Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x - 72 x^{2} + 73 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.185304992443$, $\pm0.851971659109$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{97})\) |
Galois group: | $C_2^2$ |
Jacobians: | $144$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5332$ | $27641088$ | $151504663696$ | $806754575545344$ | $4297680310715738932$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $75$ | $5185$ | $389454$ | $28408609$ | $2073097875$ | $151335687310$ | $11047395870075$ | $806460142572289$ | $58871586220154142$ | $4297625826248105425$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=5 x^6+14 x^5+41 x^4+36 x^3+56 x^2+57 x+56$
- $y^2=70 x^6+50 x^5+31 x^4+4 x^3+57 x^2+51 x+2$
- $y^2=26 x^6+69 x^5+37 x^4+37 x^3+57 x^2+31 x+22$
- $y^2=69 x^6+29 x^5+53 x^4+13 x^3+50 x^2+8 x+30$
- $y^2=26 x^6+26 x^5+37 x^4+43 x^3+7 x^2+33 x+33$
- $y^2=58 x^6+68 x^5+11 x^4+62 x^3+44 x^2+72 x+48$
- $y^2=57 x^6+65 x^5+27 x^4+8 x^3+36 x^2+27 x+61$
- $y^2=21 x^6+55 x^5+42 x^4+11 x^3+63 x^2+50 x+70$
- $y^2=36 x^6+61 x^5+12 x^4+8 x^3+37 x^2+46 x+55$
- $y^2=31 x^6+72 x^5+5 x^4+53 x^3+49 x^2+28 x+72$
- $y^2=12 x^6+x^5+5 x^4+54 x^3+10 x^2+61 x+52$
- $y^2=33 x^6+18 x^5+45 x^4+54 x^3+11 x^2+72 x+40$
- $y^2=55 x^6+2 x^5+50 x^4+19 x^3+66 x^2+3 x+18$
- $y^2=57 x^6+68 x^4+51 x^2+45 x+71$
- $y^2=72 x^6+54 x^5+25 x^4+2 x^3+37 x^2+19 x+69$
- $y^2=29 x^6+x^5+33 x^4+40 x^3+27 x^2+19 x+31$
- $y^2=38 x^6+62 x^5+18 x^4+10 x^3+46 x^2+13 x+25$
- $y^2=6 x^6+51 x^5+18 x^4+55 x^3+16 x^2+45 x+28$
- $y^2=22 x^6+34 x^5+40 x^4+52 x^3+23 x^2+38 x+9$
- $y^2=13 x^6+41 x^5+23 x^4+53 x^3+9 x^2+37 x+2$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{97})\). |
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.ik 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.