# Stored data for abelian variety isogeny class 2.73.a_afe, downloaded from the LMFDB on 05 September 2025. {"abvar_count": 5196, "abvar_counts": [5196, 26998416, 151333962444, 806045701211136, 4297625831583373836, 22901968189002002453136, 122045014039767800334515724, 650377885520577606039093657600, 3465863721549107305502700166298316, 18469587788292685494786640464529354896], "abvar_counts_str": "5196 26998416 151333962444 806045701211136 4297625831583373836 22901968189002002453136 122045014039767800334515724 650377885520577606039093657600 3465863721549107305502700166298316 18469587788292685494786640464529354896 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.0649785193372573, 0.935021480662743], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 74, "curve_counts": [74, 5062, 389018, 28383646, 2073071594, 151333698598, 11047398519098, 806460098965438, 58871586708267914, 4297625833463190022], "curve_counts_str": "74 5062 389018 28383646 2073071594 151333698598 11047398519098 806460098965438 58871586708267914 4297625833463190022 ", "curves": ["y^2=x^6+42*x^3+66", "y^2=x^6+44*x^3+66", "y^2=50*x^6+7*x^5+49*x^4+37*x^3+60*x^2+62*x+40", "y^2=x^6+29*x^3+7", "y^2=64*x^5+59*x^4+52*x^3+37*x^2+12*x", "y^2=3*x^6+23*x^5+22*x^4+53*x^3+44*x^2+24*x+23", "y^2=15*x^6+42*x^5+37*x^4+46*x^3+x^2+47*x+42", "y^2=25*x^6+35*x^5+57*x^4+14*x^3+29*x^2+32*x+42", "y^2=69*x^6+18*x^5+71*x^4+25*x^3+29*x^2+25*x+40", "y^2=61*x^6+26*x^5+47*x^4+57*x^3+27*x^2+7*x+16", "y^2=41*x^6+64*x^5+25*x^4+71*x^3+68*x^2+23*x+68", "y^2=15*x^6+60*x^5+13*x^4+35*x^3+57*x^2+14*x+35", "y^2=65*x^6+39*x^5+39*x^4+20*x^3+46*x^2+64*x+52", "y^2=65*x^6+35*x^5+35*x^4+34*x^3+51*x^2+53*x+46", "y^2=x^6+40*x^3+52", "y^2=25*x^6+9*x^5+43*x^4+58*x^3+32*x^2+27*x+58", "y^2=42*x^6+66*x^5+67*x^4+64*x^3+31*x^2+22*x+25", "y^2=36*x^6+8*x^5+18*x^4+71*x^3+57*x^2+46*x+39", "y^2=34*x^6+40*x^5+17*x^4+63*x^3+66*x^2+11*x+49", "y^2=60*x^6+31*x^5+60*x^4+30*x^3+37*x^2+17*x+25"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 5, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.840.1"], "geometric_splitting_field": "2.0.840.1", "geometric_splitting_polynomials": [[210, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 20, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 20, "label": "2.73.a_afe", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.705600.17"], "p": 73, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -134, 0, 5329], "poly_str": "1 0 -134 0 5329 ", "primitive_models": [], "q": 73, "real_poly": [1, 0, -280], "simple_distinct": ["2.73.a_afe"], "simple_factors": ["2.73.a_afeA"], "simple_multiplicities": [1], "singular_primes": ["2,-2*F^2+F-7"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.705600.17", "splitting_polynomials": [[4900, 0, 70, 0, 1]], "twist_count": 4, "twists": [["2.73.ag_dh", "2.389017.a_apahy", 3], ["2.73.g_dh", "2.389017.a_apahy", 3], ["2.73.a_fe", "2.28398241.avpk_jgvuqo", 4], ["2.73.ag_dh", "2.151334226289.abeapw_bujdiuecc", 6]], "weak_equivalence_count": 5, "zfv_index": 16, "zfv_index_factorization": [[2, 4]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 144, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-2*F^2+F-7"]}