Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 41 x^{2} )^{2}$ |
| $1 + 6 x + 91 x^{2} + 246 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.575266912322$, $\pm0.575266912322$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $34$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2025$ | $3080025$ | $4703216400$ | $7973818202025$ | $13427276345015625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $1828$ | $68238$ | $2821828$ | $115896048$ | $4750145998$ | $194752514928$ | $7984928793988$ | $327381995816478$ | $13422658979725348$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=20 x^6+9 x^5+24 x^4+25 x^3+39 x^2+12 x+33$
- $y^2=33 x^6+14 x^5+25 x^4+11 x^3+25 x^2+14 x+33$
- $y^2=7 x^6+13 x^5+34 x^4+33 x^3+19 x^2+28 x+19$
- $y^2=10 x^6+18 x^4+21 x^3+9 x^2+32$
- $y^2=14 x^6+x^5+35 x^4+12 x^2+4 x+11$
- $y^2=33 x^6+31 x^4+6 x^3+24 x^2+20 x+22$
- $y^2=27 x^6+39 x^5+9 x^4+26 x^3+16 x^2+5 x+21$
- $y^2=38 x^6+11 x^5+30 x^4+34 x^3+37 x^2+13 x+15$
- $y^2=20 x^6+30 x^5+15 x^4+36 x^3+11 x^2+38 x+4$
- $y^2=11 x^6+29 x^5+40 x^4+16 x^3+40 x^2+29 x+11$
- $y^2=40 x^6+13 x^5+10 x^4+9 x^3+2 x^2+12 x+20$
- $y^2=11 x^6+13 x^5+21 x^4+34 x^3+40 x^2+18 x+6$
- $y^2=19 x^6+11 x^5+7 x^4+40 x^3+34 x^2+21 x+7$
- $y^2=22 x^6+13 x^5+x^4+40 x^3+14 x^2+26 x+27$
- $y^2=24 x^6+26 x^5+25 x^4+2 x^3+37 x^2+17 x+26$
- $y^2=21 x^6+37 x^5+29 x^3+4 x^2+29 x+21$
- $y^2=5 x^6+19 x^5+5 x^4+10 x^3+8 x^2+6 x+9$
- $y^2=36 x^6+30 x^5+9 x^4+38 x^3+9 x^2+8 x+4$
- $y^2=22 x^6+33 x^5+5 x^4+x^3+36 x^2+33 x+19$
- $y^2=21 x^6+x^5+14 x^4+24 x^3+23 x^2+30 x+22$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-155}) \)$)$ |
Base change
This is a primitive isogeny class.