\) −87.7018 −0.904142 −0.452071 0.891982i \(-0.649315\pi\)
−0.452071 + 0.891982i \(0.649315\pi\)
\(98\) − 9.89949i − 0.101015i
\(99\) 0 0
\(100\) −32.5078 −0.325078
\(101\) − 30.5249i − 0.302226i −0.988516 0.151113i \(-0.951714\pi\)
0.988516 0.151113i \(-0.0482858\pi\)
\(102\) 0 0
\(103\) −41.7413 −0.405255 −0.202628 0.979256i \(-0.564948\pi\)
−0.202628 + 0.979256i \(0.564948\pi\)
\(104\) − 12.6753i − 0.121878i
\(105\) 0 0
\(106\) −54.6352 −0.515426
\(107\) − 52.6534i − 0.492088i −0.969259 0.246044i \(-0.920869\pi\)
0.969259 0.246044i \(-0.0791307\pi\)
\(108\) 0 0
\(109\) −193.765 −1.77766 −0.888832 0.458232i \(-0.848483\pi\)
−0.888832 + 0.458232i \(0.848483\pi\)
\(110\) − 9.38405i − 0.0853096i
\(111\) 0 0
\(112\) −10.5830 −0.0944911
\(113\) 125.172i 1.10772i 0.832610 + 0.553860i \(0.186846\pi\)
−0.832610 + 0.553860i \(0.813154\pi\)
\(114\) 0 0
\(115\) 61.8643 0.537950
\(116\) − 66.6188i − 0.574300i
\(117\) 0 0
\(118\) −54.3823 −0.460867
\(119\) − 8.38749i − 0.0704831i
\(120\) 0 0
\(121\) 115.966 0.958394
\(122\) 103.685i 0.849881i
\(123\) 0 0
\(124\) 103.101 0.831458
\(125\) 122.003i 0.976028i
\(126\) 0 0
\(127\) −76.1997 −0.599997 −0.299999 0.953940i \(-0.596986\pi\)
−0.299999 + 0.953940i \(0.596986\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −18.7429 −0.144176
\(131\) 175.145i 1.33698i 0.743719 + 0.668492i \(0.233060\pi\)
−0.743719 + 0.668492i \(0.766940\pi\)
\(132\) 0 0
\(133\) −39.9694 −0.300521
\(134\) 154.028i 1.14947i
\(135\) 0 0
\(136\) −8.96661 −0.0659309
\(137\) 65.9238i 0.481196i 0.970625 + 0.240598i \(0.0773435\pi\)
−0.970625 + 0.240598i \(0.922657\pi\)
\(138\) 0 0
\(139\) −37.0302 −0.266404 −0.133202 0.991089i \(-0.542526\pi\)
−0.133202 + 0.991089i \(0.542526\pi\)
\(140\) 15.6490i 0.111778i
\(141\) 0 0
\(142\) −32.9233 −0.231855
\(143\) 10.0550i 0.0703147i
\(144\) 0 0
\(145\) −98.5085 −0.679369
\(146\) − 67.6680i − 0.463479i
\(147\) 0 0
\(148\) 17.4967 0.118221
\(149\) − 140.856i − 0.945341i −0.881239 0.472670i \(-0.843290\pi\)
0.881239 0.472670i \(-0.156710\pi\)
\(150\) 0 0
\(151\) 287.779 1.90582 0.952911 0.303252i \(-0.0980722\pi\)
0.952911 + 0.303252i \(0.0980722\pi\)
\(152\) 42.7290i 0.281112i
\(153\) 0 0
\(154\) 8.39522 0.0545144
\(155\) − 152.454i − 0.983575i
\(156\) 0 0
\(157\) 88.5085 0.563748 0.281874 0.959451i \(-0.409044\pi\)
0.281874 + 0.959451i \(0.409044\pi\)
\(158\) 110.960i 0.702277i
\(159\) 0 0
\(160\) 16.7295 0.104559
\(161\) 55.3455i 0.343761i
\(162\) 0 0
\(163\) −190.795 −1.17052 −0.585261 0.810845i \(-0.699008\pi\)
−0.585261 + 0.810845i \(0.699008\pi\)
\(164\) 141.249i 0.861276i
\(165\) 0 0
\(166\) −161.174 −0.970930
\(167\) − 148.863i − 0.891394i −0.895184 0.445697i \(-0.852956\pi\)
0.895184 0.445697i \(-0.147044\pi\)
\(168\) 0 0
\(169\) −148.917 −0.881166
\(170\) 13.2588i 0.0779931i
\(171\) 0 0
\(172\) 89.8690 0.522494
\(173\) 69.0028i 0.398860i 0.979912 + 0.199430i \(0.0639091\pi\)
−0.979912 + 0.199430i \(0.936091\pi\)
\(174\) 0 0
\(175\) −43.0038 −0.245736
\(176\) − 8.97487i − 0.0509936i
\(177\) 0 0
\(178\) −232.224 −1.30463
\(179\) − 297.138i − 1.65999i −0.557772 0.829994i \(-0.688344\pi\)
0.557772 0.829994i \(-0.311656\pi\)
\(180\) 0 0
\(181\) 8.68202 0.0479669 0.0239835 0.999712i \(-0.492365\pi\)
0.0239835 + 0.999712i \(0.492365\pi\)
\(182\) − 16.7679i − 0.0921312i
\(183\) 0 0
\(184\) 59.1668 0.321559
\(185\) − 25.8722i − 0.139850i
\(186\) 0 0
\(187\) 7.11298 0.0380373
\(188\) − 37.3897i − 0.198881i
\(189\) 0 0
\(190\) 63.1830 0.332542
\(191\) 215.791i 1.12980i 0.825160 + 0.564898i \(0.191085\pi\)
−0.825160 + 0.564898i \(0.808915\pi\)
\(192\) 0 0
\(193\) 193.075 1.00039 0.500195 0.865913i \(-0.333262\pi\)
0.500195 + 0.865913i \(0.333262\pi\)
\(194\) 124.029i 0.639325i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) 328.601i 1.66802i 0.551746 + 0.834012i \(0.313962\pi\)
−0.551746 + 0.834012i \(0.686038\pi\)
\(198\) 0 0
\(199\) 301.035 1.51274 0.756371 0.654143i \(-0.226971\pi\)
