L(s) = 1 | + 3-s + 4·7-s + 3·9-s + 3·11-s − 4·13-s + 3·17-s + 19-s + 4·21-s + 3·23-s + 8·27-s − 12·29-s + 7·31-s + 3·33-s − 37-s − 4·39-s + 12·41-s + 8·43-s − 9·47-s + 9·49-s + 3·51-s + 3·53-s + 57-s − 9·59-s + 61-s + 12·63-s − 7·67-s + 3·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.51·7-s + 9-s + 0.904·11-s − 1.10·13-s + 0.727·17-s + 0.229·19-s + 0.872·21-s + 0.625·23-s + 1.53·27-s − 2.22·29-s + 1.25·31-s + 0.522·33-s − 0.164·37-s − 0.640·39-s + 1.87·41-s + 1.21·43-s − 1.31·47-s + 9/7·49-s + 0.420·51-s + 0.412·53-s + 0.132·57-s − 1.17·59-s + 0.128·61-s + 1.51·63-s − 0.855·67-s + 0.361·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.438891173\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.438891173\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48901972068012868972455417702, −10.35508363992139003417916379326, −9.563724693824625332199937660980, −9.458114382926935858904750426256, −9.045154973994390634652297060305, −8.427759257669920933694000067125, −8.068373590334878660937031328481, −7.59618411399666916661370408777, −7.15087059010579632517495786401, −7.12794565626510936920685402125, −6.10186939289148981230781709907, −5.81820520540124750831627349732, −4.92643690093785376021988999200, −4.82575660321742850830212789460, −4.21252357604103652490734770425, −3.76672952584091699620379785258, −2.94732356143077770675647655073, −2.38062798038959765339881574384, −1.59219404940058172339480430264, −1.10346059572545146215595998039,
1.10346059572545146215595998039, 1.59219404940058172339480430264, 2.38062798038959765339881574384, 2.94732356143077770675647655073, 3.76672952584091699620379785258, 4.21252357604103652490734770425, 4.82575660321742850830212789460, 4.92643690093785376021988999200, 5.81820520540124750831627349732, 6.10186939289148981230781709907, 7.12794565626510936920685402125, 7.15087059010579632517495786401, 7.59618411399666916661370408777, 8.068373590334878660937031328481, 8.427759257669920933694000067125, 9.045154973994390634652297060305, 9.458114382926935858904750426256, 9.563724693824625332199937660980, 10.35508363992139003417916379326, 10.48901972068012868972455417702