Properties

Label 2.73.a_afe
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 134 x^{2} + 5329 x^{4}$
Frobenius angles:  $\pm0.0649785193373$, $\pm0.935021480663$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{70})\)
Galois group:  $C_2^2$
Jacobians:  $20$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5196$ $26998416$ $151333962444$ $806045701211136$ $4297625831583373836$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $5062$ $389018$ $28383646$ $2073071594$ $151333698598$ $11047398519098$ $806460098965438$ $58871586708267914$ $4297625833463190022$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73^{2}}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{70})\).
Endomorphism algebra over $\overline{\F}_{73}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.afe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-210}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ag_dh$3$(not in LMFDB)
2.73.g_dh$3$(not in LMFDB)
2.73.a_fe$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ag_dh$3$(not in LMFDB)
2.73.g_dh$3$(not in LMFDB)
2.73.a_fe$4$(not in LMFDB)
2.73.ag_dh$6$(not in LMFDB)