0.756371 + 0.654143i \(0.226971\pi\)
\(200\) 45.9730i 0.229865i
\(201\) 0 0
\(202\) −43.1687 −0.213706
\(203\) − 88.1284i − 0.434130i
\(204\) 0 0
\(205\) 208.864 1.01885
\(206\) 59.0311i 0.286559i
\(207\) 0 0
\(208\) −17.9256 −0.0861809
\(209\) − 33.8958i − 0.162181i
\(210\) 0 0
\(211\) −187.617 −0.889182 −0.444591 0.895734i \(-0.646651\pi\)
−0.444591 + 0.895734i \(0.646651\pi\)
\(212\) 77.2658i 0.364462i
\(213\) 0 0
\(214\) −74.4631 −0.347959
\(215\) − 132.888i − 0.618085i
\(216\) 0 0
\(217\) 136.390 0.628523
\(218\) 274.026i 1.25700i
\(219\) 0 0
\(220\) −13.2711 −0.0603230
\(221\) − 14.2068i − 0.0642843i
\(222\) 0 0
\(223\) −415.288 −1.86228 −0.931139 0.364665i \(-0.881184\pi\)
−0.931139 + 0.364665i \(0.881184\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 177.020 0.783276
\(227\) − 343.850i − 1.51476i −0.652975 0.757379i \(-0.726480\pi\)
0.652975 0.757379i \(-0.273520\pi\)
\(228\) 0 0
\(229\) −72.2331 −0.315429 −0.157714 0.987485i \(-0.550412\pi\)
−0.157714 + 0.987485i \(0.550412\pi\)
\(230\) − 87.4893i − 0.380388i
\(231\) 0 0
\(232\) −94.2132 −0.406091
\(233\) 351.362i 1.50799i 0.656880 + 0.753995i \(0.271876\pi\)
−0.656880 + 0.753995i \(0.728124\pi\)
\(234\) 0 0
\(235\) −55.2878 −0.235267
\(236\) 76.9082i 0.325882i
\(237\) 0 0
\(238\) −11.8617 −0.0498391
\(239\) 101.620i 0.425190i 0.977140 + 0.212595i \(0.0681915\pi\)
−0.977140 + 0.212595i \(0.931809\pi\)
\(240\) 0 0
\(241\) −17.2373 −0.0715239 −0.0357619 0.999360i \(-0.511386\pi\)
−0.0357619 + 0.999360i \(0.511386\pi\)
\(242\) − 164.000i − 0.677687i
\(243\) 0 0
\(244\) 146.633 0.600957
\(245\) 20.7017i 0.0844966i
\(246\) 0 0
\(247\) −67.7006 −0.274091
\(248\) − 145.807i − 0.587930i
\(249\) 0 0
\(250\) 172.539 0.690156
\(251\) − 248.646i − 0.990621i −0.868716 0.495311i \(-0.835054\pi\)
0.868716 0.495311i \(-0.164946\pi\)
\(252\) 0 0
\(253\) −46.9355 −0.185516
\(254\) 107.763i 0.424262i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 239.914i − 0.933516i −0.884385 0.466758i \(-0.845422\pi\)
0.884385 0.466758i \(-0.154578\pi\)
\(258\) 0 0
\(259\) 23.1459 0.0893665
\(260\) 26.5064i 0.101948i
\(261\) 0 0
\(262\) 247.692 0.945391
\(263\) 90.5805i 0.344412i 0.985061 + 0.172206i \(0.0550896\pi\)
−0.985061 + 0.172206i \(0.944910\pi\)
\(264\) 0 0
\(265\) 114.252 0.431140
\(266\) 56.5252i 0.212501i
\(267\) 0 0
\(268\) 217.829 0.812795
\(269\) 241.010i 0.895949i 0.894046 + 0.447975i \(0.147855\pi\)
−0.894046 + 0.447975i \(0.852145\pi\)
\(270\) 0 0
\(271\) −118.017 −0.435487 −0.217744 0.976006i \(-0.569870\pi\)
−0.217744 + 0.976006i \(0.569870\pi\)
\(272\) 12.6807i 0.0466202i
\(273\) 0 0
\(274\) 93.2303 0.340257
\(275\) − 36.4692i − 0.132615i
\(276\) 0 0
\(277\) 427.318 1.54267 0.771333 0.636432i \(-0.219590\pi\)
0.771333 + 0.636432i \(0.219590\pi\)
\(278\) 52.3685i 0.188376i
\(279\) 0 0
\(280\) 22.1310 0.0790393
\(281\) − 189.711i − 0.675127i −0.941303 0.337563i \(-0.890397\pi\)
0.941303 0.337563i \(-0.109603\pi\)
\(282\) 0 0
\(283\) 65.8693 0.232754 0.116377 0.993205i \(-0.462872\pi\)
0.116377 + 0.993205i \(0.462872\pi\)
\(284\) 46.5606i 0.163946i
\(285\) 0 0
\(286\) 14.2199 0.0497200
\(287\) 186.855i 0.651064i
\(288\) 0 0
\(289\) 278.950 0.965225
\(290\) 139.312i 0.480387i
\(291\) 0 0
\(292\) −95.6969 −0.327729
\(293\) − 377.260i − 1.28758i −0.765204 0.643788i \(-0.777362\pi\)
0.765204 0.643788i \(-0.222638\pi\)
\(294\) 0 0
\(295\) 113.723 0.385503
\(296\) − 24.7440i − 0.0835947i
\(297\) 0 0
\(298\) −199.200 −0.668457
\(299\) 93.7448i 0.313528i
\(300\) 0 0
\(301\) 118.885 0.394968
\(302\) − 406.981i − 1.34762i
\(303\) 0 0
\(304\) 60.4280 0.198776
\(305\) − 216.825i − 0.710903i
\(306\) 0 0
\(307\) 397.032 1.29326 0.646632 0.762802i \(-0.276177\pi\)
0.646632 + 0.762802i \(0.276177\pi\)
\(308\) − 11.8726i − 0.0385475i
\(309\) 0 0
\(310\) −215.603 −0.695492
\(311\) − 72.5394i − 0.233246i −0.993176 0.116623i \(-0.962793\pi\)
0.993176 0.116623i \(-0.0372069\pi\)
\(312\) 0 0
\(313\) −9.22611 −0.0294764 −0.0147382 0.999891i \(-0.504691\pi\)
