Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 134 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.0649785193373$, $\pm0.935021480663$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{70})\) |
Galois group: | $C_2^2$ |
Jacobians: | $20$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5196$ | $26998416$ | $151333962444$ | $806045701211136$ | $4297625831583373836$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5062$ | $389018$ | $28383646$ | $2073071594$ | $151333698598$ | $11047398519098$ | $806460098965438$ | $58871586708267914$ | $4297625833463190022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=x^6+42 x^3+66$
- $y^2=x^6+44 x^3+66$
- $y^2=50 x^6+7 x^5+49 x^4+37 x^3+60 x^2+62 x+40$
- $y^2=x^6+29 x^3+7$
- $y^2=64 x^5+59 x^4+52 x^3+37 x^2+12 x$
- $y^2=3 x^6+23 x^5+22 x^4+53 x^3+44 x^2+24 x+23$
- $y^2=15 x^6+42 x^5+37 x^4+46 x^3+x^2+47 x+42$
- $y^2=25 x^6+35 x^5+57 x^4+14 x^3+29 x^2+32 x+42$
- $y^2=69 x^6+18 x^5+71 x^4+25 x^3+29 x^2+25 x+40$
- $y^2=61 x^6+26 x^5+47 x^4+57 x^3+27 x^2+7 x+16$
- $y^2=41 x^6+64 x^5+25 x^4+71 x^3+68 x^2+23 x+68$
- $y^2=15 x^6+60 x^5+13 x^4+35 x^3+57 x^2+14 x+35$
- $y^2=65 x^6+39 x^5+39 x^4+20 x^3+46 x^2+64 x+52$
- $y^2=65 x^6+35 x^5+35 x^4+34 x^3+51 x^2+53 x+46$
- $y^2=x^6+40 x^3+52$
- $y^2=25 x^6+9 x^5+43 x^4+58 x^3+32 x^2+27 x+58$
- $y^2=42 x^6+66 x^5+67 x^4+64 x^3+31 x^2+22 x+25$
- $y^2=36 x^6+8 x^5+18 x^4+71 x^3+57 x^2+46 x+39$
- $y^2=34 x^6+40 x^5+17 x^4+63 x^3+66 x^2+11 x+49$
- $y^2=60 x^6+31 x^5+60 x^4+30 x^3+37 x^2+17 x+25$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{70})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.afe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-210}) \)$)$ |
Base change
This is a primitive isogeny class.