L(s) = 1 | + 6·5-s + 4·7-s − 12·17-s + 17·25-s + 24·35-s + 2·37-s − 6·41-s + 20·43-s − 12·47-s + 9·49-s + 12·59-s + 4·67-s + 28·79-s + 12·83-s − 72·85-s + 18·89-s + 36·101-s − 22·109-s − 48·119-s − 5·121-s + 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 2.68·5-s + 1.51·7-s − 2.91·17-s + 17/5·25-s + 4.05·35-s + 0.328·37-s − 0.937·41-s + 3.04·43-s − 1.75·47-s + 9/7·49-s + 1.56·59-s + 0.488·67-s + 3.15·79-s + 1.31·83-s − 7.80·85-s + 1.90·89-s + 3.58·101-s − 2.10·109-s − 4.40·119-s − 0.454·121-s + 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.892768911\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.892768911\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42496749245610712327378364349, −10.32568702344136244060203219218, −9.528051441513835824394691167351, −9.284623571176793489351541801442, −8.990673177544833188893339377022, −8.660084583323062691237669680778, −7.952537059707057697467903010867, −7.67606099440537164763174787528, −6.74501712182444563765675206637, −6.60749595961290575475892651466, −6.16478919125706584032999629009, −5.71135370211101716666465681475, −5.03837005126779033082726554224, −4.95729342157511820235378866601, −4.36652821479421606476640961845, −3.64674112267195386288722672565, −2.40930699420365285803489465925, −2.21162985299984596235187084605, −1.99298582318335137164776507068, −1.07219492169125979655317125175,
1.07219492169125979655317125175, 1.99298582318335137164776507068, 2.21162985299984596235187084605, 2.40930699420365285803489465925, 3.64674112267195386288722672565, 4.36652821479421606476640961845, 4.95729342157511820235378866601, 5.03837005126779033082726554224, 5.71135370211101716666465681475, 6.16478919125706584032999629009, 6.60749595961290575475892651466, 6.74501712182444563765675206637, 7.67606099440537164763174787528, 7.952537059707057697467903010867, 8.660084583323062691237669680778, 8.990673177544833188893339377022, 9.284623571176793489351541801442, 9.528051441513835824394691167351, 10.32568702344136244060203219218, 10.42496749245610712327378364349