−0.0147382 + 0.999891i \(0.504691\pi\)
\(314\) − 125.170i − 0.398630i
\(315\) 0 0
\(316\) 156.921 0.496585
\(317\) − 225.068i − 0.709993i −0.934868 0.354997i \(-0.884482\pi\)
0.934868 0.354997i \(-0.115518\pi\)
\(318\) 0 0
\(319\) 74.7369 0.234285
\(320\) − 23.6590i − 0.0739345i
\(321\) 0 0
\(322\) 78.2703 0.243075
\(323\) 47.8918i 0.148272i
\(324\) 0 0
\(325\) −72.8403 −0.224124
\(326\) 269.825i 0.827684i
\(327\) 0 0
\(328\) 199.757 0.609014
\(329\) − 49.4619i − 0.150340i
\(330\) 0 0
\(331\) 391.558 1.18295 0.591477 0.806322i \(-0.298545\pi\)
0.591477 + 0.806322i \(0.298545\pi\)
\(332\) 227.935i 0.686551i
\(333\) 0 0
\(334\) −210.524 −0.630311
\(335\) − 322.102i − 0.961498i
\(336\) 0 0
\(337\) −315.229 −0.935397 −0.467698 0.883888i \(-0.654917\pi\)
−0.467698 + 0.883888i \(0.654917\pi\)
\(338\) 210.600i 0.623078i
\(339\) 0 0
\(340\) 18.7508 0.0551495
\(341\) 115.665i 0.339192i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) − 127.094i − 0.369459i
\(345\) 0 0
\(346\) 97.5847 0.282037
\(347\) 241.178i 0.695038i 0.937673 + 0.347519i \(0.112976\pi\)
−0.937673 + 0.347519i \(0.887024\pi\)
\(348\) 0 0
\(349\) −389.051 −1.11476 −0.557379 0.830258i \(-0.688193\pi\)
−0.557379 + 0.830258i \(0.688193\pi\)
\(350\) 60.8165i 0.173762i
\(351\) 0 0
\(352\) −12.6924 −0.0360579
\(353\) − 169.653i − 0.480603i −0.970698 0.240302i \(-0.922754\pi\)
0.970698 0.240302i \(-0.0772463\pi\)
\(354\) 0 0
\(355\) 68.8487 0.193940
\(356\) 328.414i 0.922510i
\(357\) 0 0
\(358\) −420.216 −1.17379
\(359\) − 480.422i − 1.33822i −0.743162 0.669111i \(-0.766675\pi\)
0.743162 0.669111i \(-0.233325\pi\)
\(360\) 0 0
\(361\) −132.779 −0.367808
\(362\) − 12.2782i − 0.0339177i
\(363\) 0 0
\(364\) −23.7134 −0.0651466
\(365\) 141.506i 0.387688i
\(366\) 0 0
\(367\) 334.462 0.911342 0.455671 0.890148i \(-0.349399\pi\)
0.455671 + 0.890148i \(0.349399\pi\)
\(368\) − 83.6745i − 0.227376i
\(369\) 0 0
\(370\) −36.5888 −0.0988885
\(371\) 102.213i 0.275507i
\(372\) 0 0
\(373\) −19.8698 −0.0532702 −0.0266351 0.999645i \(-0.508479\pi\)
−0.0266351 + 0.999645i \(0.508479\pi\)
\(374\) − 10.0593i − 0.0268964i
\(375\) 0 0
\(376\) −52.8770 −0.140630
\(377\) − 149.273i − 0.395949i
\(378\) 0 0
\(379\) −103.780 −0.273825 −0.136913 0.990583i \(-0.543718\pi\)
−0.136913 + 0.990583i \(0.543718\pi\)
\(380\) − 89.3543i − 0.235143i
\(381\) 0 0
\(382\) 305.175 0.798887
\(383\) − 365.733i − 0.954917i −0.878654 0.477458i \(-0.841558\pi\)
0.878654 0.477458i \(-0.158442\pi\)
\(384\) 0 0
\(385\) −17.5560 −0.0455999
\(386\) − 273.050i − 0.707383i
\(387\) 0 0
\(388\) 175.404 0.452071
\(389\) − 147.384i − 0.378880i −0.981892 0.189440i \(-0.939333\pi\)
0.981892 0.189440i \(-0.0606673\pi\)
\(390\) 0 0
\(391\) 66.3157 0.169605
\(392\) 19.7990i 0.0505076i
\(393\) 0 0
\(394\) 464.712 1.17947
\(395\) − 232.037i − 0.587436i
\(396\) 0 0
\(397\) −241.232 −0.607638 −0.303819 0.952730i \(-0.598262\pi\)
−0.303819 + 0.952730i \(0.598262\pi\)
\(398\) − 425.728i − 1.06967i
\(399\) 0 0
\(400\) 65.0156 0.162539
\(401\) 658.660i 1.64254i 0.570537 + 0.821272i \(0.306735\pi\)
−0.570537 + 0.821272i \(0.693265\pi\)
\(402\) 0 0
\(403\) 231.018 0.573246
\(404\) 61.0497i 0.151113i
\(405\) 0 0
\(406\) −124.632 −0.306976
\(407\) 19.6288i 0.0482280i
\(408\) 0 0
\(409\) 467.667 1.14344 0.571720 0.820449i \(-0.306277\pi\)
0.571720 + 0.820449i \(0.306277\pi\)
\(410\) − 295.378i − 0.720435i
\(411\) 0 0
\(412\) 83.4826 0.202628
\(413\) 101.740i 0.246344i
\(414\) 0 0
\(415\) 337.045 0.812157
\(416\) 25.3507i 0.0609391i
\(417\) 0 0
\(418\) −47.9360 −0.114679
\(419\) 225.059i 0.537133i 0.963261 + 0.268567i \(0.0865500\pi\)
−0.963261 + 0.268567i \(0.913450\pi\)
\(420\) 0 0
\(421\) 500.783 1.18951 0.594754 0.803908i \(-0.297249\pi\)
0.594754 + 0.803908i \(0.297249\pi\)
\(422\) 265.331i 0.628747i
\(423\) 0 0
\(424\) 109.270 0.257713
\(425\) 51.5277i 0.121242i
\(426\) 0 0
\(427\) 193.978 0.454280
\(428\) 105.307i 0.246044i
\(429\) 0 0
