Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - x + 37 x^{2} )^{2}$ |
| $1 - 2 x + 75 x^{2} - 74 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.473805533589$, $\pm0.473805533589$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1369$ | $2082249$ | $2576983696$ | $3502778008041$ | $4807660755266209$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1516$ | $50874$ | $1868980$ | $69330636$ | $2565904822$ | $94932548460$ | $3512473524004$ | $129961709026098$ | $4808584561055836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=5 x^6+3 x^5+13 x^4+22 x^3+22 x^2+15 x+6$
- $y^2=21 x^6+6 x^5+29 x^4+14 x^3+15 x^2+13 x+28$
- $y^2=19 x^6+32 x^5+8 x^4+16 x^3+20 x^2+15 x+24$
- $y^2=23 x^6+8 x^5+27 x^4+5 x^3+23 x^2+36 x+20$
- $y^2=2 x^6+2 x^3+17$
- $y^2=13 x^6+22 x^5+21 x^4+36 x^3+10 x^2+19 x+18$
- $y^2=4 x^6+31 x^5+26 x^4+35 x^3+34 x^2+2 x+3$
- $y^2=13 x^6+23 x^5+6 x^4+13 x^3+3 x^2+17 x+26$
- $y^2=18 x^6+17 x^5+17 x^4+31 x^3+19 x^2+6 x+24$
- $y^2=31 x^6+28 x^4+33 x^3+30 x^2+30 x+8$
- $y^2=5 x^6+36 x^5+18 x^4+13 x^3+4 x^2+5 x+10$
- $y^2=18 x^6+20 x^5+12 x^4+22 x^3+10 x^2+18 x+32$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ab 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.