Properties

Label 700.2.i.c
Level $700$
Weight $2$
Character orbit 700.i
Analytic conductor $5.590$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(401,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.401"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} + ( - 2 \zeta_{6} + 3) q^{7} + 2 \zeta_{6} q^{9} + ( - 3 \zeta_{6} + 3) q^{11} - 2 q^{13} + ( - 3 \zeta_{6} + 3) q^{17} + \zeta_{6} q^{19} + ( - 3 \zeta_{6} + 1) q^{21} + 3 \zeta_{6} q^{23}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 4 q^{7} + 2 q^{9} + 3 q^{11} - 4 q^{13} + 3 q^{17} + q^{19} - q^{21} + 3 q^{23} + 10 q^{27} - 12 q^{29} + 7 q^{31} - 3 q^{33} - q^{37} - 2 q^{39} + 12 q^{41} + 8 q^{43} - 9 q^{47} + 2 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 0 0 2.00000 + 1.73205i 0 1.00000 1.73205i 0
501.1 0 0.500000 0.866025i 0 0 0 2.00000 1.73205i 0 1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.i.c 2
5.b even 2 1 28.2.e.a 2
5.c odd 4 2 700.2.r.b 4
7.c even 3 1 inner 700.2.i.c 2
7.c even 3 1 4900.2.a.g 1
7.d odd 6 1 4900.2.a.n 1
15.d odd 2 1 252.2.k.c 2
20.d odd 2 1 112.2.i.b 2
35.c odd 2 1 196.2.e.a 2
35.i odd 6 1 196.2.a.a 1
35.i odd 6 1 196.2.e.a 2
35.j even 6 1 28.2.e.a 2
35.j even 6 1 196.2.a.b 1
35.k even 12 2 4900.2.e.h 2
35.l odd 12 2 700.2.r.b 4
35.l odd 12 2 4900.2.e.i 2
40.e odd 2 1 448.2.i.c 2
40.f even 2 1 448.2.i.e 2
45.h odd 6 1 2268.2.i.h 2
45.h odd 6 1 2268.2.l.a 2
45.j even 6 1 2268.2.i.a 2
45.j even 6 1 2268.2.l.h 2
60.h even 2 1 1008.2.s.p 2
105.g even 2 1 1764.2.k.b 2
105.o odd 6 1 252.2.k.c 2
105.o odd 6 1 1764.2.a.a 1
105.p even 6 1 1764.2.a.j 1
105.p even 6 1 1764.2.k.b 2
140.c even 2 1 784.2.i.d 2
140.p odd 6 1 112.2.i.b 2
140.p odd 6 1 784.2.a.d 1
140.s even 6 1 784.2.a.g 1
140.s even 6 1 784.2.i.d 2
280.ba even 6 1 3136.2.a.k 1
280.bf even 6 1 448.2.i.e 2
280.bf even 6 1 3136.2.a.h 1
280.bi odd 6 1 448.2.i.c 2
280.bi odd 6 1 3136.2.a.s 1
280.bk odd 6 1 3136.2.a.v 1
315.r even 6 1 2268.2.l.h 2
315.v odd 6 1 2268.2.i.h 2
315.bo even 6 1 2268.2.i.a 2
315.br odd 6 1 2268.2.l.a 2
420.ba even 6 1 1008.2.s.p 2
420.ba even 6 1 7056.2.a.f 1
420.be odd 6 1 7056.2.a.bw 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.2.e.a 2 5.b even 2 1
28.2.e.a 2 35.j even 6 1
112.2.i.b 2 20.d odd 2 1
112.2.i.b 2 140.p odd 6 1
196.2.a.a 1 35.i odd 6 1
196.2.a.b 1 35.j even 6 1
196.2.e.a 2 35.c odd 2 1
196.2.e.a 2 35.i odd 6 1
252.2.k.c 2 15.d odd 2 1
252.2.k.c 2 105.o odd 6 1
448.2.i.c 2 40.e odd 2 1
448.2.i.c 2 280.bi odd 6 1
448.2.i.e 2 40.f even 2 1
448.2.i.e 2 280.bf even 6 1
700.2.i.c 2 1.a even 1 1 trivial
700.2.i.c 2 7.c even 3 1 inner
700.2.r.b 4 5.c odd 4 2
700.2.r.b 4 35.l odd 12 2
784.2.a.d 1 140.p odd 6 1
784.2.a.g 1 140.s even 6 1
784.2.i.d 2 140.c even 2 1
784.2.i.d 2 140.s even 6 1
1008.2.s.p 2 60.h even 2 1
1008.2.s.p 2 420.ba even 6 1
1764.2.a.a 1 105.o odd 6 1
1764.2.a.j 1 105.p even 6 1
1764.2.k.b 2 105.g even 2 1
1764.2.k.b 2 105.p even 6 1
2268.2.i.a 2 45.j even 6 1
2268.2.i.a 2 315.bo even 6 1
2268.2.i.h 2 45.h odd 6 1
2268.2.i.h 2 315.v odd 6 1
2268.2.l.a 2 45.h odd 6 1
2268.2.l.a 2 315.br odd 6 1
2268.2.l.h 2 45.j even 6 1
2268.2.l.h 2 315.r even 6 1
3136.2.a.h 1 280.bf even 6 1
3136.2.a.k 1 280.ba even 6 1
3136.2.a.s 1 280.bi odd 6 1
3136.2.a.v 1 280.bk odd 6 1
4900.2.a.g 1 7.c even 3 1
4900.2.a.n 1 7.d odd 6 1
4900.2.e.h 2 35.k even 12 2
4900.2.e.i 2 35.l odd 12 2
7056.2.a.f 1 420.ba even 6 1
7056.2.a.bw 1 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less