\(430\) −187.932 −0.437052
\(431\) − 465.507i − 1.08006i −0.841645 0.540031i \(-0.818413\pi\)
0.841645 0.540031i \(-0.181587\pi\)
\(432\) 0 0
\(433\) −229.008 −0.528887 −0.264443 0.964401i \(-0.585188\pi\)
−0.264443 + 0.964401i \(0.585188\pi\)
\(434\) − 192.884i − 0.444433i
\(435\) 0 0
\(436\) 387.531 0.888832
\(437\) − 316.017i − 0.723152i
\(438\) 0 0
\(439\) −769.472 −1.75278 −0.876392 0.481599i \(-0.840056\pi\)
−0.876392 + 0.481599i \(0.840056\pi\)
\(440\) 18.7681i 0.0426548i
\(441\) 0 0
\(442\) −20.0915 −0.0454559
\(443\) 257.695i 0.581705i 0.956768 + 0.290853i \(0.0939389\pi\)
−0.956768 + 0.290853i \(0.906061\pi\)
\(444\) 0 0
\(445\) 485.622 1.09129
\(446\) 587.306i 1.31683i
\(447\) 0 0
\(448\) 21.1660 0.0472456
\(449\) 90.2076i 0.200908i 0.994942 + 0.100454i \(0.0320295\pi\)
−0.994942 + 0.100454i \(0.967971\pi\)
\(450\) 0 0
\(451\) −158.462 −0.351357
\(452\) − 250.345i − 0.553860i
\(453\) 0 0
\(454\) −486.277 −1.07110
\(455\) 35.0647i 0.0770653i
\(456\) 0 0
\(457\) −328.002 −0.717728 −0.358864 0.933390i \(-0.616836\pi\)
−0.358864 + 0.933390i \(0.616836\pi\)
\(458\) 102.153i 0.223042i
\(459\) 0 0
\(460\) −123.729 −0.268975
\(461\) 729.439i 1.58230i 0.611624 + 0.791149i \(0.290517\pi\)
−0.611624 + 0.791149i \(0.709483\pi\)
\(462\) 0 0
\(463\) 100.082 0.216159 0.108080 0.994142i \(-0.465530\pi\)
0.108080 + 0.994142i \(0.465530\pi\)
\(464\) 133.238i 0.287150i
\(465\) 0 0
\(466\) 496.901 1.06631
\(467\) − 57.7466i − 0.123654i −0.998087 0.0618272i \(-0.980307\pi\)
0.998087 0.0618272i \(-0.0196928\pi\)
\(468\) 0 0
\(469\) 288.161 0.614415
\(470\) 78.1887i 0.166359i
\(471\) 0 0
\(472\) 108.765 0.230434
\(473\) 100.820i 0.213151i
\(474\) 0 0
\(475\) 245.548 0.516942
\(476\) 16.7750i 0.0352416i
\(477\) 0 0
\(478\) 143.713 0.300655
\(479\) − 413.163i − 0.862554i −0.902220 0.431277i \(-0.858063\pi\)
0.902220 0.431277i \(-0.141937\pi\)
\(480\) 0 0
\(481\) 39.2048 0.0815070
\(482\) 24.3772i 0.0505750i
\(483\) 0 0
\(484\) −231.931 −0.479197
\(485\) − 259.368i − 0.534778i
\(486\) 0 0
\(487\) 851.825 1.74913 0.874564 0.484910i \(-0.161148\pi\)
0.874564 + 0.484910i \(0.161148\pi\)
\(488\) − 207.371i − 0.424940i
\(489\) 0 0
\(490\) 29.2766 0.0597481
\(491\) 108.134i 0.220232i 0.993919 + 0.110116i \(0.0351223\pi\)
−0.993919 + 0.110116i \(0.964878\pi\)
\(492\) 0 0
\(493\) −105.597 −0.214192
\(494\) 95.7431i 0.193812i
\(495\) 0 0
\(496\) −206.202 −0.415729
\(497\) 61.5939i 0.123931i
\(498\) 0 0
\(499\) 436.336 0.874421 0.437211 0.899359i \(-0.355966\pi\)
0.437211 + 0.899359i \(0.355966\pi\)
\(500\) − 244.007i − 0.488014i
\(501\) 0 0
\(502\) −351.639 −0.700475
\(503\) 309.461i 0.615230i 0.951511 + 0.307615i \(0.0995309\pi\)
−0.951511 + 0.307615i \(0.900469\pi\)
\(504\) 0 0
\(505\) 90.2736 0.178760
\(506\) 66.3768i 0.131179i
\(507\) 0 0
\(508\) 152.399 0.299999
\(509\) 245.031i 0.481397i 0.970600 + 0.240698i \(0.0773764\pi\)
−0.970600 + 0.240698i \(0.922624\pi\)
\(510\) 0 0
\(511\) −126.595 −0.247740
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −339.289 −0.660095
\(515\) − 123.445i − 0.239699i
\(516\) 0 0
\(517\) 41.9460 0.0811334
\(518\) − 32.7333i − 0.0631917i
\(519\) 0 0
\(520\) 37.4858 0.0720880
\(521\) − 727.090i − 1.39557i −0.716309 0.697783i \(-0.754170\pi\)
0.716309 0.697783i \(-0.245830\pi\)
\(522\) 0 0
\(523\) −434.448 −0.830684 −0.415342 0.909665i \(-0.636338\pi\)
−0.415342 + 0.909665i \(0.636338\pi\)
\(524\) − 350.290i − 0.668492i
\(525\) 0 0
\(526\) 128.100 0.243536
\(527\) − 163.424i − 0.310102i
\(528\) 0 0
\(529\) 91.4114 0.172800
\(530\) − 161.577i − 0.304862i
\(531\) 0 0
\(532\) 79.9387 0.150261
\(533\) 316.498i 0.593804i
\(534\) 0 0
\(535\) 155.716 0.291058
\(536\) − 308.057i − 0.574733i
\(537\) 0 0
\(538\) 340.840 0.633532
\(539\) − 15.7060i − 0.0291392i
\(540\) 0 0
\(541\) 126.002 0.232906 0.116453 0.993196i \(-0.462848\pi\)
0.116453 + 0.993196i \(0.462848\pi\)
\(542\) 166.901i 0.307936i
\(543\) 0 0
\(544\) 17.9332 0.0329655
