Properties

Label 2-1134-3.2-c2-0-38
Degree $2$
Conductor $1134$
Sign $-1$
Analytic cond. $30.8992$
Root an. cond. $5.55871$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s − 2.00·4-s + 4.01i·5-s + 2.64·7-s + 2.82i·8-s + 5.67·10-s − 3.36i·11-s − 20.7·13-s − 3.74i·14-s + 4.00·16-s − 9.33i·17-s + 9.84·19-s − 8.02i·20-s − 4.75·22-s + 35.8i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s + 0.802i·5-s + 0.377·7-s + 0.353i·8-s + 0.567·10-s − 0.305i·11-s − 1.59·13-s − 0.267i·14-s + 0.250·16-s − 0.548i·17-s + 0.518·19-s − 0.401i·20-s − 0.216·22-s + 1.55i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1134\)    =    \(2 \cdot 3^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.8992\)
Root analytic conductor: \(5.55871\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1134} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1134,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4104147647\)
\(L(\frac12)\) \(\approx\) \(0.4104147647\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
3 \( 1 \)
7 \( 1 - 2.64T \)
good5 \( 1 - 4.01iT - 25T^{2} \)
11 \( 1 + 3.36iT - 121T^{2} \)
13 \( 1 + 20.7T + 169T^{2} \)
17 \( 1 + 9.33iT - 289T^{2} \)
19 \( 1 - 9.84T + 361T^{2} \)
23 \( 1 - 35.8iT - 529T^{2} \)
29 \( 1 + 28.7iT - 841T^{2} \)
31 \( 1 + 3.37T + 961T^{2} \)
37 \( 1 + 65.0T + 1.36e3T^{2} \)
41 \( 1 + 24.2iT - 1.68e3T^{2} \)
43 \( 1 + 24.6T + 1.84e3T^{2} \)
47 \( 1 + 46.9iT - 2.20e3T^{2} \)
53 \( 1 + 63.1iT - 2.80e3T^{2} \)
59 \( 1 + 50.4iT - 3.48e3T^{2} \)
61 \( 1 - 37.6T + 3.72e3T^{2} \)
67 \( 1 + 53.6T + 4.48e3T^{2} \)
71 \( 1 + 84.1iT - 5.04e3T^{2} \)
73 \( 1 + 119.T + 5.32e3T^{2} \)
79 \( 1 + 146.T + 6.24e3T^{2} \)
83 \( 1 - 97.9iT - 6.88e3T^{2} \)
89 \( 1 + 78.6iT - 7.92e3T^{2} \)
97 \( 1 + 91.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.511664484942586804815300233237, −8.486115783234551124532732344916, −7.46101818288597290025556931680, −6.95533051214868296992086645296, −5.54209506112722601964796545783, −4.89860948489894191326090532779, −3.63420762987466477465184135933, −2.80766003218689705701660999662, −1.79262622368074241373606525439, −0.12312886795513731682198576572, 1.39055310999081565225151309102, 2.83436213427158386849070820543, 4.38624004360122892799020101504, 4.87226943640608093670635774723, 5.69299502801188230021007127980, 6.89070335552484669806331150745, 7.46227320843652911089255967097, 8.486555793154766885979272219808, 8.933627065816165535423761953283, 9.947331674794641890703915174071

Graph of the $Z$-function along the critical line