\(545\) − 573.038i − 1.05145i
\(546\) 0 0
\(547\) 533.893 0.976039 0.488019 0.872833i \(-0.337720\pi\)
0.488019 + 0.872833i \(0.337720\pi\)
\(548\) − 131.848i − 0.240598i
\(549\) 0 0
\(550\) −51.5752 −0.0937731
\(551\) 503.205i 0.913258i
\(552\) 0 0
\(553\) 207.587 0.375383
\(554\) − 604.319i − 1.09083i
\(555\) 0 0
\(556\) 74.0603 0.133202
\(557\) 1055.89i 1.89567i 0.318766 + 0.947833i \(0.396731\pi\)
−0.318766 + 0.947833i \(0.603269\pi\)
\(558\) 0 0
\(559\) 201.370 0.360232
\(560\) − 31.2980i − 0.0558892i
\(561\) 0 0
\(562\) −268.291 −0.477387
\(563\) 187.605i 0.333224i 0.986022 + 0.166612i \(0.0532828\pi\)
−0.986022 + 0.166612i \(0.946717\pi\)
\(564\) 0 0
\(565\) −370.182 −0.655189
\(566\) − 93.1532i − 0.164582i
\(567\) 0 0
\(568\) 65.8467 0.115927
\(569\) 593.618i 1.04327i 0.853170 + 0.521633i \(0.174677\pi\)
−0.853170 + 0.521633i \(0.825323\pi\)
\(570\) 0 0
\(571\) −306.586 −0.536927 −0.268464 0.963290i \(-0.586516\pi\)
−0.268464 + 0.963290i \(0.586516\pi\)
\(572\) − 20.1100i − 0.0351574i
\(573\) 0 0
\(574\) 264.253 0.460372
\(575\) − 340.009i − 0.591320i
\(576\) 0 0
\(577\) 452.891 0.784907 0.392454 0.919772i \(-0.371626\pi\)
0.392454 + 0.919772i \(0.371626\pi\)
\(578\) − 394.495i − 0.682517i
\(579\) 0 0
\(580\) 197.017 0.339685
\(581\) 301.530i 0.518984i
\(582\) 0 0
\(583\) −86.6814 −0.148682
\(584\) 135.336i 0.231740i
\(585\) 0 0
\(586\) −533.526 −0.910454
\(587\) − 665.661i − 1.13400i −0.823716 0.567002i \(-0.808103\pi\)
0.823716 0.567002i \(-0.191897\pi\)
\(588\) 0 0
\(589\) −778.772 −1.32219
\(590\) − 160.829i − 0.272592i
\(591\) 0 0
\(592\) −34.9934 −0.0591104
\(593\) 960.335i 1.61945i 0.586809 + 0.809726i \(0.300384\pi\)
−0.586809 + 0.809726i \(0.699616\pi\)
\(594\) 0 0
\(595\) 24.8050 0.0416891
\(596\) 281.712i 0.472670i
\(597\) 0 0
\(598\) 132.575 0.221698
\(599\) − 552.783i − 0.922844i −0.887181 0.461422i \(-0.847339\pi\)
0.887181 0.461422i \(-0.152661\pi\)
\(600\) 0 0
\(601\) 663.737 1.10439 0.552194 0.833716i \(-0.313791\pi\)
0.552194 + 0.833716i \(0.313791\pi\)
\(602\) − 168.129i − 0.279285i
\(603\) 0 0
\(604\) −575.558 −0.952911
\(605\) 342.955i 0.566867i
\(606\) 0 0
\(607\) −772.801 −1.27315 −0.636574 0.771216i \(-0.719649\pi\)
−0.636574 + 0.771216i \(0.719649\pi\)
\(608\) − 85.4581i − 0.140556i
\(609\) 0 0
\(610\) −306.637 −0.502684
\(611\) − 83.7792i − 0.137118i
\(612\) 0 0
\(613\) 4.25996 0.00694936 0.00347468 0.999994i \(-0.498894\pi\)
0.00347468 + 0.999994i \(0.498894\pi\)
\(614\) − 561.488i − 0.914475i
\(615\) 0 0
\(616\) −16.7904 −0.0272572
\(617\) 1195.23i 1.93717i 0.248687 + 0.968584i \(0.420001\pi\)
−0.248687 + 0.968584i \(0.579999\pi\)
\(618\) 0 0
\(619\) 214.058 0.345813 0.172906 0.984938i \(-0.444684\pi\)
0.172906 + 0.984938i \(0.444684\pi\)
\(620\) 304.908i 0.491787i
\(621\) 0 0
\(622\) −102.586 −0.164930
\(623\) 434.450i 0.697352i
\(624\) 0 0
\(625\) 45.5370 0.0728593
\(626\) 13.0477i 0.0208430i
\(627\) 0 0
\(628\) −177.017 −0.281874
\(629\) − 27.7338i − 0.0440918i
\(630\) 0 0
\(631\) −646.049 −1.02385 −0.511925 0.859030i \(-0.671067\pi\)
−0.511925 + 0.859030i \(0.671067\pi\)
\(632\) − 221.920i − 0.351139i
\(633\) 0 0
\(634\) −318.294 −0.502041
\(635\) − 225.351i − 0.354884i
\(636\) 0 0
\(637\) −31.3698 −0.0492462
\(638\) − 105.694i − 0.165664i
\(639\) 0 0
\(640\) −33.4589 −0.0522796
\(641\) − 107.335i − 0.167449i −0.996489 0.0837246i \(-0.973318\pi\)
0.996489 0.0837246i \(-0.0266816\pi\)
\(642\) 0 0
\(643\) −1165.81 −1.81308 −0.906538 0.422124i \(-0.861285\pi\)
−0.906538 + 0.422124i \(0.861285\pi\)
\(644\) − 110.691i − 0.171880i
\(645\) 0 0
\(646\) 67.7293 0.104844
\(647\) 246.501i 0.380991i 0.981688 + 0.190495i \(0.0610094\pi\)
−0.981688 + 0.190495i \(0.938991\pi\)
\(648\) 0 0
\(649\) −86.2802 −0.132943
\(650\) 103.012i 0.158480i
\(651\) 0 0
\(652\) 381.590 0.585261
\(653\) 113.119i 0.173230i 0.996242 + 0.0866151i \(0.0276050\pi\)
−0.996242 + 0.0866151i \(0.972395\pi\)
\(654\) 0 0
\(655\) −517.970 −0.790794
\(656\) − 282.499i − 0.430638i
\(657\) 0 0
\(658\) −69.9497 −0.106307
\(659\) − 643.090i − 0.975858i −0.872883 0.487929i \(-0.837753\pi\)
0.872883 0.487929i \(-0.162247\pi\)
\(660\) 0 0
\(661\) −975.829 −1.47629 −0.738146 0.674641i \(-0.764298\pi\)
−0.738146 + 0.674641i \(0.764298\pi\)
\(662\) − 553.747i − 0.836475i
\(663\) 0 0
\(664\) 322.349 0.485465
\(665\) − 118.205i − 0.177751i
\(666\) 0 0
\(667\) 696.787 1.04466
\(668\) 297.726i 0.445697i
\(669\) 0 0
\(670\) −455.521 −0.679882
\(671\) 164.502i 0.245159i
\(672\) 0 0
\(673\) −803.825 −1.19439 −0.597195 0.802096i \(-0.703718\pi\)
−0.597195 + 0.802096i \(0.703718\pi\)
\(674\) 445.801i 0.661425i
\(675\) 0 0
\(676\) 297.834 0.440583
\(677\) 508.559i 0.751195i 0.926783 + 0.375598i \(0.122562\pi\)
−0.926783 + 0.375598i \(0.877438\pi\)
\(678\) 0 0
\(679\) 232.037 0.341734
\(680\) − 26.5177i − 0.0389966i
\(681\) 0 0
\(682\) 163.574 0.239845
\(683\) 184.107i 0.269557i 0.990876 + 0.134778i \(0.0430323\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(684\) 0 0
\(685\) −194.962 −0.284616
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) −179.738 −0.261247
\(689\) 173.130i 0.251277i
\(690\) 0 0
\(691\) −532.248 −0.770258 −0.385129 0.922863i \(-0.625843\pi\)
−0.385129 + 0.922863i \(0.625843\pi\)
\(692\) − 138.006i − 0.199430i
\(693\) 0 0
\(694\) 341.077 0.491466
\(695\) − 109.512i − 0.157572i
\(696\) 0 0
\(697\) 223.893 0.321223
\(698\) 550.201i 0.788253i
\(699\) 0 0
\(700\) 86.0076 0.122868
\(701\) − 316.163i − 0.451017i −0.974241 0.225509i \(-0.927596\pi\)
0.974241 0.225509i \(-0.0724044\pi\)
\(702\) 0 0
\(703\) −132.161 −0.187996
\(704\) 17.9497i 0.0254968i
\(705\) 0 0
\(706\) −239.925 −0.339838
\(707\) 80.7612i 0.114231i
\(708\) 0 0
\(709\) −995.000 −1.40339 −0.701693 0.712480i \(-0.747572\pi\)
−0.701693 + 0.712480i \(0.747572\pi\)
\(710\) − 97.3668i − 0.137136i
\(711\) 0 0
\(712\) 464.447 0.652313
\(713\) 1078.36i 1.51243i
\(714\) 0 0
\(715\) −29.7365 −0.0415895
\(716\) 594.276i 0.829994i
\(717\) 0 0
\(718\) −679.419 −0.946266
\(719\) 486.059i 0.676020i 0.941142 + 0.338010i \(0.109754\pi\)
−0.941142 + 0.338010i \(0.890246\pi\)
\(720\) 0 0
\(721\) 110.437 0.153172
\(722\) 187.777i 0.260079i
\(723\) 0 0
\(724\) −17.3640 −0.0239835
\(725\) 541.408i 0.746769i
\(726\) 0 0
\(727\) −417.265 −0.573954 −0.286977 0.957937i \(-0.592650\pi\)
−0.286977 + 0.957937i \(0.592650\pi\)
\(728\) 33.5358i 0.0460656i
\(729\) 0 0
\(730\) 200.120 0.274137
\(731\) − 142.450i − 0.194870i
\(732\) 0 0
\(733\) −977.052 −1.33295 −0.666475 0.745527i \(-0.732198\pi\)
−0.666475 + 0.745527i \(0.732198\pi\)
\(734\) − 473.001i − 0.644416i
\(735\) 0 0
\(736\) −118.334 −0.160779
\(737\) 244.374i 0.331579i
\(738\) 0 0
\(739\) 1165.38 1.57697 0.788484 0.615056i \(-0.210866\pi\)
0.788484 + 0.615056i \(0.210866\pi\)
\(740\) 51.7443i 0.0699248i
\(741\) 0 0
\(742\) 144.551 0.194813
\(743\) − 88.5990i − 0.119245i −0.998221 0.0596224i \(-0.981010\pi\)
0.998221 0.0596224i \(-0.0189897\pi\)
\(744\) 0 0
\(745\) 416.564 0.559146
\(746\) 28.1001i 0.0376677i
\(747\) 0 0
\(748\) −14.2260 −0.0190187
\(749\) 139.308i 0.185992i
\(750\) 0 0
\(751\) 226.828 0.302035 0.151017 0.988531i \(-0.451745\pi\)
0.151017 + 0.988531i \(0.451745\pi\)
\(752\) 74.7794i 0.0994407i
\(753\) 0 0
\(754\) −211.104 −0.279978
\(755\) 851.072i 1.12725i
\(756\) 0 0
\(757\) −870.736 −1.15025 −0.575123 0.818067i \(-0.695046\pi\)
−0.575123 + 0.818067i \(0.695046\pi\)
\(758\) 146.767i 0.193624i
\(759\) 0 0
\(760\) −126.366 −0.166271
\(761\) − 305.625i − 0.401610i −0.979631 0.200805i \(-0.935644\pi\)
0.979631 0.200805i \(-0.0643558\pi\)
\(762\) 0 0
\(763\) 512.655 0.671894
\(764\) − 431.582i − 0.564898i
\(765\) 0 0
\(766\) −517.225 −0.675228
\(767\) 172.328i 0.224679i
\(768\) 0 0
\(769\) 58.8251 0.0764956 0.0382478 0.999268i \(-0.487822\pi\)
0.0382478 + 0.999268i \(0.487822\pi\)
\(770\) 24.8279i 0.0322440i
\(771\) 0 0
\(772\) −386.151 −0.500195
\(773\) 180.353i 0.233315i 0.993172 + 0.116658i \(0.0372180\pi\)
−0.993172 + 0.116658i \(0.962782\pi\)
\(774\) 0 0
\(775\) −837.895 −1.08115
\(776\) − 248.058i − 0.319663i
\(777\) 0 0
\(778\) −208.433 −0.267909
\(779\) − 1066.93i − 1.36961i
\(780\) 0 0
\(781\) −52.2345 −0.0668815
\(782\) − 93.7845i − 0.119929i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 261.753i 0.333444i
\(786\) 0 0
\(787\) −269.961 −0.343025 −0.171513 0.985182i \(-0.554865\pi\)
−0.171513 + 0.985182i \(0.554865\pi\)
\(788\) − 657.201i − 0.834012i
\(789\) 0 0
\(790\) −328.150 −0.415380
\(791\) − 331.175i − 0.418678i
\(792\) 0 0
\(793\) 328.562 0.414328
\(794\) 341.154i 0.429665i
\(795\) 0 0
\(796\) −602.071 −0.756371
\(797\) 934.360i 1.17235i 0.810186 + 0.586173i \(0.199366\pi\)
−0.810186 + 0.586173i \(0.800634\pi\)
\(798\) 0 0
\(799\) −59.2660 −0.0741752
\(800\) − 91.9460i − 0.114932i
\(801\) 0 0
\(802\) 931.486 1.16145
\(803\) − 107.358i − 0.133697i
\(804\) 0 0
\(805\) −163.678 −0.203326
\(806\) − 326.709i − 0.405346i
\(807\) 0 0
\(808\) 86.3373 0.106853
\(809\) 1442.65i 1.78326i 0.452768 + 0.891628i \(0.350436\pi\)
−0.452768 + 0.891628i \(0.649564\pi\)
\(810\) 0 0
\(811\) −1560.38 −1.92402 −0.962009 0.273017i \(-0.911979\pi\)
−0.962009 + 0.273017i \(0.911979\pi\)
\(812\) 176.257i 0.217065i
\(813\) 0 0
\(814\) 27.7593 0.0341024
\(815\) − 564.253i − 0.692335i
\(816\) 0 0
\(817\) −678.825 −0.830875
\(818\) − 661.380i − 0.808533i
\(819\) 0 0
\(820\) −417.728 −0.509424
\(821\) − 295.257i − 0.359631i −0.983700 0.179815i \(-0.942450\pi\)
0.983700 0.179815i \(-0.0575500\pi\)
\(822\) 0 0
\(823\) 1085.01 1.31836 0.659178 0.751987i \(-0.270904\pi\)
0.659178 + 0.751987i \(0.270904\pi\)
\(824\) − 118.062i − 0.143279i
\(825\) 0 0
\(826\) 143.882 0.174191
\(827\) 1304.29i 1.57714i 0.614948 + 0.788568i \(0.289177\pi\)
−0.614948 + 0.788568i \(0.710823\pi\)
\(828\) 0 0
\(829\) −912.447 −1.10066 −0.550330 0.834947i \(-0.685498\pi\)
−0.550330 + 0.834947i \(0.685498\pi\)
\(830\) − 476.654i − 0.574282i
\(831\) 0 0
\(832\) 35.8512 0.0430904
\(833\) 22.1912i 0.0266401i
\(834\) 0 0
\(835\) 440.244 0.527238
\(836\) 67.7917i 0.0810905i
\(837\) 0 0
\(838\) 318.281 0.379811
\(839\) 709.512i 0.845664i 0.906208 + 0.422832i \(0.138964\pi\)
−0.906208 + 0.422832i \(0.861036\pi\)
\(840\) 0 0
\(841\) −268.516 −0.319282
\(842\) − 708.214i − 0.841109i
\(843\) 0 0
\(844\) 375.235 0.444591
\(845\) − 440.404i − 0.521188i
\(846\) 0 0
\(847\) −306.816 −0.362239
\(848\) − 154.532i − 0.182231i
\(849\) 0 0
\(850\) 72.8712 0.0857308
\(851\) 183.003i 0.215045i
\(852\) 0 0
\(853\) 37.7697 0.0442787 0.0221393 0.999755i \(-0.492952\pi\)
0.0221393 + 0.999755i \(0.492952\pi\)
\(854\) − 274.326i − 0.321225i
\(855\) 0 0
\(856\) 148.926 0.173979
\(857\) − 369.235i − 0.430846i −0.976521 0.215423i \(-0.930887\pi\)
0.976521 0.215423i \(-0.0691130\pi\)
\(858\) 0 0
\(859\) −308.004 −0.358561 −0.179280 0.983798i \(-0.557377\pi\)
−0.179280 + 0.983798i \(0.557377\pi\)
\(860\) 265.777i 0.309043i
\(861\) 0 0
\(862\) −658.326 −0.763719
\(863\) 915.511i 1.06085i 0.847733 + 0.530423i \(0.177967\pi\)
−0.847733 + 0.530423i \(0.822033\pi\)
\(864\) 0 0
\(865\) −204.067 −0.235916
\(866\) 323.866i 0.373979i
\(867\) 0 0
\(868\) −272.779 −0.314262
\(869\) 176.043i 0.202581i
\(870\) 0 0
\(871\) 488.090 0.560379
\(872\) − 548.051i − 0.628499i
\(873\) 0 0
\(874\) −446.916 −0.511346
\(875\) − 322.791i − 0.368904i
\(876\) 0 0
\(877\) 1072.04 1.22240 0.611198 0.791478i \(-0.290688\pi\)
0.611198 + 0.791478i \(0.290688\pi\)
\(878\) 1088.20i 1.23941i
\(879\) 0 0
\(880\) 26.5421 0.0301615
\(881\) − 1203.17i − 1.36569i −0.730562 0.682846i \(-0.760742\pi\)
0.730562 0.682846i \(-0.239258\pi\)
\(882\) 0 0
\(883\) −1529.93 −1.73265 −0.866325 0.499481i \(-0.833524\pi\)
−0.866325 + 0.499481i \(0.833524\pi\)
\(884\) 28.4137i 0.0321422i
\(885\) 0 0
\(886\) 364.436 0.411328
\(887\) − 679.061i − 0.765571i −0.923837 0.382785i \(-0.874965\pi\)
0.923837 0.382785i \(-0.125035\pi\)
\(888\) 0 0
\(889\) 201.605 0.226778
\(890\) − 686.773i − 0.771655i
\(891\) 0 0
\(892\) 830.576 0.931139
\(893\) 282.423i 0.316263i
\(894\) 0 0
\(895\) 878.750 0.981843
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) 127.573 0.142063
\(899\) − 1717.11i − 1.91002i
\(900\) 0 0
\(901\) 122.473 0.135930
\(902\) 224.099i 0.248447i
\(903\) 0 0
\(904\) −354.041 −0.391638
\(905\) 25.6760i 0.0283713i
\(906\) 0 0
\(907\) −575.405 −0.634405 −0.317203 0.948358i \(-0.602743\pi\)
−0.317203 + 0.948358i \(0.602743\pi\)
\(908\) 687.700i 0.757379i
\(909\) 0 0
\(910\) 49.5890 0.0544934
\(911\) 817.676i 0.897559i 0.893643 + 0.448779i \(0.148141\pi\)
−0.893643 + 0.448779i \(0.851859\pi\)
\(912\) 0 0
\(913\) −255.711 −0.280078
\(914\) 463.864i 0.507510i
\(915\) 0 0
\(916\) 144.466 0.157714
\(917\) − 463.390i − 0.505333i
\(918\) 0 0
\(919\) −883.992 −0.961906 −0.480953 0.876746i \(-0.659709\pi\)
−0.480953 + 0.876746i \(0.659709\pi\)
\(920\) 174.979i 0.190194i
\(921\) 0 0
\(922\) 1031.58 1.11885
\(923\) 104.329i 0.113032i
\(924\) 0 0
\(925\) −142.195 −0.153724
\(926\) − 141.537i − 0.152848i
\(927\) 0 0
\(928\) 188.426 0.203046
\(929\) − 1321.59i − 1.42260i −0.702890 0.711299i \(-0.748107\pi\)
0.702890 0.711299i \(-0.251893\pi\)
\(930\) 0 0
\(931\) 105.749 0.113586
\(932\) − 702.724i − 0.753995i
\(933\) 0 0
\(934\) −81.6661 −0.0874369
\(935\) 21.0358i 0.0224982i
\(936\) 0 0
\(937\) −526.249 −0.561632 −0.280816 0.959762i \(-0.590605\pi\)
−0.280816 + 0.959762i \(0.590605\pi\)
\(938\) − 407.521i − 0.434457i
\(939\) 0 0
\(940\) 110.576 0.117634
\(941\) 1363.58i 1.44908i 0.689234 + 0.724539i \(0.257947\pi\)
−0.689234 + 0.724539i \(0.742053\pi\)
\(942\) 0 0
\(943\) −1477.37 −1.56667
\(944\) − 153.816i − 0.162941i
\(945\) 0 0
\(946\) 142.581 0.150720
\(947\) − 1510.90i − 1.59546i −0.603016 0.797729i \(-0.706035\pi\)
0.603016 0.797729i \(-0.293965\pi\)
\(948\) 0 0
\(949\) −214.428 −0.225952
\(950\) − 347.257i − 0.365534i
\(951\) 0 0
\(952\) 23.7234 0.0249196
\(953\) − 473.540i − 0.496895i −0.968645 0.248447i \(-0.920080\pi\)
0.968645 0.248447i \(-0.0799203\pi\)
\(954\) 0 0
\(955\) −638.177 −0.668248
\(956\) − 203.241i − 0.212595i
\(957\) 0 0
\(958\) −584.301 −0.609918
\(959\) − 174.418i − 0.181875i
\(960\) 0 0
\(961\) 1696.44 1.76529
\(962\) − 55.4440i − 0.0576341i
\(963\) 0 0
\(964\) 34.4745 0.0357619
\(965\) 570.997i 0.591707i
\(966\) 0 0
\(967\) 915.249 0.946483 0.473242 0.880933i \(-0.343084\pi\)
0.473242 + 0.880933i \(0.343084\pi\)
\(968\) 328.001i 0.338844i
\(969\) 0 0
\(970\) −366.801 −0.378145
\(971\) − 603.984i − 0.622023i −0.950406 0.311011i \(-0.899332\pi\)
0.950406 0.311011i \(-0.100668\pi\)
\(972\) 0 0
\(973\) 97.9726 0.100691
\(974\) − 1204.66i − 1.23682i
\(975\) 0 0
\(976\) −293.267 −0.300478
\(977\) 725.053i 0.742122i 0.928608 + 0.371061i \(0.121006\pi\)
−0.928608 + 0.371061i \(0.878994\pi\)
\(978\) 0 0
\(979\) −368.434 −0.376337
\(980\) − 41.4033i − 0.0422483i
\(981\) 0 0
\(982\) 152.925 0.155728
\(983\) − 1023.10i − 1.04079i −0.853926 0.520395i \(-0.825785\pi\)
0.853926 0.520395i \(-0.174215\pi\)
\(984\) 0 0
\(985\) −971.797 −0.986596
\(986\) 149.336i 0.151457i
\(987\) 0 0
\(988\) 135.401 0.137046
\(989\) 939.967i 0.950422i
\(990\) 0 0
\(991\) 1489.57 1.50310 0.751551 0.659675i \(-0.229306\pi\)
0.751551 + 0.659675i \(0.229306\pi\)
\(992\) 291.613i 0.293965i
\(993\) 0 0
\(994\) 87.1070 0.0876328
\(995\) 890.276i 0.894750i
\(996\) 0 0
\(997\) 476.635 0.478069 0.239035 0.971011i \(-0.423169\pi\)
0.239035 + 0.971011i \(0.423169\pi\)
\(998\) − 617.073i − 0.618309i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.8 24
3.2 odd 2 inner 1134.3.b.c.323.17 24
9.2 odd 6 126.3.q.a.113.10 yes 24
9.4 even 3 126.3.q.a.29.10 24
9.5 odd 6 378.3.q.a.197.3 24
9.7 even 3 378.3.q.a.71.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.10 24 9.4 even 3
126.3.q.a.113.10 yes 24 9.2 odd 6
378.3.q.a.71.3 24 9.7 even 3
378.3.q.a.197.3 24 9.5 odd 6
1134.3.b.c.323.8 24 1.1 even 1 trivial
1134.3.b.c.323.17 24 3.2 odd 2 inner